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Abstract
The traditional economic dispatch (ED) inattention to the fossil fuels emission of thermal power plants no longer satisfies
the environmental needs. As a result of the non-convex, non-smooth fuel cost functions in addition to the nonlinearity
of the emission modelling. These make the combined economic and emission dispatch (CEED) a highly nonlinear
optimization problem. Furthermore, different operation process constraints should be taken into account, such as loss in
electrical networks and power balance of unit operation. These constraints increase the difficulty of obtaining the global
optimal solution based on traditional methods. Recently, meta-heuristic population-based algorithms have successfully
become a beneficial technique for solving nonlinear optimization problems. The major contribution in this work is
presenting a recent meta-heuristic approach known as Mayfly algorithm (MA) for solving nonlinear and complex CEED
problem. The numerical results are compared with results obtained from modern meta-heuristic algorithms like Jellyfish
Search (JS) optimizer, Dwarf mongoose optimization (DMO), Tunicate swarm algorithm (TSA), Red deer algorithm
(RDA), Tuna Swarm Optimization (TSO), Golden Eagle Optimizer (GEO) and Bald eagle search Optimization algorithm
(BES). The standard IEEE 30-bus test system is used in this article. The simulation results are done using MATLAB
environment. The results approve the reliability, stability, and consistency of the proposed approach. The proposed
technique gives reliable, robust, and high-quality solution with faster computational time. Moreover, MA is more suitable
for solving nonlinear CCED problem because it has a considerable convergence feature.
Keywords
Economic Emission Dispatch, Mayfly Algorithm, Meta-Heuristic.

I. INTRODUCTION

The economic dispatch problem has received clear attention,
especially in operation, economic scheduling, and the security
of the power systems. The essential objective of the com-
bined economic and emission dispatch CEED is to minimize
the generation cost of power plants. All units’ constraints
must be met while the committed generating unit’s outputs
are optimally adjusted. So, ED is an optimization problem
with nonlinear large-scale limitations [1–4]. In classical ED,
fossil fuel pollutant emissions are not considered in thermal
plants. Due to the increasing attention paid to reducing envi-

ronmental pollution, the classical ED that inattention to the
fossil fuel emissions of thermal power plants no longer meets
the environmental needs. When traditional ED constraints are
combined with environmental conditions, it becomes a CEED
problem. The multi-objective CEED problems consider mini-
mizing two objective functions (OFs): fuel cost and thermal
power plant emissions considering their constraints [5]. Be-
cause of the nonlinear characteristics of the emission mod-
elling and non-convex, non-smooth fuel cost functions. These
make the CEED problem a highly nonlinear, non-smooth, and
non-convex optimization problem. Moreover, various process
operation constraints must be considered, such as transmis-
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Nomenclature
Abbreviation

CEED
combined economic emission
dispatch pbesti & gbesti

local & global best position of
the ith mayfly

ED economic dispatch pzi POZs No. of generator i

MA mayfly algorithm P0
Gi

the preceding power output of
the ith generator

OF objective function Pmin
Gi & Pmax

Gi j
Min.& max. power of generator i
(fuel type j)

PB Power Balance Pl
Gi,k& Pu

Gi,k
lower & upper limits of generator
iPOZ

POZs prohibited operating zones r1 random number in ∈ [-1,1]

TOLε error tolerance value rg
cartesian distance between
yi&gbest

VPE valve point effect rp
cartesian distance between
yi& pbesti

Parameters rl index of the slack generator
ai ,bi ,and ci ith generator coefficients t time instance

ai j ,bi j ,ci j,ei j, and di j
generator i cost coefficients
(fuel type j ) w weight factor

DRi ,and URi
down and up-ramp limit of
generator i wt+1

i
female mayfly’s velocity in
dimension j

di ,and ei
coefficients of fuel cost
representing VPE x control variables vector

Bi j,B0i,and B00 coefficients of B-loss matrices Yi corresponds to pbesti and gbest
emission(x,y) Emission cost function y dependent variable
F(cost)(x,y) fuel cost function yi j jth element of mayfly i

fl random walk coefficient yt
i j and wt

i j
position & velocity of ith mayfly in
dimension j

i j generator index and fuel type zt
i

the ith female mayfly’s current
position

NF
fuel type No. of individual
generators zt

i j
ith female mayfly current position in
dimension j

NG thermal generation units set α1, and α2 positive attraction constants

NG total generator’s number αi, βi, ηi, ζi, and λi
coefficients of the ith generator
emission characteristics

NPZ generator No, including POZs β fixed visibility constant
PG Generator active power outputs γ scaling factor

sion system losses and the power balance of unit operation.
These constraints increase the difficulty of finding the global
optimum using traditional mathematical methods. The CEED
problem is an extremely nonlinear multimodal optimization
problem because of the nonlinear properties of the emission
model in addition to non-convex and non-smooth fuel costs
when considering valve-point effects [1]. Multiple Objective
Meta-heuristic algorithms have recently been confirmed to
be superior and convenient for solving several optimization
problems [6–17]. Recently, several optimization strategies

have been utilized to solve the CEED problem. Previously,
many traditional methods were used for solving ED prob-
lems, like linear and nonlinear programming (LP and NLP),
gradient methods (GM), dynamic programming (DP), goal
programming (GP), Lagrangian relaxation (LR), etc. [18].
These conventional techniques are unsuitable for solving ED
due to fuel-emission objectives’ nonlinear and non-convex
characteristics. It is critical to the starting point and commonly
converges to a local optimal. The conventional techniques fail
to find the problem solutions with significant computational
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time, so they are unsuitable for solving medium or large-scale
CEED [19]. Thus, to address these issues, meta-heuristic
population-based algorithms are proposed in this study for
solving combined CEED problems with complex constraints.
Various agents-based metaheuristic strategies have been uti-
lized recently to solve complex constrained optimization prob-
lems. Numerous population-based methods were used for
solving the nonlinear multi-objective CEED. Different tech-
niques like a flash algorithm (LFA) [20], Modified Harmony
Search (MHS) Algorithm [21], Bat Algorithm (BA) [22], Har-
mony search (HS) [23], Kho-Kho optimization (KKO) algo-
rithm [24], Grasshopper Optimization Algorithm (GOA) [25],
Squirrel Search Algorithm (SSA) [26]Moth Swarm Algo-
rithm, Competitive Swarm Optimization [27], Modified Ma-
rine Predators Algorithm (MMPA) [28], Grasshopper Op-
timization Algorithm [29], Whale Optimization Algorithm
(WOA) [30], Modified Artificial Bee Colony Algorithm [31],
were proposed to solve various CEED problems.

MA is discovered by Zervoudakis and Tsafarakis in 2020
[32]. MA is used for solving various optimization problems
such as optimizing maximum power point tracking (mppt)
for photovoltaic systems [33], designing of uzzy PD-(1+I)
controller for fully-renewable interconnected microgrid [34],
optimal sizing and sitting of EVCS in the distribution system
[35], a multi-stage PD(1+PI) controller design for DC–DC
buck converter [36], performance analysis of various voltage
stability indices in a stochastic OPF [37], design of PSS and
SSSC-POD controllers in power system [38], OPF solution to
deregulated electricity power market [39].

The essential contribution of this manuscript is suggesting
MA approach for solving nonlinear and complex CEED prob-
lem. This strategy has various advantages, such as fast conver-
gence, lower computational time, satisfactory exploration and
exploitation performance, avoiding premature convergence,
less complexity, and obtaining the optimal solution without
trapping in global optima. This work is based on MATLAB
environment. The proposed approach is established on the
IEEE 30-bus benchmark. The numerical results are compared
with results achieved from modern approaches, like the Jelly-
fish Search (JS) optimizer [40], Dwarf mongoose optimization
(DMO) [41], Tunicate swarm algorithm (TSA) [42], Red deer
algorithm (RDA) [43], Tuna Swarm Optimization (TSO) [44],
Golden Eagle Optimizer (GEO) [45] and Bald eagle search
Optimization algorithm (BES) [46].

II. PROBLEM FORMULATION

Recently, numerous of studies have tried to model the power
dispatch problem with planned generation units considering
optimal economic-emission dispatch. The key target to solve
the CEED problem is combining the weighted sum method
and the minimized objective function taking into consideration

the system constraints. The problem OF is defined as follows:

min
x

F(x,y)=min
x

{w ∑
n∈NG

Fcos t(x,y)+(1−w)γ ∑
n∈NG

Emission(x,y)}

(1)

x = [PG1...PGNG−1] (2)

y = PGsl (3)

A. Fuel Cost Objective
Individual generators have an essential fuel cost function that
is depicted as a quadratic function of actual power.

Fcost(PGi) = ai +biPGi + ciPGi
2 (4)

The sequential opening of a series of steam admission
valves controls the output power of large generators driven
by a steam turbine. The progressive rate of heat between the
points of opening of every two valves decreases as the unit
loading, input, and output all rise. Yet, the losses of throttling
and the progressive rate of heating greatly rise when a valve is
first opened. This phenomenon, called the ”valve point effect
(VPE),” results in non-convex and non-smooth input-output
characteristics. Generally, a recurrent rectified sinusoid is
collected to the fundamental quadratic cost objective to mimic
the VPE. Practically, VPE is considered in the generator’s
cost function. As a result of the wire drawing effect, the
losses are subject to a sharp increase. This occurs because
the individual steam admission valve starts to open, causing a
nonlinear rippled input-output curve [2, 3], as shown in Fig.
1. Considering the rippled curve, the OF represents a more
accurate model:

Fcost(PGi)= ai+biPGi+ciPGi
2+ |disin(ei(PGi

min−PGi))| (5)

Practically, various generating units in a power system are
provided with multiple fuel types, like coal, oil, or natural gas.
The ED problem becomes more complex and non-smooth
when modelling the multifuel effect. This quadratic function
is superimposed to form the unit cost function using several
fuels as [48]:

{
Fcos t i(PGi) = ai j +bi jPGi + ci jPGi

2 + |di jsin(ei j(PGi
min −PGi))|

i f PGi j
min ≤ PGi ≤ PGi j

max, j=1,...,NF

}
(6)
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Fig. 1. Valve Point Effect [47]

B. Emission Objective
One of the most significant challenges that are facing hu-
mans is environmental pollution generated by thermal plants.
These units emit particles and gases like sulfur dioxide (SO2),
carbon dioxide (CO2), and nitrogen oxide (NOx) into the at-
mosphere due to fossil fuels. Various OFs were suggested to
denote the thermal unit emission. In this work, the addition
of quadratic and exponential OFs is suggested. to define the
thermal-units emission [49]:

Emission(PGi) = αi +βiPGi +ηiPGi
2 +ξie(λiPGi) (7)

C. Constraints
Throughout the process of minimization, certain equality and
inequality constraints should be fulfilled. An equality con-
straint in this process is referred to as a Power Balance (PB),
while an inequality constraint is a generating capacity con-
straint.

1) Constraint of PB
The overall amount of power generated should meet the power
loss Ploss and the overall power load demand Pload . Hence, the
constraint of PB is denoted as:

∑
i∈NG

PGi −Pload −Ploss = 0 (8)

Loss coefficients (Bn j) are used to represent system trans-
mission losses which are known as B-loss matrices. These
matrices denote the losses as a quadratic function of the gen-
erator’s active power. So,

Ploss = ∑
i∈NG

∑
j∈NG

PGiBi jPj+ ∑
i∈NG

BoiPGi+Boo (9)

2) Generation Capacity Constraint
Individual generator active power is constrained by Pmin

Gi and
Pmax

Gi output- power restrictions for stable operation and for-
mulated as follows:

Pmin
Gi ≤ PGi ≤ PGi

max, i=1,...,NG (10)

Insertion of a rate limit of ramp function. The associated
ramp rate constraints constrain all online units’ actual opera-
tional ranges. The following conditions can be used to express
the ramp-up and ramp-down:

{
PGi −PGi

o ≤URi
PGi

o −PGi ≤ DRi

}
(11)

(10) should be modified owing to ramp rate limits as fol-
lows:

max{PGi
min,PGi

0−DRi}≤ PGi ≤ min{PGi
max,PGi

0+URi}
(12)

Typically, ramp rate constraints are considered while deal-
ing with a dynamic ED/CEED situation. With a time horizon
schedule made up of consecutive time intervals (T). Tradi-
tional ED/CEED is solved for the individual time interval
from the temporal T-horizon. They are considering the lim-
its of prohibited operating zones (POZs). Sometimes physi-
cal operation restrictions prevent a generator from operating
within its entire operating range. POZs may exist in a thermal-
generating unit due to the shaft-bearing vibration. This vi-
bration is caused due to steam valves, machines issues, and
auxiliary equipment (boilers and feeding pumps). Such occur-
rences might cause instability in particular generator power
output ranges. As a result, there are extra restrictions on the
operating range for units with POZs as follows [50]:

PGi ∈


Pmin

Gi
≤ PGi ≤ Pl

Gi,1

Pu
Gi,k−1

≤ PGi ≤ Pl
Gi,k

.,k = 2,3, ..., pzi; i = 1,2, ...,NPZ

Pu
Gi,pzi

≤ PGi ≤ Pmax
Gi

(13)
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D. Calculations of Slack Generator
A slack generator is a dependent generator that should be
chosen to impose the power balancing constraint stated in (8).
When the initial power loss value is zero (Pold

loss = P f irst
loss = 0),

the value of the slack generator’s generation power, Pold
Gsl , is

calculated using (14).

Pold
Gsl

= Pload −
NG

∑
i=1
i̸=sl

PGi (14)

Pold
Gsl is obtained, after which Pnew

loss is calculated from (9).
According to this, the following equation is used to calculate
Pnew

Gsl .

Pnew
Gsl

= Pload +Pnew
loss

−
NG

∑
i=1
i ̸=sl

PGi (15)

Equation (15) is controlled in (16). Power balance con-
straints are satisfied through this equation if the error (ε) value
is less than the error tolerance value, TOLε(TOLε = 10−6)

ε =
∣∣∣Pnew

loss −Pold
loss

∣∣∣ ,ε ≤ TOLε (16)

To determine if the obtained PGsl meets the constraint
specified in (10). So, the definition of the Plim

Gsl is

Plim
Gsl

=


Pmax

Gsl
if PGsl > Pmax

Gsl

Pmin
Gsl

if PGsl < Pmin
Gsl

PGsl if Pmin
Gsl

≤ PGsl ≤ Pmax
Gsl

(17)

The quadratic penalty term can be obtained by adding
the dependent variable’s inequality constraint (PGsl) to the
objective function. Assuming that λP is the penalty factor, the
new objective function is,

Fp = F +λP(PGsl −Plim
Gsl )

2
(18)

III. RESEARCH METHODOLOGY

The inspiration and mathematical model of Mayfly algorithm
(MA) are first explained. Then, the algorithm stages are illus-
trated with complete expression of the mathematical model of
MA.

IV. INSPIRATION OF MAYFLY ALGORITHM

2020 Zervoudakis and Tsafarakis discovered MA [32], in-
spired by adult mayflies’ mating and flying behaviours. MA
are aquatic insects. It is known as up-winged flies or fish-
flies. There are approximately 42 families and about 3500
species of mayflies worldwide. Their sizes range from tiny
to medium; they are members of the Ephemeroptera family
and belong to the Atalophlebia genus [51]. Their name is de-
rived because they appear mainly in the UK during May [32].
MA algorithm is inspired by the movements and behaviour
of female and male mayflies, also the mating behaviour of
mayflies [51]. MA algorithm consists of three stages, i.e.,
initialization, movement, and mating

A. Initialization
In the initial stage, two populations are generated randomly.
These random populations are, i.e., male mayflies and female
mayflies.

B. Male and Female Mayflies Movement
After the initial stage, each mayfly updates its position in the
search space to improve its fitness. The male’s and female’s
behaviours are different during the mating process. The posi-
tion, velocity of ith mayfly male, and the cartesian distances
are formulated as,

y(t+1)
i j = yt

i j +w(t+1)
i j (19)

w(t+1)
i j =wt

i j+α1e−β r2
p ∗(pbesti j−yt

i j)+α2e−β r2
g ∗(gbesti j−yt

i j)

(20)

∥yi −Yi∥=
√

n

∑
j=1

(yi j −Yi j)
2 (21)

The velocity update of best mayfly is calculated as:

wi j
(t+1) = wt

i j +dn ∗ r1 (22)

Female mayflies do not group. They don’t update their ve-
locities while updating their movement. The survival duration
range for mayflies’ females is [1 day -1 week]. During this
period, females mayfly fly attractive to males for mating and
reproduction of new generations [51]. The current position
and velocity of ith mayfly female are,

z(t+1)
i = zt

i +w(t+1)
i (23)
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w(t+1)
i =

{
wi j

t +α2e−β r2
m f ∗ (yt

i j − zt
i j) if f (zi)> f (yi)

wi j
t + f l ∗ r1 if f (zi)> f (yi)

(24)

C. Mating Process
In this stage, all the fittest half-female mayflies would be
mated with the fittest half-male mayflies and the other best
female with the other best male. The resulting offspring pair
with l as a random number ∈ [−1,1], are formulated in (25)
and (26). The mayfly optimization algorithm is illustrated in
the flowchart shown in Fig.2.

o f f spring1 = L∗Male+(1−L)∗Female (25)

o f f spring2 = L∗Female+(1−L)∗Male (26)

Fig. 2. Schematic Flowchart of MA.

V. SIMULATION AND RESULTS

This work proposes various metaheuristic optimization algo-
rithms for solving CEED to examine its efficiencies. The
IEEE 30-bus system is utilized to explore the applicability
of the proposed algorithms. The total power demand of the
test system is 283.4 MW. Table I. includes the fuel cost, NOx
emissions, and generation limit constants. The error tolerance
value and the scaling factor are assumed TOLε = 10−6MW
and γNOx = 1,000($/t), respectively. The values of the B-loss
matrix are illustrated in Table II. This study compares two
cases: Case A considers Ploss, while Case B neglects Ploss.
Three approaches are considered in this work. The first ap-
proach considered the fuel cost as an objective function with
a weight factor of w=1. The second approach deals with NOx
emission as an objective function with a weight factor w=0.
In the third approach, emission and fuel costs are treated as
objective functions together in solving CEED problems with
a weight factor of w=0.5. The identical system data, control
variable limitations, and constraints were used to obtain the
simulation results based on all proposed algorithms.

All proposed optimization algorithms are based on the
same population size (POPsize = 30) and iteration number
(MaxIter = 100) for comparison purposes. The parameters of
MA algorithms used in this work are α1 = 0.9,α2 = 0.9, β =
0.5, ρ = 0.2, and f l = 1.5.The optimum simulation results
based on the proposed algorithms are recorded in Table III.
All generating units share the loads optimally, considering
reducing the fuel cost ($/h) and NOx emission cost (ton/h)
individually and collectively while maintaining all system
constraints, taking into account Ploss (Case A) and neglecting
Ploss (Case B). Table IV. shows the obtained comparison re-
sults for Case A with all considered approaches based on all
proposed algorithms. In contrast, Table V. shows the obtained
comparison results for Case B with all considered techniques
based on all proposed algorithms. From the results, it’s clear
that all proposed algorithms have suitable characteristics for
optimizing CEED problems for all considered cases and ap-
proaches. Some algorithms showed comparable results, but
the MA algorithm performs better than other proposed tech-
niques for solving CEED problems. MA has approximately
the fastest convergence rate for all considered cases and ap-
proaches. MA shows advanced features for solving single-
objective and multi-objective problems due to its ability to
balance exploring and exploiting phases when discovering
the search space during the optimization procedure. The al-
gorithm’s convergence curves for all considered cases and
objectives are shown from Fig.3 to Fig. 8. The convergence
curves show the fastest algorithms for attaining the optimal
solution and the required iteration numbers of algorithms. It
is clear that some algorithms have comparable features, but
MA shows the fastest convergence rate with a lower iteration
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TABLE I. Fuel Cost, Emission, and Generation Limits Coefficients [5]

Unit Pmin
Gi

(MW)
Pmax

Gi
(MW)

ai
($/MW2 h)

bi
($/MW h)

ci
($/ h)

αi
(ton/MW2 h)

βi
(ton/MW h)

ηi
(ton/h)

ζi
(ton/h)

λi
(1/MW)

1 0.05 1.5 10 200 100 4.09E-02 -5.55E-02 6.49E-02 2.00E-04 2.857
2 0.05 1.5 10 150 120 2.54E-02 -6.05E-02 5.64E-02 5.00E-04 3.333
3 0.05 1.5 20 180 40 4.26E-02 -5.09E-02 4.59E-02 1.00E-06 8
4 0.05 1.5 10 100 60 5.33E-02 -3.55E-02 3.38E-02 2.00E-03 2
5 0.05 1.5 20 180 40 4.26E-02 -5.09E-02 4.59E-02 1.00E-06 8
6 0.05 1.5 10 150 100 6.13E-02 -5.56E-02 5.15E-02 1.00E-05 6.667

TABLE II. The B-Loss Matrix Values [5]

B

1.38E-01 -2.99E-02 4.40E-03 -2.20E-03 -1.00E-03 -8.00E-04
-2.99E-02 4.87E-02 -2.50E-03 4.00E-04 1.60E-03 4.10E-03
4.40E-03 -2.50E-03 1.82E-02 -7.00E-03 -6.60E-03 -6.60E-03
-2.20E-03 4.00E-04 -7.00E-03 1.37E-02 5.00E-03 3.30E-03
-1.00E-03 1.60E-03 -6.60E-03 5.00E-03 1.09E-02 5.00E-04
-8.00E-04 4.10E-03 -6.60E-03 3.30E-03 5.00E-04 2.44E-02

B0 -1.07E-02 6.00E-03 -1.70E-03 9.00E-04 2.00E-04 3.00E-03
B00 9.86E-04

TABLE III.
THE OPTIMUM COMPRISES SOLUTION-BASED FUEL AND NOX EMISSION OBJECTIVES

w
Generation

(MW) Fuel cost
($/h)

NOx emission
(ton/h)

Ploss
(MW)PG1 PG2 PG3 PG4 PG5 PG6

Case A
1 12.09692 28.6312 58.35573 99.28541 52.39703 35.1899 605.99837 0.21073 2.55619
0 46.6048 57.59 45.9926 5 87.9023 44.6289 693.50413 0.20661 4.31862

0.5 13.5214 36.6095 52.9171 82.3318 43.858 57.0731 614.14438 0.20121 2.91082

Case B
1 12.0803 28.7333 58.3171 99.2552 52.3635 35.2091 605.99853 0.22069 -
0 41.0708 46.3898 54.4184 39.0081 54.4817 51.5636 646.22879 0.19418 -

0.5 22.6814 35.4529 57.0857 74.4984 54.6753 41.5393 612.29454 0.20253 -

TABLE IV. Case A Optimum Solution

Method
Minimization of
fuel cost (w=1)

Minimization of NOx
emission cost (w=0)

Minimization of
CEED (w=0.5)

Fuel cost
($/h)

NOx emission
(ton/h)

Fuel cost
($/h)

NOx emission
(ton/h)

Fuel cost
($/h)

NOx emission
(ton/h)

MA 605.99837 0.21073 693.50413 0.20661 614.14438 0.20121
JS 606.02704 0.22149 646.17298 0.19418 612.57267 0.20327

DMO 606.18296 0.2223 641.97852 0.1943 611.12151 0.20484
TSA 607.75178 0.22364 646.49853 0.19418 612.23991 0.20358
RDA 605.99946 0.22089 646.17717 0.19418 612.49164 0.20334
TSO 606.55556 0.2221 647.89513 0.19435 613.08269 0.20345
GEO 606.54504 0.21845 645.38505 0.1945 611.6239 0.20494
BES 606.46349 0.22066 648.36264 0.19466 611.96971 0.20475

number for all considered cases. VI. CONCLUSION

This article proposes a modern metaheuristic optimization
algorithm named Mayfly algorithm (MA) for solving complex
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TABLE V. Case B Optimum Solution

Method
Minimization of
fuel cost (w=1)

Minimization of NOx
emission cost (w=0)

Minimization of
CEED (w=0.5)

Fuel cost
($/h)

NOx emission
(ton/h)

Fuel cost
($/h)

NOx emission
(ton/h)

Fuel cost
($/h)

NOx emission
(ton/h)

MA 605.99853 0.22069 646.22879 0.19418 612.29454 0.20253
JS 605.99895 0.22079 646.21306 0.19418 612.25702 0.20357

DMO 607.00276 0.22533 663.08038 0.19674 612.25427 0.20357
TSA 606.00844 0.22079 646.41592 0.19418 612.30821 0.20352
RDA 606.0746 0.2223 648.6505 0.19428 612.89744 0.20331
TSO 605.99855 0.2207 645.0639 0.19419 613.23698 0.20268
GEO 606.00341 0.22089 646.19853 0.19418 612.30972 0.20351
BES 606.91365 0.22756 646.32606 0.19418 617.73048 0.207

Fig. 3. Convergence Curve for Case A, w=1.

Fig. 4. Convergence Curve for Case A, w=0.

multi-objective CEED problems. The proposed technique
is confirmed on IEEE 30-bus test system. To verify the pro-
posed approach, the results are compared with correspondents’

Fig. 5. Convergence Curve for Case A, w=0.5.

Fig. 6. Convergence Curve for Case B, w=1.

results obtained from several modern approaches such as Jel-
lyfish Search (JS) optimizer, Dwarf Mongoose Optimization
(DMO), Tunicate Swarm Algorithm (TSA), Red Deer Algo-
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Fig. 7. Convergence Curve for Case B, w=0.

Fig. 8. Convergence Curve for Case B, w=0.5.

rithm (RDA), Tuna Swarm Optimization (TSO), Golden Eagle
Optimizer (GEO), Bald Eagle Search Optimization Algorithm
(BES). Simulation results show that all proposed algorithms
optimize the CEED problem effectively for all considered
cases and approaches while maintaining all system constraints.
Some proposed algorithms offer comparable features. The
MA algorithm gives a robust, effective, high-quality solution
with the fastest convergence rate and lower iteration number,
considering reducing the fuel cost ($/h) and NOx emission
cost (ton/h) individually and collectively while maintaining all
system constraints. MA shows advanced features in optimiz-
ing CCED for all considered cases as illustrated in table (IV)
and table (V). All proposed algorithms are proper for solving
a complex problem such as CEED. Still, the best technique is
MA due to its advantages of having the right exploration and
exploitation balance.
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