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Abstract
In recent years, there has been a considerable rise in the applications in which object or image categorization is beneficial
for example, analyzing medicinal images, assisting persons to organize their collections of photos, recognizing what
is around self-driving vehicles, and many more. These applications necessitate accurately labeled datasets, in their
majority involve an extensive diversity in the types of images, from cats or dogs to roads, landscapes, and so forth. The
fundamental aim of image categorization is to predict the category or class for the input image by specifying to which
it belongs. For human beings, this is not a considerable thing, however, learning computers to perceive represents a
hard issue that has become a broad area of research interest, and both computer vision techniques and deep learning
algorithms have evolved. Conventional techniques utilize local descriptors for finding likeness between images, however,
nowadays; progress in technology has provided the utilization of deep learning algorithms, especially the Convolutional
Neural Networks (CNNs) to auto-extract representative image patterns and features for classification The fundamental
aim of this paper is to inspect and explain how to utilize the algorithms and technologies of deep learning to accurately
classify a dataset of images into their respective categories and keep model structure complication to a minimum. To
achieve this aim, must focus precisely and accurately on categorizing the objects or images into their respective categories
with excellent results. And, specify the best deep learning-based models in image processing and categorization. The
developed CNN-based models have been proposed and a lot of pre-training models such as (VGG19, DenseNet201,
ResNet152V2, MobileNetV2, and InceptionV3) have been presented, and all these models are trained on the Caltech-101
and Caltech-256 datasets. Extensive and comparative experiments were conducted on this dataset, and the obtained
results demonstrate the effectiveness of the proposed models. The obtained results demonstrate the effectiveness of the
proposed models. The accuracy for Caltech-101 and Caltech-256 datasets was (98.06% and 90%) respectively.
Keywords
Image Recognition, Deep Learning Methods, VGG19, DenseNet201, ResNet152V2, MobileNetV2, InceptionV3,
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I. INTRODUCTION

The main aim of computer vision focuses on training com-
puters to translate the visible world similar to what human
beings do. Object or image categorization represents an en-
couraging domain in computer vision, with various actual
applications like biological identification, face recognition,
self-driving, and medical diagnosis. The image categorization

task indicates classifying images into various classes or cate-
gories in accordance with the images’ content. Owing to the
variations and high dimensionality in the data of images, it is
challenging to evolve a technique capable of capturing benefi-
cial information from images and then conducting effective
classification [1]. Images consisted of numerous thousands of
pixels that include a considerable amount of irrelevant infor-
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mation, and this redundant information may conduct difficulty
in attaining high accuracy of classification. The feature ex-
traction process aims to convert raw pixels of images into
valuable or informative features that are capable of efficiently
reducing the dimensionality of images. Efficient techniques
of features extraction is capable of making the performance of
an image categorization technique efficient. At present, there
are many conventional feature extraction techniques that have
been presented to catch interesting features from an image,
like the transform of scale invariant feature, speeded up robust
features, histogram of oriented gradients, and local binary
pattern. These features are able to reflect the useful portion of
the images by catching the salient information (orientations,
edges, and textures) inside them. But it is not easy to obtain
encouraging results in complicated tasks of image catego-
rization via utilizing a single technique of feature extraction
because a single features kind mightn’t efficiently indicate the
entire image. Moreover, high image variations in background,
illumination, scaling, and rotation maximize the complica-
tion in beneficial features extraction for categorization [2].
Even though the available conventional image categorization
techniques have been exceedingly implemented in practical is-
sues, there are several issues in the process of application, like
non-satisfactory outcomes, weak accuracy of classification,
and low adaptability. For the image categorization proce-
dure, these techniques work on separating the processes of
feature extraction and classification into two stages. While
the deep learning-based models have a mighty learning capa-
bility by integrating the processes of feature extraction and
classification into one stage for completing the test of image
categorization, which can efficiently make the image classi-
fication accurate [3] [4]. However, these models might need
abundant experience in designing the structure to certain task,
and require a considerable number of computational resources
and training instances. Deep learning algorithms have proven
their capability for achieving high results of accuracy in var-
ious application fields like image categorization, and other
complex tasks. It has been demonstrated to be quite effec-
tive and valuable to automate the typically exhausted and
occasionally debatable preprocessing phase of extracting fea-
tures [5] [6]. In the last few years, the Convolutional Neural
Networks (CNNs) have succeeded and achieved substantial
progress in various fields. In comparison to conventional im-
age processing techniques, CNNs are capable of extracting
higher-level image information and hold higher complexity.
Even though CNNs have made promising accomplishments
in various fields, the effectiveness issue represents a pressing
issue to be solved. The effectiveness issue can be represented
in the issues of prediction speed and model storage. The
CNNs include a considerable number of parameters that need
a considerable amount of memory to be saved, and the model

prediction speed should be enhanced when CNNs are utilized
practically [7]. The fundamental contribution of this paper
is to inspect and explain how to utilize the algorithms and
technologies of deep learning to accurately classify a dataset
of images into their respective categories and keep model
structure complications to a minimum. Consequently, the
following objectives have been accomplished:

1. Firstly, implementing two proposed progressive CNN
models.

2. Secondly, implementing the most widely utilized pre-
trained CNN models (VGG19, ResNet152V2, DenseNet201,
InceptionV3, MobileNetV2).

3. Finally, evaluating the performance of the adopted CNN
models using two benchmark datasets (Caltech-101 and
Caltech-256).

II. RELATED WORKS

Object or image categorization has continually been a hot sci-
entific research trend all over the world, and the appearance of
deep learning algorithms has encouraged the development of
this domain. CNNs have progressively become the main algo-
rithms for image categorization since 2012, and generally, the
CNN architecture implemented for object localization and ob-
ject detection tasks is acquired from the network architecture
in image categorization. Some of the related object/image cat-
egorization schemes that are based on deep learning methods
are reviewed briefly in this section. Wang et al. [8], improved
various models (named expanded convolution MobileNets)
based on the MobileNet model by exchanging the standard
convolutional with the expanded convolution layers. These
improved models increased the receptive domain of the con-
volutional filters for obtaining high results of categorization
accuracy. The experimentation was conducted using Caltech-
101, and Caltech-256 datasets and the obtained results demon-
strated that the improved MobileNet models were capable of
getting better accuracies than standard MobileNet. Ravi [9],
proposed an object/image categorization framework in which
firstly a pre-trained CNN named deep residual neural network
(ResNet50)) was employed to extract features. Then, the opti-
mal rules of categorization were learned from those features
using the algorithm of Brain Storm Optimization. Finally, the
classification was achieved using a fuzzy rule-based classi-
fier. This framework was implemented using the Caltech-101
dataset and the obtained categorization accuracy was 86%.
Bansal et al. [10], presented an improved system for catego-
rizing the images in which firstly the features were extracted
using the pre-trained CNN method (Visual Geometry Group
(VGG19)) and four handcrafted methods (Orient Fast & Ro-
tated Brief (ORB), Scale Invariant Features Transformation
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(SIFT), Speed Up Robust Feature (SURF), Shi-Tomasi Corner
Detection (SCD)). Then, the algorithm of k-means clustering
was utilized to choose the significant features. After that, these
selected features were classified using the diverse classifiers
(eXtreme Gradient Boosting, Decision Tree, Gaussian Naı̈ve
Bayes, and Random Forest). This system was evaluated using
Caltech-101dataset, and the outcomes showed that the imple-
mentation of the Random Forest classifier on the combined
features outperformed the other classifiers with an accuracy of
93.73%. Rao and Mahantesh [11], presented an adopted learn-
ing model based on the architecture of VGG16 for automati-
cally learning the features of an input image using Caltech-101
and Caltech-256 datasets. This model firstly was trained using
the algorithm of gradient descent, and the weights (param-
eters) were optimized using the back-propagation method.
Subsequently, the convolutional layers were utilized for fea-
ture learning, in addition to effective regularization utilizing
dropout and the augmentation of data. Finally, the label of
the class is predicted for the requested image. The achieved
results proved the model’s capacity to perceive high-level se-
mantics. Zeynallı [12], presented an image categorization
method in which firstly the features were extracted using
VGG16. Then, the outcomes of image categorization using
the diverse classifiers (Support Vector Machine, Random For-
est, and Logistic Regression) were compared. This method
was evaluated using Caltech-101dataset, and the outcomes
showed that the implementation of the Logistic Regression
classifier on the extracted features outperformed the other
classifiers with an accuracy of 94.65%.

III. MAIN PRELIMINARY CONCEPT

A. Typical CNN
CNN can be effectively utilized for object or image catego-
rization. Its architecture is built using three essential layers
Convolutional, Pooling, and Fully-connected. This architec-
ture is demonstrated in Fig. 1. The first and second type layers
are responsible for extracting features, while the third layer
is responsible for categorization. The activation functions
(such as Rectified Linear Unit (ReLu), Sigmoid, and Soft-
max) and dropout layer can be considered portions of these
layers [13]. The convolutional layer includes a set of filters
(kernels), each like a matrix that is essentially smaller than
the input data; the kernel firstly slides over the input data and
implements a dot function, and the outcome represents a fea-
ture map. The feature maps concerning the subsequent layers
are constructed via merging the feature maps for the former
layers [14]. The pooling layer carries out the down-sampling
process and thus minimizes the number of parameters while
maintaining the essential features. There are several types of
pooling; however, maximum pooling represents the widely
utilized operation that provides the maximum-element from

Fig. 1. First developed CNN architecture.

the feature map. While the fully connected layer accepts, the
input from the previous phases to be classified [15]. When the
whole features are related to the fully connected layer, this
can lead to the issue of overfitting. In order to overcome this
issue, a dropout layer can be utilized prior to the output layers.
This layer works on randomly discarding some neurons from
the network and thus produces a reduced-size model. Each
activation function gets the output structure from the former
layer and converts it to another structure appropriate to the
following layer to be considered as input. It can be utilized
in any portion of the network to make the model capable of
learning the complicated patterns from the data [13].

B. Pre Training CNN
Pre-trained CNNs represent models trained using an enormous
amount of datasets concerning particular tasks. Recently,
these models have been utilized in most of the object or image
classification architectures, which produce higher accuracy
and save time. The most widely utilized pre-trained CNNs
are considered and implemented in this paper.

1. VGG19: Simonyan and Zisserman presented VGG in
2015 [16]. Its architectural depth was expanded by
adding more layers that are convolutional with smaller
filters (3×3) for improving its performance. There are
several versions of VGG architecture (such as VGG16
and VGG19) that are trained depending on the Ima-
geNet dataset. The architecture of VGG16 involves
thirteen convolution layers and three fully connected
layers. Each convolution layer involves a ReLU and a
maximum pooling layer. Two of fully connected lay-
ers existing in this architecture are worked as hidden
layers, and the third fully connected layer is utilized
for the categorization of one thousand image classes
using the ImageNet dataset. While the architecture of
VGG19 involves sixteen convolution layers and three
fully connected layers.

2. ResNet152V2: He et al. presented ResNet in 2015
[17] in which stacked residual blocks were utilized
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rather than a normal network for solving the issue of
vanishing gradient. Contrary to following the leading
path in the normal network, which includes nonlinear
activations and linear operators, the blocks follow the
cutoff path, which instantly inserts the input activation
to the output of the final layer without pulling out of
the leading path. ResNet version 1 inserts the output
of the final last layer in the residual network prior to
the ReLU (nonlinear activation) and later the linear
operation. While ResNet version 2 [18] adopts the
batch normalization and ReLU as pre-activation prior
to the weight layers. The second version of ResNet
has provided considerable advancement in performance
using different datasets. Therefore, in this paper, the
model of ResNet152V2 is utilized which includes 152
layers for evaluating performance in the categorization
of objects/images.

3. DenseNet201:

In 2016, Huang et al. [19]to guarantee the utmost in-
formation flow between the layers within the network
presented Dense Convolutional Network (DenseNet).
This model represents an improvement of ResNet in
which the layers are connected in the form of feed-
forward with each other, and the obtained feature maps
concerning a layer are concatenated with the succeeding
feature maps.

4. InceptionV2

The inception models were advanced to solve the issues
of overfitting and the complexity of computation result-
ing from the restricted training dataset and rapid van-
ishing of gradient change. Inception version 1 [20]at-
tempted to handle these issues via enlarging the model
width including convolutional filters of multiple-sized
to obtain global and local information from an input
image, and including two additional classifiers to in-
hibit the disappearing gradient. Compared with the first
version, Inception version 2 [21] involves several modi-
fications such as; factorizing big size convolutions into
smaller and asymmetric convolutions, expanding the
model via increasing the filter banks, and minimizing
the size of the grid (utilizing parallel pooling, convo-
lution, and concatenation). Inception version 3 [21]
added some modifications to the second version such
as; factorizing (7×7) convolutions, batch normalizing
of the network side layer including additional classi-
fiers, utilizing Root mean square propagation optimizer,
and presenting label smoothing regulation to inhibit the
issue of overfitting. The third version of Inception has
popularity since it is the principal runner-up in 2015

holding the lowest rate of error in object/image cate-
gorization using the ImageNet dataset. Therefore, in
this paper, the model of InceptionV3 is utilized which
includes 42 layers.

5. MobileNetV2

Sandler et al. [22] described MobileNet version 2, which
works on improving the mobile models’ performance
in multi-task and across a range of various model sizes.
The outstanding idea concerning the models of Mo-
bileNet is to exchange the expensive layers of convo-
lution with separable depthwise convolutional blocks,
and every block involves (1×1) expansion layer, and
depthwise (3×3) convolutional layer accompanied by
a pointwise or projection (1×1) convolutional layer. In
MobileNet V2, every layer holds batch normalization
and ReLU (except the pointwise layer). The complete
architecture of MobileNet V2 involves 17 bottleneck
residual blocks accompanied by a normal (1×1) con-
volutional, a global-average pooling, and classification
layers.

IV. PROPOSED MODELS

The proposed developed CNN models were constructed and
trained many times to choose the suitable parameters and pro-
vide higher models performance. These models involve two
essential stages (features extraction and categorization).The
first proposed model is implemented using the Caltech-101
dataset. In this model, the first stage involves five blocks
that are in charge of extracting the deep features, each in-
volving one convolutional layer (with ReLU) accompanied
by a maximum-pooling layer, and only the first block is ac-
companied by batch normalization (to reduce the network
initialization’s sensitivity). The maximum-pooling layer mini-
mizes the redundant representations yielded from prior blocks
and accordingly controls overfitting. Additionally, dropouts
to increase the simplification of the model accompany these
blocks. While the second stage involves a flattened layer (for
adjusting feature maps), five dense layers (with ReLUs), and
dropouts (added after the second and fourth dense layers, and
after the fifth dense layer). Moreover, the final dense layer
(with Softmax) is added to predict 102-class. These stages are
illustrated Fig. 2 and Table I. The second developed CNN is
implemented using the Caltech-256 dataset, and it involves
the same architecture as the first model with some exceptions
which are; in the first stage, each block involves two convo-
lutional layers rather than one, and the second stage involves
four dense layers with only one dropout in the middle, in
addition to the final dense layer (with Softmax) to predict
257-class. These stages are illustrated in Table II and Fig. 3.
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Fig. 2. First developed CNN architecture.  
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Fig. 2. First developed CNN architecture.

V. EXPERIMENTS AND RESULTS

In this section, the categorization results of several models
(VGG19, ResNet152V2, DenseNet201, InceptionV3, Mo-
bileNetV2, and developed CNNs) are compared using the
datasets Caltech-101 [23] and Catech-256 [24]. The Caltech-
101dataset involves (9144) images of 102 categories and every
object category involves between (40 to 800) images. The
Caltech-256 dataset involves (30607) images of 257 cate-
gories and every category involves between (80 to 827) images.
Some selected samples of the utilized datasets are illustrated
in Fig. 4. In both benchmarking datasets, we resized the
images to (224×224×3) to fit as input for the networks and
then separated them into two sets (80 training and 20 testing).
Concerning an object/image categorization issue, there are sev-
eral potential consequences; False positive (FPO), True posi-
tive (TPO), False negative (FNE), and True negative (TNE).
Depending on these consequences, several evaluation metrics
(Precision (P), Recall (R), F1-score (F1), and Accuracy (Acc))

TABLE I.
THE LAYERS’ STRUCTURE AND THE HYPERPARAMETERS

OF THE FIRST DEVELOPED CNN MODEL

Layers (Types) Shapes of output Parameters
Image Input (Input-Layer) None 224 224 3 0
layer 1 (Convolutional-2D) None 224 224 32 896
layer 2 (Max.-pooling-2D) None 112 112 32 0

Dropout None 112 112 32 0
Batch Normalization None 112 112 32 128

layer 3 (Convolutional-2D) None 112 112 64 18496
layer 4 (Max.-pooling-2D) None 56 56 64 0

Dropout None 56 56 64 0
layer 5 (Convolutional-2D) None 56 56 128 73856
layer 6 (Max.-pooling-2D) None 28 28 128 0

Dropout None 28 28 128 0
layer 7 (Convolutional-2D) None 28 28 256 295168
layer 8 (Max.-pooling-2D) None 14 14 256 0

Dropout None 14 14 256 0
layer 9 (Convolutional-2D) None 14 14 512 1180160
layer 10 (Max.-pooling-2D) None 7 7 512 0

Dropout None 7 7 512 0
Fully-connected (Flatten) None 25088 0

layer 11 (Dense) None 1024 25691136
layer 12 (Dense) None 512 524800

Dropout None 512 0
layer 13 (Dense) None 256 131328
layer 14 (Dense) None 128 32896

Dropout None 128 0
layer 15 (Dense) None 64 8256

Dropout None 64 0
predictions (Dense) None 102 130

are computed as shown in (1- 4)

P =
T PO

FPO+T PO
(1)

R =
T PO

FNE +T PO
(2)

F1 =
RecallPrecision

Recall +Precision
(3)

Acc =
T NE +T PO

FNE +T NE +FPO+T PO
(4)

The performance comparison between the pre-trained mod-
els and the proposed models using the evaluation metrics is
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Fig. 3. Second developed CNN architecture.

illustrated in Table III. The number of the total, trainable, and
non-trainable parameters for the utilized pre-trained models
and the proposed model using Caltech-101 and Caltech-256
datasets are illustrated in Table IV. Fig. 5and Fig.6 illustrate
the graphs of accuracy versus validation accuracy and loss
versus validation loss for the utilized and proposed models us-
ing Caltech-101 and Caltech-256 datasets, respectively. Table
V illustrated a comparison of the utilized feature extraction
and categorization methods and the categorization accuracies
between the adopted CNN models and the models in related
works. Among these models, the obtained results of the pro-
posed models reached higher values.

VI. CONCLUSION

Over the past few years, various pre-trained networks such
as VGG, ResNet, DenseNet, InceptionV3, and lightweight
MobileNet networks have appeared. The issue of reducing the
network parameters and improving the effect of categorization
remains one of the most popular research destinations. Mean-
time, various methods of deep learning consolidated with
conventional ones have accomplished considerable outcomes
in object/image categorization tasks. However, constructing a
particular deep learning network depend on the categorization

TABLE II.
THE LAYERS’ STRUCTURE AND THE HYPERPARAMETERS

OF THE SECOND DEVELOPED CNN MODEL

Layers (Types) Shapes of output Parameters
Image Input (Input-Layer) None 224 224 3 0
layer 1 (Convolutional-2D) None 224 224 32 896
layer 2 (Convolutional-2D) None 224 224 32 9248
layer 3 (Max.-pooling-2D) None 112 112 32 0

Dropout None 112 112 32 0
Batch Normalization None 112 112 32 128

layer 4 (Convolutional-2D) None 112 112 64 18496
layer 5 (Convolutional-2D) None 112 112 64 36928
layer 6 (Max.-pooling-2D) None 56 56 64 0

Dropout None 56 56 64 0
layer 7 (Convolutional-2D) None 56 56 128 73856
layer 8 (Convolutional-2D) None 56 56 128 147584
layer 9 (Max.-pooling-2D) None 28 28 128 0

Dropout None 28 28 128 0
layer 10 (Convolutional-2D) None 28 28 256 295168
layer 11 (Convolutional-2D) None 28 28 256 590080
layer 12 (Max.-pooling-2D) None 14 14 256 0

Dropout None 14 14 256 0
layer 13 (Convolutional-2D) None 14 14 512 1180160
layer 14 (Convolutional-2D) None 14 14 512 2359808
layer 15 (Max.-pooling-2D) None 7 7 512 0

Dropout None 7 7 512 0
Fully-connected (Flatten) None 25088 0

layer 16 (Dense) None 1024 25691136
layer 17 (Dense) None 512 524800

Dropout None 512 0
layer 18 (Dense) None 256 131328
layer 19 (Dense) None 128 32896

predictions (Dense) None 257 33153

characteristics represents an extremely efficient categorization
scheme. Therefore, developed CNN models have been pro-
posed and a large number of deep learning models have been
presented. Extensive and comparative experiments were con-
ducted and the obtained results demonstrate that the proposed
first and second models have better categorization accura-
cies on Caltech-101 and Caltech-256 datasets, respectively.
In the forthcoming works, other object/image categorization
datasets will be utilized and tested using the developed CNN
model. Other efficient pre-trained CNN models such as NAS-
Nets and EffecientNets will be utilized as well. Furthermore,
better techniques of image enhancement can be utilized for
increasing the training images and hence improving the cate-
gorization accuracy of the testing images.
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TABLE III.
THE EVALUATION OF CNN MODELS’ PERFORMANCE (CATEGORIZATION REPORT)

CNN Models Acc Metrics Caltech-101 Dataset Caltech-256 Dataset
Support: 1863 Support: 6285 P R F1 P R F1

VGG19 0.84 0.51 Macro Avg 0.83 0.78 0.77 0.65 0.48 0.49
Weight Avg 0.87 0.84 0.84 0.67 0.51 0.53

ResNet152V2 0.92 0.76 Macro Avg 0.91 0.89 0.89 0.82 0.74 0.75
Weight Avg 0.93 0.92 0.92 0.84 0.76 0.76

DenseNet201 0.92 0.75 Macro Avg 0.91 0.89 0.89 0.82 0.73 0.74
Weight Avg 0.94 0.92 0.93 0.83 0.75 0.76

InceptionV3 0.91 0.73 Macro Avg 0.93 0.91 0.91 0.73 0.71 0.74
Weight Avg 0.93 0.91 0.91 0.74 0.73 0.74

MobileNetV2 0.91 0.73 Macro Avg 0.92 0.91 0.90 0.73 0.70 0.71
Weight Avg 0.93 0.91 0.91 0.74 0.72 0.73

Proposed 0.98 0.98 Macro Avg 0.98 0.98 0.98 0.99 0.98 0.98
Weight Avg 0.98 0.98 0.98 0.99 0.98 0.98

TABLE IV.
THE NUMBER OF PARAMETERS FOR THE UTILIZED PRE-TRAINED AND PROPOSED MODELS

Models Caltech-101 Dataset Caltech-256 Dataset
Total parameters Trainable parameters Non-trainable parameters Total parameters Trainable parameters Non-trainable parameters

VGG19 22,583,462 2,559,078 20,024,384 26,472,257 6,447,873 20,024,384
ResNet152V2 68,567,654 10,236,006 58,331,648 84,122,369 25,790,721 58,331,648
DenseNet201 27,918,246 9,596,262 18,321,984 42,500,801 24,178,817 18,321,984
InceptionV3 27,025,286 5,222,502 21,802,784 34,961,441 13,158,657 21,802,784
MobileNetV2 8,655,256 6,397,542 2,257,984 31,125,665 31,125,601 2,257,984
Proposed Models 27,957,250 27,957,186 64 31,125,665 31,125,601 64

TABLE V.
A COMPARISON BETWEEN THE ADOPTED CNN MODELS AND THE MODELS IN RELATED WORKS

Author(s), 2025, Reference Methods of Feature Extraction Methods of Categorization Accuracy on Caltech-101 Accuracy on Caltech-256
Wang et al., 2020, [8] Expanded Convolution MobileNets Softmax Classifier 78.73% 65.16%

Ravi, 2020, [9] ResNet50 Fuzzy Rule-based Classifier 86% -
Bansal et al., 2021, [10] VGG19, ORB, SIFT, SURF, and SCD Random Forest Classifier 93.73% -

Rao and Mahanthesh, 2021, [11] Modified VGG16 Softmax Classifier 78.42% 57.57%
Zeynalli, 2021, [12] VGG16 Logistic Regression 94.65% -

VGG19 VGG19 Softmax Classifier 90.62% 45.44%
ResNet152V2 ResNet152V2 Softmax Classifier 95.76% 74.35%
DenseNet201 DenseNet201 Softmax Classifier 93.97% 76.30%
InceptionV3 InceptionV3 Softmax Classifier 94.64% 70.18%

MobileNetV2 MobileNetV2 Softmax Classifier 97.54% 90.37%
Proposed Models Developed CNN Softmax Classifier 98.06% 94.00%
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(a)

(b)
Fig. 4. Image samples of (a) Caltech-101, and (b)
Catech-256.

CONFLICT OF INTEREST

The authors have no conflict of relevant interest to this article.

REFERENCES

[1] C. Kamusoko, Image Classification. Springer Geogra-
phy. Springer, Singapore, 2019.

[2] Q. Fan, Y. Bi, B. Xue, and M. Zhang, “Genetic pro-
gramming for feature extraction and construction in im-
age classification,” Applied Soft Computing, vol. 118,
p. 108509, 2022.
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