Received: 22 October 2023 |
DOI: 10.37917/ijeee.21.2.10

Revised: 7 February 2024 | Accepted: 23 February 2024

Early View | December 2025

Open Access

University of
Basrah
College of
Engineering

Utilizing Raspberry-Pi 3 to Implement Fuzzy Logic
Controller Optimized by Genetic Algorithm

Amal Ibrahim Nasser*, Hasan M. Kadhim, Emad Ahmed Hussien
Electrical Engineering Department, Mustansiriyah University, Baghdad, Iraq

Iraqi Journal for Electrical and Electronic Engineering
Original Article

Correspondance

*Amal Ibrahim Nasser

Electrical Engineering Department, Mustansiriyah University,
Baghdad, Iraq

Email: amalalshemmiri@uomustansiriyah.edu.iq

Abstract

The development of Fuzzy Logic Controllers (FLC) with low error rates and cost effectiveness has been the subject
of numerous studies. This paper study goals to the investigation and then implementation an FLC using the readily
accessible and reasonably priced Raspberry Pi technology. The FLC used in this work has two inputs, one output, and
five Membership Functions (MFs) for each input and output. The FLC goes through two processes, tweaking the MF
parameters and tuning input/ output Scaling Factors. The tuning technique makes use of the Genetic Algorithm (GA).
The whole set of the FLC probabilities is taken into account as the tuned FLC controller, and then transformed into a
lookup table. The Center of Gravity (COG) approach is used to determine the output for the tuned FLC controller. The
resulting table is converted into values of digital binary using a specific type of encoder, and then extraction of the set of
Boolean functions to apply this tuned circuit. Finally, the Python 3 programming language is used to define the resultant
Boolean functions on the Raspberry Pi platform, and then a decoder extracted the appropriate control action from the
output. The Benefit of this method is the use of a digital numbering system to define the FLC, which is implemented on
Raspberry Pi technology and allows for fuzzified high processing speed output per second. The controller speed has not
been unaffected by the quantity for these fuzzy rules.

Keywords
Genetic Algorithm, Raspberry Pi, Python, Fuzzy Logic Controller.

I. INTRODUCTION AND BACKGROUND tem of fuzzy logic with modification approaches are adapted
in the computer software domain: the systems of neuro-fuzzy

Fuzzy Logic System (FLS) has high level of non-linear out- and the systems of genetic fuzzy which hybridize the method

puts, which make academic researchers to think how to lin-
earize that output, because many traditional methods of lin-
earizing have specific errors. Genetic Algorithms (GAs) have
been appeared to be giving the linearization for FLS outputs.
Researchers used GA in many FLS applications, such as opti-
mizing the rules of FLS, generating optimized membership
functions, setting optimized parameters for the membership
functions, etc., [1-4]. Currently, fuzzy logic systems proved
their capability to overcome various types of issues in dif-
ferent applications. In addition, there are many ascending
curiosities for providing these applications the capabilities to
learn. A couple well-known methods for hybridizing the sys-

for approximating cause of fuzzy logic systems alongside the
abilities for learning the evolutionary algorithms and the neu-
ral networks [5,6]. There are two types of Fuzzy Inference
Systems (FIS). These types utilize the following renowned
computational systems: The Multi-objective Fuzzy (MFS),
the Neuro Fuzzy (NFS), the Genetic Fuzzy (GFS), the Evolv-
ing Fuzzy (EFS), and the Hierarchical Fuzzy (HFS) systems.
Thes five fuzzy systems are connected together. The Multi-
objective Fuzzy System (MFS) overcomes trade-offs with mul-
tiple objectives, such as the synchronous maximization for the
accuracy and the illustration. The Neuro Fuzzy System (NFS)

This is an open-access article under the terms of the Creative Commons Attribution License,

©2025 The Authors.

which permits use, distribution, and reproduction in any medium, provided the original work is properly cited.

Published by Iraqi Journal for Electrical and Electronic Engineering | College of Engineering, University of Basrah.

https://doi.org/10.37917/ijeee.21.2.10

https://www.ijeee.edu.iq | 99

https://doi.org/10.37917/ijeee.21.2.10
https://www.ijeee.edu.iq

100 |

Nasser, Kadhim & Hussein

merges the systems of Neural Network Learning (subset of
Machine Learning (ML)) with the Fuzzy Inference Systems
(FIS) to upgrade the approximation calculations and features.
The Genetic Fuzzy System (GFS) has the self-guiding struc-
ture that utilizes the optimization process in the Evolutionary
Algorithms (EA). The Evolving Fuzzy System (EFS) over-
comes the curses of data streaming using the changes of this
system gradually. The optimization methods are the follow-
ing fuzzy system types: The Takagi—Sugeno—Kang and the
Mamdani. The Hierarchical Fuzzy System (HFS) merges
multiple low dimensional hierarchical approaches with fuzzy
logic units in order to solve the dimensionality problems [4].
According to the search techniques of Gas’ stochastic, op-
timization can be utilized without gradient data relying or
getting Local Minima stuck [5] Fuzzy systems capable for
solving a range of issues have been created using the combi-
nation of fuzzy logic (FL) and GAs. Researchers have begun
to utilize the GA as a fuzzy matcher in FL systems in the
1990’s [7-9]. Obviously, FL methods have proven to be quite
effective in solving a variety of other issues. For instance, FL
can be used to characterize vague and ambiguous information
in case representation. Through the idea of progressive rules,
FL can also be used for case adaptation [9]. The global mini-
mization for the numerical functions’ tasks is most significant
for many fields of knowledge. The tasks are exploited for a
variety of industries, including engineering, finance, manage-
ment, and medicine. For the Self-Optimizing Fuzzy which
has the ability for tackling a wide range of issues, FL. and
Ga approaches were combined into a generic model. New
cases would then be solved using the current case base. The
detection of occupancy is a very important machine learning
issue. Several approaches are available for the detection of oc-
cupancy in the systems of vehicles, such as automobiles in par-
ticular. In the meanwhile, automobile safety is becoming very
important and sufficient in its industry’s field. For instance,
car airbags are becoming a simple but significant tool to en-
sure safety whilst driving these cars. These airbags do come
with their risks though, they are capable of severely injuring
minors because of their tendency to generate a lot of power.
The detection of the passengers’ number in a vehicle and the
sorting of each individual based on gender and age through
image processing of the photos of these passengers. This is ap-
plied for the purpose of reducing the risk of airbag usage close
to minors. At low speed (less than 30 km/hr), the cars are
classified and each car is determined further. Haar Cascades
method used for the aforementioned detection process; starts
with face detection, and secondly determines their age classi-
fication [10]. This article system applied a Raspberry Pi kit,
which is a small single-board industrial minicomputer. First
design of the Raspberry-Pi kit was in United Kingdom [11,12]
. The more popular version of that kit is the original models in

spite of the anticipated models [13] , because it doesn’t have
any peripherals or cases. Also, the academic researchers and
students may need specific accessories to accomplish their
electronic circuits projects [14, 15]. Many algorithms look to
accomplish the issues of the ways of single control, operation
of cumbersome, and interconnection complexity among ma-
chines in smart home devices which are available in stores.
Raspberry Pi kits could be designed for the motherboard of
control systems, utilizing speech interaction, gesture recogni-
tion, face detection, posture detection, applications of mobile
phones and multiple operation techniques of the devices for
the home control, based on a light standard messaging proto-
col, defined self-contained systems for the smart home. The
open-source software EMQ proxy could be used as a server to
denote the local networking for the smart home by the house
Local Area Network (LAN). The delay of transmitting the
information should be short. The security should be very high.
Traditional WIFI (such as ESP8266) module with the required
hardware reduces the costs. The functions could be selected
and customized. While GA tuning techniques have made sig-
nificant contributions to enhancing system specifications, the
quest for achieving optimal values has driven the motivation
behind this research to pursue further optimization. In this
research, self-improving fuzzy systems have been developed
by combining genetic algorithms and fuzzy logic, which have
proven the effectiveness for addressing a wide range of prob-
lems in many research fields. In addition to this introduction,
the paper consists of the following titles: Section II provides
a formulation of the problem; Section III derives the FLC
by using the Raspberry Pi kit; Section IV offers the control
methodology that we adopted; Section V for the result; and
Section 6 make conclusions from the research results

II. PROBLEM FORMULATION

In this work, the researchers used a closed loop control system,
which contains an error signal (e). That error generates from
the difference between the input signal and feedback of the
output signal of the system. The rate of change for this error
(ce) produces from a differentiation block of that error. The
closed loop system contains a controller (e.g., Fuzzy Logic
Controller) to get a control action to control the system plant.
In this paper approach, the researchers added specific Scaling
Factors (SFs). Two Scaling Factors (SF1 and SF2) have been
added at the input side of the plant. Only one Scaling Factor
(SF3) is added at the output side of the plant, Fig. 1. These
SFs are being adjusted using genetic algorithm (GA). In this
research, the genetic algorithm has two jobs:

1. Improving these scaling factors with the fixing parame-
ters of the membership function base.

2. Adjusting the membership function base parameters

101 |

Nasser, Kadhim & Hussein

with fixing the scaling factors.

By try-and-error procedure, scaling factors parameters are
obtained. These SF applied on the closed-loop control system
for the FLC of the plant, Fig.1. To get an appropriate response,
the inputs will be fuzzified, ruled, and deffuzified. The GA
chromosomes will serve as the scaling factors (SF1, SF2, and
SF3), and the integration of squared error (ISE). That ISE
is the difference between the desired and obtained response.
ISE serves as the fitness function, Fig.2. In order to obtain
the proper base-parameters (x-axis parameters) for these MFs,
these scaling factors must be settled using GA once more. The
GA’s chromosomes represent these parameters. When tuning
process have been accomplished, the rules table can be written
according to the following membership-base parameters: error
(e), crisp error (ce) and control action (ca). The researchers
build a prototype version for the system. There are many
methods have been used to build the FLC. The most well-
known and suited method was the implementation by the
using of the FLC microprocessors and/or microcontrollers.
8-bit microprocessors/ microcontrollers are practical in the
design of many control systems, but they are not suitable in
the systems that need a high processing speed. For our system
case, Raspberry Pi 3 platform is the suitable platform. Model
B+ of that Raspberry Pi 3 kit contains 64-bit with a 1.4-GHz
clock of processor. Before installing the Raspberry-Pi circuit,
the inputs (e) and (ce) membership-base parameters must be
converted. After that, the signals will be processed using
the Raspberry Pi kit, which acts as the fuzzy logic controller
(FLC). Finally, the output will translate again as a control
action to analog signal using another special design decoder.
The block diagram for the process is illustrated in Fig.3.

III. Fuzzy LoGIC CONTROLLER USING
RASPBERRY P1

Fuzzy Logic Controller (FLC) is a technique, which has the
capability for emulating human expertise by employing a
fuzzy rule-based system to convert linguistic control into an
automated control algorithm. This makes FLC highly suitable
for controlling systems represented by nonlinear mathemat-
ical models, as it eliminates the requirement for an explicit
mathematical model. FLC design defined two fuzzy logic
control inputs with five membership functions for each input
(e and ce) and output (ca). The FLC design created the rules
as well. For the e, ce and ca, each membership function has
been encoded by a linguistic variable such as Zero (Z), Posi-
tive small (PS), Positive big (PB), Negative small (NS) and
Negative big (PB), respectively as shown in Fig. 4. Gener-
ation of the appropriate control actions in the FLC, need an
expert system that based upon the fuzzified in/out rules, Table
I shows the rules that the system needs them to implement the

TABLE 1.
RULES ADOPTED FOR THE FLC

Change of the control error (ce)

U | NB|NS| Z | PS|PB
NB | PB | PB | PB | PS Z
NS | PB | PB | PS Z | NS

Z |PB|PS| Z | NS |NB
PS | PS| Z | NS | NB | NB
PB| Z | NS |NB | NB | NB

error(e)

FLC.

To implement a fuzzy controller using the Raspberry Pi
Kit which is programmed by the Python language, many types
of the Raspberry-Pi kit were designed according to their gen-
erations. The first was the foundation (model A) and the
second for trading (Model B). The last model was developed
by Eben Upton (as CEO), called B+ and used for foundation
and trading. Raspberry Pi buying and selling is chargeable for
growing the technology even as the inspiration is a charity of
the education to promote the coaching of the computer tech-
nology’s basics in colleges, universities and schools; and in the
developed countries. In 2018, Raspberry Pi 3 / B+ has been
industrialized, which has the following specifications [16, 17]

1.4 GHz quad-core processor with 64-bit.
* Built-in Bluetooth.
* USB and network boot.

* Ethernet of (300 Mbit / s).

2.4 /5 GHz dual-band Wi-Fi of (100 Mbit / s).
¢ Power over Ethernet (PoE).

The SWI-Prolog programming language [18] is the main
software that can download it in the Raspberry-pi 3 kit, but it
is not possible to directly control a Raspberry-Pi pins (GPIO)
using only Prolog command. It is possible to achieve that
if Prolog combined with Python language to create a pro-
gram named [19]. PySWIP can allow Python program to
call Prolog commands in the same IDE. The programming
language (Python 2.7) may be setting up within various types
of operating systems [20]. In this paper the researchers set up
Linux operating system that is installed in the Raspberry-Pi
kit. Python programmed packages (library) help to implement
the FLC. These packages are: numpy, scipy, matplotlib, and
skfuzzy. The steps to implement a fuzzy controller using the
Python programming language are as follows:

102 |

Nasser, Kadhim & Hussein

I I
: Rule Base :
1 I
- SF | i :
P : Inference : o/P
ifie > X > Defuzzifier | —>
ce | Fuzzifie Engine i SF Plant
d/idt > SF | I
: Fuzzy Logic Controller (FLC) |
L e e e e e e e e e e e e e e I
Fig. 1. FLC Structure; The System of the Feedback Control is Unity
Input e X The Desired Response

SF1 ’ . \ Output

N Fuzzy Logic lant -~

Controller | *| SF3 % plan i

d/dt » SF2 —» \
T ce
\
ISE
Genetic
Algorithm

Fig. 2. The Genetic Algorithm, Which is Utilized for Obtaining the Most Optimal Three Scaling Factors

* Create universe variables for error (e). Create the change
of that error (ce). Create the required control action (ca)
for that.

« Utilize the skfuzzy library to generate fuzzy member-
ship functions for e, ce, and ca.

* Verify the program’s functionality by providing values
for error (e) and change of error (ce), then calculate
the degree of membership for each group using the
membership-base parameters (e, ce, ca) function.

» Construct an expert system based on the fuzzified in-
put/ output rules to generate appropriate control actions
within the Fuzzy Logic Controller.

e Implement the FLC in the Python programming lan-
guage by employing the generated rules.

« Utilize the matplotlib library to visualize the member-
ship functions graphically.

e Install the skfuzzy software by cloning it from the
GitHub repository and configuring it using the setup.py
file.

Execute the Python scripts incorporating fuzzy logic to gener-
ate the appropriate control actions.

IV. GENETIC ALGORITHM-FUZZY
OPTIMIZATION

Generally, the purpose of combining fuzzy logic and genetic
algorithm methods is to develop a flexible and self-optimizing
fuzzy system that is capable of solving a variety of problems.
This system would use a case database already in existence,
to develop answers for fresh cases, increasing its adaptabil-
ity and problem-solving skills [21,22]. When the supplied
function exhibits multiple local minima, each with their own
reaction basin and often causing the outcome to rely on a start-
ing point, problems start to arise. Unfortunately, nonlinear,
discontinuous, multi-modal, high-dimensional, and compli-
cated goal functions are where the majority of real problems
emerge. Stochastic approaches appear to be a viable solution
(and sometimes the only), for these problems. One of the
most widely used methods for stochastic global optimization
is the combination of GAs and simulated annealing [23]. The
problem in that situation has to do with convergence speed
and the GA approaches guarantee that it will be possible to
obtain a global optimum under normal conditions. On the
other hand, pure analytic methods provide results that guaran-
tee their convergence to a global minimum with sure/certain
event probability (equals 1), although the performance shown
by the majority of implementations is not very promising.

103 |

Nasser, Kadhim & Hussein

Parameter .
e Cris
Ranges 2 Tuned Fuzzy Logic Out pzt
\ Encoder Controller Decoder ——»
ce > (Raspberry Pi 3)

Fig. 3. Functional Block Diagram of the Fuzzy Logic Controller (Genetically Tuned) of Raspberry PI

\17/"N
Dl N N

Inputs: e and ce

Output: ca
\‘7/"N
T4 6 8

Fig. 4. The Controller’s Inputs are (e, ce). The Output is (ca)
Which is the Initial Membership Functions

This research strategy adheres to the following two phases to
enhance output:

1. Genetic Algorithm Optimization of Scaling Factors:
The first step is to use GA to optimize the scaling fac-
tors, which they are SF1, SF2, and SF3; while keeping
the membership function base parameters fixed. The
fitness function for GA is the performance index, which
is the Integral of Square of Error (ISE) for the desired
response with the step response. The GA operations
(encoding, mutation, selection, and crossover) are ap-
plied to obtain the optimal solution that has minimum
fitness.

2. Genetic Algorithm Optimization of Membership Func-
tion Base Parameters: The second step is to use GA
to optimize the membership function base parameters
while keeping the scaling factors fixed. The Fitness
Function for GA is the same as in step 1. The GA op-
erations are applied to obtain the optimal solution that
has minimum fitness.

Integral of Square of Error (ISE) used for the performance
index in this paper, which is defined as:

T
ISE:/0 e (r)dt (1

Where T is the time that the error (e(t)) when they reach the
steady state. T = T's can be used, where T's is the settling
time. So, the relation below is the used GA fitness function
(fs) that we will use it to get minimum ISE:

1

Is=1sE

@

The GA processing are the encoding, the mutation, the
selection, and the crossover. The processing is applied in order
to get the optimal solution for the minimal fs. The survived
chromosomes encoded to five bits (A1, A2, A3, A4, AS) those
can be reduced using the Karnaugh-Map. These five bits will
be the digital inputs to the Raspberry Pi. The outputs of the
Raspberry Pi will be four Boolean functions (P1, P2, P3, P4)
and those are the memberships-base parameters after the use
of the Center of Gravity calculations. After that, they resulted
Boolean functions (P1, P2, P3, P4) are programmed using
Python 2.7 language that was stored within the Raspberry Pi 3
software. Finally, the decoder translates the resulted four bits
outputs to its equivalent analog signal (crisp output) to derive
the controlled plant. Fig. 5 illustrates the Encoder/ Decoder
of the crisp output.

V. RESULTS AND DISCUSSION (CASE STUDY)

The research provides an example of implementing the new
controller to control a plant with a specific transfer function
and step response. The GA is used to minimize the ISE
between the step response and the desired response. The
results are presented. The implementation of the controller is
to control a plant with the bellow transfer function:

Pls) = s(s—1|— 1))

With a step response contains the following parameters
(Fig.6): Settling time (Ts) = 0.6 seconds, percentage overshoot
(PO) = 32. To minimize the ISE between the desired and the
current step response, Genetic Algorithm (GA) is used to

104 |

Nasser, Kadhim & Hussein

- Pl -
Parameter, > e—p Al —> - Crisp
R — A2 —b . P2 Output
ANges Encoder — A3 —b Raspberry Pi 3 > Decoder [>
[', _,| of the Tuned FLC | P3 | Pecoder
e A4 »
— A5 —> P4

Fig. 5. The Encoder/ Decoder Representation of the Crisp Output

obtain the optimized input/ output of the scaling factors (i.e.,
SF1, SF2, and SF3), while keeping without any change for
the parameters of the membership base. The GA is executed
with the following parameters: 500 generations, a population
size of 50, a chromosome length of 3 (for SF1, SF2, and SF3),
a crossover probability of 0.95 (using simple crossover), and
a mutation probability of 0.01 (using uniform mutation). The
results of this step are: The first parameter SF1 is 1.0043, the
second SF2 is 1.019, the third SF3 is -9.7989, and the ISE =
1.9362.

The Original Response

0.8r

Output Y(t)

0.4

0.2

0 0.5 1 1.5 2
Time (second)

Fig. 6. The Required Step Response

For the next step, Genetic Algorithm has been used once
more to get the membership-base parameters, while fixing that
scaling factors (SF1, SF2, and SF3), utilizing the following
parameters: 500 generations, a population size of 200, a chro-
mosome length of 35 (for the membership-base parameters: e,
ce, and ca), a mutation probability of 0.01 (using uniform mu-
tation), and a crossover probability of 0.95 (simple crossover).
The result is the membership functions for error (e), change of
error (ce), and control action (ca), with ISE equals to 1.9362,
as shown in Fig. 7, Fig. 8 and Fig. 9 illustrate the steps of GA
training. Finally, Fig. 10 shows the obtained step-response

Input: e

-2 0
Input: ce

s NB/ NS Z PS PB
N/
0 2 ‘Ao 2 4 6 8

-1 -8 -6 -4 -

Output: ca

0 . A .
-1 -8 -6 -4 -2 0 2 4 6 8 1

Fig. 7. The Optimized MFs Using Scales: e is 1.0043, ce is
1.019, and ca is -9.7989

using our GA. The resulted MFs for the two inputs (e and
ce) will be divided into regions after which each region will
choose from among all possible choices of (e / SF1) and (ce /
SF2) to cover all probabilities as shown in Table II. Applying
the mentioned values to our FLC to obtain the crisp output
(ca) and multiply it by the scaling factor SF3 to get the values
in column 3. Now the result (ca x SF3) will be approximated
then encoded using a four-bit decimal to binary encoder to
represent the variables (P1, P2, P3, P4). Finally, we will split
every five rows in Table II to create five regions represents the
input variables (A1, A2, A3, A4, AS5). Lookup table could
be built, which represents the input variables (A1, A2, A3,
A4, AS) and the output variables (P1, P2, P3, P4) as shown in
Table II1.

Using Karnaugh-map to reduce the Boolean variables to
get:

Pl = A2A3A4 + A2A4A5 + A2A3A5 + A1A2+

4
Al1A4+A1A5

105 |

Nasser, Kadhim & Hussein

TABLE II.
ENCODING OF (E), (CE) AND (CA)
Error (e) / SF1 | Change of Error (ce) / SF2 | Crisp Value (ca) x SF3 | Approximate | Digital Conversion
-1t0-0.6 -1t0-0.6 0.694 x 9.7989 = 6.8 7 0111
-1t0-0.6 -0.6 to -0.2 0.707 x 9.7989 = 6.9 7 0111
-1t0-0.6 -0.2t0 0.2 0.583 x 9.7989 =5.7 6 0110
-1t0-0.6 0.2t0 0.6 0.374 x 9.7989 = 3.6 4 0100
-1t0-0.6 0.6to1 0.0427 x 9.7989 = 0.4 0 0000
-0.6 to -0.2 -1t0 -0.6 0.694 x 9.7989 = 6.8 7 0111
-0.6 to -0.2 -0.6to -0.2 0.672 x 9.7989 = 6.58 7 0111
-0.6 to -0.2 -0.2t0 0.2 0.261 x9.7989 =2.5 3 0011
-0.6t0 -0.2 0.2t0 0.6 0.0467 x 9.7989 = 0.45 1 0001
-0.6 to -0.2 0.6to1 -0.361 x 9.7989 = -3.53 -4 1100
-0.2t00.2 -1t0-0.6 0.683 x 9.7989 = 6.7 7 0111
-0.2t0 0.2 -0.6 to -0.2 0.536 x 9.7989 =5.25 5 0101
-0.2t00.2 -0.21t00.2 -0.0528 x 9.7989 = -0.5 -1 1111
-0.2t00.2 0.2t0 0.6 -0.389 x 9.7989 = -3.8 -4 1100
-0.2t00.2 0.6to1 -0.711 x 9.7989 = -6.9 -7 1001
0.2t0 0.6 -1t0-0.6 0.48 x 9.7989 = 4.7 5 0101
0.2t0 0.6 -0.6 to -0.2 0.285 % 9.7989 = 2.8 3 0011
0.2t0 0.6 -0.2t0 0.2 -0.318 x 9.7989 =- 3.11 -3 1101
0.2t0 0.6 0.2t00.6 -0.625 x 9.7989 = -6.1 -6 1010
0.2t0 0.6 0.6to1 -0.711 x 9.7989 = -6.9 -7 1001

0.6t0 1 -1t0-0.6 0.0301 x 9.7989 =-0.3 0 0000

0.6to 1 -0.6 to -0.2 -0.177 x 9.7989 = -1.73 2 1110

0.6to 1 -0.2t0 0.2 -0.655 x 9.7989 = -6.4 -6 1010

0.6to 1 0.2t0 0.6 -0.719 x 9.7989 = -7.04 -7 1001

0.6to1 0.6to 1 -0.711 x 9.7989 = -6.9 -7 1001

P2 = A1A2A3 + A4A5 + A2A5 + A1A3A4

S _ 5
+A1A2A4A5 +A2A3A4 ©)

P3 = A2A3A5 + ATA2A4A5 + A2A4A5 + A1A2A3A4 ©)
+A2A3A4A5 + A2A3A4AS5 + A3A4A5

P4 = A2A5 4+ A2A4 4+ A1A3A4 + A1A4A5

S 7
+A2A3A4 4 A1A2A4A5 @

These Boolean functions will be built using Python 2.7
programming language, and then contained in Raspberry Pi 3
to get an optimal robust fuzzy-genetic controller.

VI. CONCLUSIONS

The paper discussed the use of genetic algorithms (GAs) in
combination with Fuzzy Logic (FL) to create self-optimizing

fuzzy systems that can deal with several problems. Also high-
lighted is the use of the Raspberry Pi kit, a small single-board
microcomputer, to implement fuzzy controllers. GA was used
to optimize the in/out scaling factors and membership base
parameters for the fuzzy controller. It was concluded that the
combination of FL with GA has proven effective in addressing
many problems, and the use of the Raspberry Pi kit provides
a suitable processor for implementing fuzzy controllers. The
paper also stresses the importance of stochastic methods such
as GA for solving complex optimization problems.

ACKNOWLEDGMENT

The article authors would like to thank the Mustansiriyah
University / Engineering College, Electrical Engineering De-
partment. They have encouraged us to complete the research.
The university, the college, and the department are institutes
for the Iraqi MoHE&SR.

CONFLICT OF INTEREST

The authors have no conflict of relevant interest to this article.

106

600

500 r

400 |

300 ¢

200

100

0

Nasser, Kadhim & Hussein

0 50 100 150

Fig. 8. Depicts the Relationship Between the Generation
Throughout the GA (Horizontal Axis), Versus the Procedure

Fitness (Vertical Axis)

TABLE III.

200

250

300

ENCODED INPUTS/OUTPUTS LOOKUP TABLE

2.06

2.04

2.02 ¢

1.98 &

1.96

|

1.94
0 50 100 150 200

>
>
)
>
w
>
~
>
)

o
—

I
)

g
W

)
=

il N e e e BeoXeRolo oo Re o NeoRo oo N o)

— O OO OO OO0 =R P PR MFPRMPREMPFBRPPOO0OO0O0O0Oo0OoOo
OR P P P OO0, P PP OOOoOO R~~~ =OOOCOOo
=N eNel i HeNel ai=R=R el i lelell =N
OR O OrFrRP O R ORPROFR,RO~R,OFR,RO~R,O~,O~=O~O

_—— = = O = mE R, O R m R, OO0, OO0 O CcCOCOOCO

O OO =) O OO = O O b=t ok e e OO = = O = m =

SO —R P OO rrRPOrRP OO PO, OO~R, P, —~,OO R~~~

— e OO O = O o e ek O b b e O e b e em OO O =

(1]

(2]

(3]

Fig. 9. ISE (Vertical Axis) Versus the Generation Curve
(Horizontal Axis) for the GA Procedure

1.4

121

o8l | |/
0.6

0.4

0.2/

0 0.2 04 06 0.8 1 1.2

(seconds)

Fig. 10. Response of the GA.

REFERENCES

O. Cordon, F. Herrera, F. Gomide, F. Hoffmann, and
L. Magdalena, “Ten years of genetic fuzzy systems: cur-
rent framework and new trends,” in Proceedings joint
9th IFSA world congress and 20th NAFIPS international
conference (Cat. No. 0ITH8569), vol. 3, pp. 1241-1246,
IEEE, 2001.

A. BASTIAN and I. HAYASHI, “An anticipating hybrid
genetic algorithm for fuzzy modeling,” Journal of Japan
Society for Fuzzy Theory and Systems, vol. 7, no. 5,
pp- 997-1006, 1995.

O. Cord et al., Genetic fuzzy systems: evolutionary
tuning and learning of fuzzy knowledge bases, vol. 19.

[6]

[10]

(11]

[12]

[13]

[14]

Nasser, Kadhim & Hussein

World Scientific, 2001.

V. Ojha, A. Abraham, and V. SnéSel, “Heuristic design
of fuzzy inference systems: A review of three decades
of research,” Engineering Applications of Artificial In-
telligence, vol. 85, pp. 845-864, 2019.

G. Warner, S. Wijesinghe, U. Marques, O. Badar,
J. Rosen, E. Hemberg, and U.-M. O’Reilly, “Model-
ing tax evasion with genetic algorithms,” Economics of
Governance, vol. 16, pp. 165-178, 2015.

S. Katoch, S. S. Chauhan, and V. Kumar, “A review on
genetic algorithm: past, present, and future,” Multimedia
tools and applications, vol. 80, pp. 8091-8126, 2021.

P. V. de Campos Souza, “Fuzzy neural networks and
neuro-fuzzy networks: A review the main techniques
and applications used in the literature,” Applied soft
computing, vol. 92, p. 106275, 2020.

M. Mowbray, T. Savage, C. Wu, Z. Song, B. A. Cho,
E. A. Del Rio-Chanona, and D. Zhang, “Machine learn-
ing for biochemical engineering: A review,” Biochemi-
cal Engineering Journal, vol. 172, p. 108054, 2021.

S. Das, D. Chakraborty, and L. T. Kéczy, “Linear fuzzy
rule base interpolation using fuzzy geometry,” Inter-
national Journal of Approximate Reasoning, vol. 112,
pp. 105-118, 2019.

M. Vamsi and K. Soman, “In-vehicle occupancy detec-
tion and classification using machine learning,” in 2020
11th International Conference on Computing, Communi-
cation and Networking Technologies (ICCCNT), pp. 1-6,
IEEE, 2020.

S. Hodges, S. Sentance, J. Finney, and T. Ball, “Physical
computing: A key element of modern computer science
education,” Computer, vol. 53, no. 4, pp. 20-30, 2020.

T. S. Roy, S. Ghosh, R. Datta, and A. Santra, “Iot based
home automation using raspberry pi,” International Jour-
nal of Computer Engineering and Technology, vol. 10,
no. 3, pp. 70-74, 2019.

L. Zhu, P. Spachos, E. Pensini, and K. N. Plataniotis,
“Deep learning and machine vision for food processing:
A survey,” Current Research in Food Science, vol. 4,
pp- 233-249, 2021.

G. Yan, J. Zeng, H. Sang, Y. Lin, J. Lin, and Q. Li,
“New customizable smart home system design based on
raspberry pi,” in International Workshop of Advanced
Manufacturing and Automation, pp. 91-99, Springer,
2022.

[15]

[16]

[17]

(18]

(19]

(20]

(21]

(22]

(23]

M. Nykyri, M. Kuisma, T. J. Kdrkkdinen, J. Hallikas,
J. Jappinen, K. Korpinen, and P. Silventoinen, “Iot
demonstration platform for education and research,” in
2019 IEEE 17th International Conference on Indus-
trial Informatics (INDIN), vol. 1, pp. 1155-1162, IEEE,
2019.

J. R. Strickland, “Raspberry pi for arduino users,” Rasp-
berry Pi for Arduino Users, 2018.

G. Flurry and G. Flurry, “Raspberry pi 3 model b+ setup,”
Java on the Raspberry Pi: Develop Java Programs to
Control Devices for Robotics, loT, and Beyond, pp. 21—
48, 2021.

R. Hosseini, K. Akhuseyinoglu, P. Brusilovsky,
L. Malmi, K. Pollari-Malmi, C. Schunn, and T. Sirkii,
“Improving engagement in program construction exam-
ples for learning python programming,” International
Journal of Artificial Intelligence in Education, vol. 30,
no. 2, pp. 299-336, 2020.

B. A. Malloy and J. F. Power, “Quantifying the transition
from python 2 to 3: An empirical study of python appli-
cations,” in 2017 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement
(ESEM), pp. 314-323, IEEE, 2017.

B. P. Ganthia, S. K. Barik, and B. Nayak, “Genetic algo-
rithm optimized and type-i fuzzy logic controlled power
smoothing of mathematical modeled type-iii dfig based

wind turbine system,” Materials Today: Proceedings,
vol. 56, pp. 3355-3365, 2022.

M. Dirik, “Prediction of nox emissions from gas turbines
of a combined cycle power plant using an anfis model
optimized by ga,” Fuel, vol. 321, p. 124037, 2022.

Y.-T. Hsiao and C.-Y. Chien, “Enhancement of restora-
tion service in distribution systems using a combination
fuzzy-ga method,” IEEE Transactions on Power Systems,
vol. 15, no. 4, pp. 1394-1400, 2000.

Y. Li, J. Zhang, W. Liu, and S. Tong, “Observer-based
adaptive optimized control for stochastic nonlinear sys-
tems with input and state constraints,” IEEE transactions
on neural networks and learning systems, vol. 33, no. 12,

pp. 7791-7805, 2021.

	 Introduction and Background
	 Problem Formulation
	 Fuzzy Logic Controller Using Raspberry Pi
	 Genetic Algorithm-Fuzzy Optimization
	 Results and Discussion (Case Study)
	Conclusions

