Page 261 - 2024-Vol20-Issue2
P. 261

257 |                                                             Sabeeh & Al-Furati

                     REFERENCES                                   [14] R. Gonzalez, M. Kloetzer, and C. Mahulea, “Compar-
                                                                        ative study of trajectories resulted from cell decompo-
 [1] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinody-            sition path planning approaches,” in IEEE 2017 21st
      namic planning,” The international journal of robotics            International Conference on System Theory, Control
      research, vol. 20, no. 5, pp. 378–400, 2001.                      and Computing (ICSTCC), pp. 49–54, 2017.

 [2] M. Cardona, F. Cortez, A. Palacios, and K. Cerros, “Mo-      [15] J.-M. Lien, “Hybrid motion planning using minkowski
      bile robots application against covid-19 pandemic,” in            sums,” in Proceedings of Robotics: Science and Systems
      IEEE ANDESCON, pp. 1–5, 2020.                                     IV, 2008.

 [3] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H.          [16] Z. D. Hussein, M. Z. Khalifa, and I. S. Kareem, “Opti-
      Overmars, “Probabilistic roadmaps for path planning in            mize path planning for medical robot in iraqi hospitals,”
      high-dimensional configuration spaces,” IEEE transac-             Engineering and Technology Journal, vol. 33, no. 5,
      tions on Robotics and Automation, vol. 12, no. 4, pp. 566–        pp. 1009–1022, 2015.
      580, 1996.
                                                                  [17] B. Fang, G. Mei, X. Yuan, L. Wang, Z. Wang, and
 [4] S. LaValle, “Rapidly-exploring random trees: A new                 J. Wang, “Visual slam for robot navigation in healthcare
      tool for path planning,” Research Report 9811, 1998.              facility,” Pattern Recognition, vol. 113, p. 107822, 2021.

 [5] F. Duchon?, A. Babinec, M. Kajan, P. Ben?o, M. Florek,       [18] M. Takahashi, T. Suzuki, H. Shitamoto, T. Moriguchi,
      T. Fico, and L. Juris?ica, “Path planning with modified a         and K. Yoshida, “Developing a mobile robot for trans-
      star algorithm for a mobile robot,” Procedia engineering,         port applications in the hospital domain,” Robotics and
      vol. 96, pp. 59–69, 2014.                                         Autonomous Systems, vol. 58, no. 7, pp. 889–899, 2010.

 [6] A. Stentz, The D* algorithm for real-time planning           [19] Y. Jung, Y. Kim, W. H. Lee, M. S. Bang, Y. Kim, and
      of optimal traverses. Carnegie Mellon University, the             S. Kim, “Path planning algorithm for an autonomous
      Robotics Institute, 1994.                                         electric wheelchair in hospitals,” IEEE Access, vol. 8,
                                                                        pp. 208199–208213, 2020.
 [7] E. W. Dijkstra, “A note on two problems in connexion
      with graphs,” in Edsger Wybe Dijkstra: His Life, Work,      [20] D. P. Romero-Mart´i, J. I. Nu´nez-Varela, C. Soubervielle-
      and Legacy, pp. 287–290, 2022.                                    Montalvo, and A. Orozco-de-la Paz, “Navigation and
                                                                        path planning using reinforcement learning for a roomba
 [8] A. Al-Jumaily and C. Leung, “Wavefront propagation                 robot,” in IEEE 2016 XVIII Congreso Mexicano de
      and fuzzy based autonomous navigation,” International             Robotica, pp. 1–5, 2016.
      Journal of Advanced Robotic Systems, vol. 2, no. 2, p. 10,
      2005.                                                       [21] X. Huang, Q. Cao, and X. Zhu, “Mixed path planning
                                                                        for multi-robots in structured hospital environment,” The
 [9] J. H. Holland, “Genetic algorithms,” Scientific american,          Journal of Engineering, vol. 2019, no. 14, pp. 512–516,
      vol. 267, no. 1, pp. 66–73, 1992.                                 2019.

[10] C. W. Warren, “Global path planning using artificial         [22] Z. Jiao, K. Ma, Y. Rong, P. Wang, H. Zhang, and
      potential fields,” in 1989 IEEE International Conference          S. Wang, “A path planning method using adaptive poly-
      on Robotics and Automation, pp. 316–317, 1989.                    morphic ant colony algorithm for smart wheelchairs,”
                                                                        Journal of Computational Science, vol. 25, pp. 50–57,
[11] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony op-           2018.
      timization,” IEEE computational intelligence magazine,
      vol. 1, no. 4, pp. 28–39, 2006.

[12] S. Garrido, L. Moreno, D. Blanco, and F. Mart´in Monar,      [23] I. T. Kurniawan and W. Adiprawita, “Autonomy design
      “Robotic motion using harmonic functions and finite               and development for an ultraviolet-c healthcare surface
      elements,” Journal of intelligent and Robotic Systems,            disinfection robot,” in IEEE International Symposium on
      vol. 59, pp. 57–73, 2010.                                         Electronics and Smart Devices (ISESD), pp. 1–6, 2021.

[13] L. Blasi, E. D’Amato, M. Mattei, and I. Notaro, “Path        [24] S. Wan, Z. Gu, and Q. Ni, “Cognitive computing and
      planning and real-time collision avoidance based on the           wireless communications on the edge for healthcare
      essential visibility graph,” Applied Sciences, vol. 10,           service robots,” Computer Communications, vol. 149,
      no. 16, p. 5613, 2020.                                            pp. 99–106, 2020.
   256   257   258   259   260   261   262   263   264   265   266