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Abstract
Path-planning is a crucial part of robotics, helping robots move through challenging places all by themselves. In this
paper, we introduce an innovative approach to robot path-planning, a crucial aspect of robotics. This technique combines
the power of Genetic Algorithm (GA) and Probabilistic Roadmap (PRM) to enhance efficiency and reliability. Our
method takes into account challenges caused by moving obstacles, making it skilled at navigating complex environments.
Through merging GA’s exploration abilities with PRM’s global planning strengths, our GA-PRM algorithm improves
computational efficiency and finds optimal paths. To validate our approach, we conducted rigorous evaluations against
well-known algorithms including A*, RRT, Genetic Algorithm, and PRM in simulated environments. The results were
remarkable, with our GA-PRM algorithm outperforming existing methods, achieving an average path length of 25.6235
units and an average computational time of 0.6881 seconds, demonstrating its speed and effectiveness. Additionally, the
paths generated were notably smoother, with an average value of 0.3133. These findings highlight the potential of the
GA-PRM algorithm in real-world applications, especially in crucial sectors like healthcare, where efficient path-planning
is essential. This research contributes significantly to the field of path-planning and offers valuable insights for the
future design of autonomous robotic systems.
Keywords
Genetic Algorithm, Medical Robotics, Path-planning, Probabilistic Roadmaps, Robot Navigation, Static and Dynamic
Obstacles.

I. INTRODUCTION

In the field of robotics, path planning is essential for au-
tonomous robots to make smart decisions while navigating
complex terrains. This skill becomes increasingly impor-
tant as robots are used in various industries, including search
and rescue, environmental monitoring, and space exploration.
Path planning not only affects efficiency but also safety, as it
allows robots to avoid obstacles and collisions [1]. In the med-
ical field, robots play a crucial role in supporting healthcare
professionals by performing tasks like transporting supplies

and assisting with diagnostics. Advanced path planning is vi-
tal for these robots to navigate crowded and dynamic medical
environments efficiently. Integrating AI-powered path plan-
ning into healthcare robotics can reshape workflows, enhance
patient care, and advance medical technology [2].

This research focuses on developing an innovative path
planning algorithm tailored for robots operating in medical en-
vironments. The algorithm aims to adapt to dynamic obstacles,
minimize path length, and ensure smooth robot movements. It
combines Genetic Algorithms and Probabilistic Roadmaps to
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optimize path planning and outperforms conventional methods
in extensive simulations. Overall, this work contributes to the
advancement of autonomous robotics in various applications,
from exploration to surveillance and transportation tasks. The
key contributions of this paper can be briefly summarized in
three primary aspects:

1. Novel path-planning algorithm. The paper introduces
a new path-planning algorithm that combines genetic
algorithms (GA) and probabilistic roadmaps (PRM)
to enhance autonomous robot navigation. This novel
approach improves path-planning efficiency and quality
compared to traditional algorithms.

2. Real-time performance and robustness. The focus is
on real-time performance and adaptability in dynamic
environments. The algorithm operates in real-time and
includes dynamic obstacle avoidance, allowing robots
to respond quickly to environmental changes and navi-
gate safely around moving obstacles. This robustness
makes it suitable for real-world applications.

3. Comparative analysis and scalability. The paper also
conducts a comprehensive comparison with existing
path-planning methods like A*, RRT, genetic algo-
rithms, and PRM. The main objective of this compari-
son is to gain insights into the advantages and shortcom-
ings of these methods about three essential performance
measures: average path length, average computational
time, and average smoothness.

The paper reviews existing algorithms, details the new algo-
rithm’s components, and explains the system model in sec-
tions II. , III. , and IV. , respectively. Section V. explains
the experimental setup, while Section VI. presents results
with clear evaluation and analysis. The conclusion empha-
sizes the algorithm’s significance and suggests future research
directions.

II. LITERATURE REVIEW

In this part, we perform an extensive examination of existing
research on the development of path-planning algorithms for
robotics and autonomous systems. We will examine multiple
recent research papers to gain a deep understanding of the
current methods and innovations in this area. Through ana-
lyzing and synthesizing these discoveries, we aim to pinpoint
areas where improvements can be made, identify challenges,
and uncover opportunities for enhancing path-planning algo-
rithms.

A. Existing Path-Planning Algorithms
Path-planning is a vital challenge in robotics, involving find-
ing the best path while avoiding obstacles. Over time, re-

searchers and engineers have developed numerous path-planning
algorithms, each with its strengths and suitability for differ-
ent scenarios. This overview discusses the top 10 algorithms
known for their efficiency and effectiveness in real-world
applications, highlighting their ability to handle complex path-
planning tasks accurately.

• Probabilistic Roadmaps (PRM): Probabilistic Roadmaps
(PRM) is a popular sampling-based path-planning al-
gorithm used in robotics and motion planning [3]. It
constructs a graph by randomly sampling points in
the configuration space and connecting them through
collision-free paths. PRM offers advantages in complex
and high-dimensional spaces and is widely applied in
real-world robot motion planning tasks.

• Rapidly Exploring Random Trees (RRT): Rapidly
Exploring Random Trees (RRT) is a rapidly growing
tree-based path-planning algorithm [4]. It starts with
a single vertex representing the initial state and incre-
mentally explores the search space by adding new ver-
tices connected to the existing tree. RRT is particularly
effective in exploring large spaces efficiently and is
well suited for applications involving real-time obstacle
avoidance and dynamic environments.

• A* (A-star): A* (pronounced as ”A-star”), a widely
recognized graph search algorithm, is employed to lo-
cate the shortest path connecting two nodes within a
weighted graph [5].It employs a heuristic function to
guide the search towards the goal, making it both com-
plete and optimal. A* is widely used in various do-
mains, including robotics, computer games, and route
planning applications.

• D* (D-star): D* (D-star) is an incremental heuristic
search algorithm designed for dynamic environments
where both the cost of the path and the terrain change
over time [6]. It efficiently updates the path based
on new information and avoids recomputing the entire
path, making it suitable for scenarios with uncertain
and changing conditions.

• Dijkstra’s Algorithm: Dijkstra’s algorithm is a classi-
cal shortest-path algorithm used to find the minimum-
cost path in a weighted graph [7]. It iteratively explores
neighboring nodes from the start node, keeping track
of the minimum distance to each node. Dijkstra’s al-
gorithm guarantees the shortest path but may become
computationally expensive in large graphs.

• Wavefront Propagation: Wavefront Propagation is a
simple and widely used algorithm for grid-based path-
planning [8]. It operates on a grid map where each
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cell represents an obstacle or free space. The algorithm
starts from the goal position, assigns wavefront values,
and propagates them outward until it reaches the start
position, creating a path.

• Genetic Algorithms: Genetic Algorithms (GA) are
population-based optimization techniques inspired by
the process of natural selection [9]. In path-planning,
GA involves evolving a population of candidate paths
using genetic operations such as crossover and muta-
tion. Paths with higher fitness, determined by a fitness
function, have a higher chance of being selected for the
next generation, gradually improving the quality of the
paths.

• Artificial Potential Fields: Artificial Potential Fields
(APF) is a reactive path-planning approach that models
the environment as attractive and repulsive forces [10].
The robot navigates by following the gradient of the
potential field, moving towards the goal while avoiding
obstacles. APF is well suited for real-time applications,
but it may suffer from local minima and oscillations.

• Ant Colony Optimization (ACO): Ant Colony Op-
timization (ACO) is a metaheuristic inspired by the
foraging behavior of ants [11]. In path-planning, ACO
involves simulating the movement of virtual ants that
deposit pheromones on the paths they explore. The
algorithm utilizes pheromone trails to guide other ants
in finding shorter and more efficient paths to the goal.

• Harmonic Functions-Based Methods: Harmonic Func-
tions Based Methods use potential functions derived
from harmonic functions to compute optimal paths [12].
These methods represent the environment as a graph
and solve partial differential equations, ensuring that
the computed paths follow the laws of physics and offer
smooth trajectories.

In addition to the aforementioned algorithms, there are sev-
eral other path-planning techniques used in various scenarios.
For instance, Visibility Graphs are used to compute paths
in environments where direct line-of-sight visibility between
points can be guaranteed. They connect visible points with
straight line segments, creating a graph that simplifies path
planning [13]. Cell decomposition is a common technique
used to simplify the path planning process, especially in struc-
tured environments. It is used to divide the robot’s envi-
ronment into smaller, manageable regions or cells. Each
cell represents a portion of the environment, and these cells
are typically of a uniform size and shape [14]. Finally, the
Minkowski sum is used, in the context of robotics and path
planning, to calculate the space that encompasses all possible

positions of a robot when it moves in a particular environment
while considering its geometry and size. When taking the
Minkowski sum of the robot’s shape and the obstacles in the
environment, we can create a new shape that represents the
free space in which the robot can navigate without colliding
with obstacles. This free space is essential for path planning
algorithms to find collision-free paths for the robot [15].

B. Path-Planning in Healthcare Settings
In recent times, path planning in healthcare has seen signifi-
cant progress, with intelligent algorithms playing a vital role
in various medical applications. Healthcare facilities’ com-
plexities have led to the development of advanced path plan-
ning methods that ensure smooth navigation. These solutions,
powered by cutting-edge algorithms and technology, aim to
enhance patient care, improve robotic assistance, and opti-
mize logistical operations in the medical sector. This section
explores path planning in healthcare, emphasizing the transfor-
mative impact of AI-driven approaches on medical workflows
and seamless movement in critical healthcare environments.

For instance, in a notable study, Z. D. Hussein, M. Z.
Khalifa, and I. S. Kareem [16] improved the performance
of a Laparoscope surgical robot with seven degrees of free-
dom. They used a genetic algorithm and a MATLAB-based
program to find the best path, optimizing distance while avoid-
ing obstacles in dynamic environments. Real-world tests
were conducted at Al-Sader educational hospital and the Re-
search Unit of Automation and Robotics, University of Tech-
nology, using the Lab-Volt Servo Robot System Model5250
(RoboCIM5250). This advancement has the potential to en-
hance surgical procedures and reduce patient risks. However,
the findings’ practical relevance may vary depending on each
hospital’s robot and environment characteristics.

In another recent study [17], Fang et al. introduced ad-
vanced technology called SLAM (Simultaneous Localization
and Mapping) for robots in healthcare facilities. This tech uses
images to make hospitals run smoother and reduce COVID-19
risks. It is good at handling moving things in hospitals by
understanding pictures. Combining this with a knowledge
graph helps robots know where they are better. This study
offers several benefits, addressing the challenges of frequent
changes in hospital layouts through mapping and specialized
descriptors. However, it may pose computational demands for
map creation and image quality enhancement.

A notable advancement is the MKR (Muratec Keio Robot),
an advanced robot designed for healthcare [18]. It uses omni-
directional wheels to move safely and efficiently, avoiding
collisions with obstacles. The robot uses virtual potential
fields to navigate globally, considering both stationary and
moving obstacles. Experiments in a hospital demonstrated
its ability to navigate successfully, avoiding collisions. This
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innovation has the potential to transform healthcare robot
mobility, making operations smoother and more efficient.

However, it is crucial to consider potential limitations,
including the need for accurate dynamic modeling, sensor
data, and challenges in real-world hospital integration. Further
testing in various hospital settings and conditions is necessary
to assess its practicality.

A new path-planning algorithm was introduced in [19] for
autonomous electric wheelchairs in hospitals, aiming to ensure
patient safety by considering constraints on body acceleration
and navigating appropriate routes within healthcare facilities.
This algorithm takes into account wheelchair characteristics,
user input, and wheel behavior, making it adaptable to differ-
ent wheelchair systems. Through thorough numerical simula-
tions and testing in real hospital environments, the algorithm
proves its ability to meet body acceleration constraints and
find suitable paths within hospitals. This promising solution
enhances the performance of autonomous electric wheelchairs
in healthcare settings.

In a university research project, D. P. Romero-Martı́, J.
I. Núnez-Varela, C. Soubervielle-Montalvo, and A. Orozco-
de-la-Paz [20]. introduce a service robot that uses a map
of a building and reinforcement learning to learn the best
routes between locations. They incorporated a Roomba robot
and created a user-friendly control system. This research has
promising implications for using service robots in various
settings like homes, hospitals, and offices, where they can
assist with a variety of tasks. However, limitations exist,
such as potential inaccuracies in the robot’s maps and its
applicability depending on the robot type.

In a recent study [21], a new algorithm for multi-robot
path planning in hospital environments is introduced by X.
Huang, Q. Cao, and X. Zhu. This method combines corridor
and room navigation strategies using graph-based approaches
for corridors and artificial potential fields for flexible move-
ment in rooms. Simulations show that this algorithm signifi-
cantly improves robot speed in corridors and enables flexible
navigation within rooms. This innovation holds promise for
enhancing multi-robot coordination in complex healthcare
settings. However, there are concerns about its accuracy in
modeling environments and performance in dynamic condi-
tions, requiring further testing.

A different paper [22] introduces a new path-planning
method designed for smart wheelchairs. This method uses
the adaptive polymorphic ant colony algorithm and includes
strategies to handle challenges and find better paths. Com-
pared to other ant colony algorithms, it performs exceptionally
well, providing efficient and optimal solutions for healthcare
and smart wheelchair navigation. The method is good at
finding the best overall paths without being stuck in local
problems. Nevertheless, there are also some downsides to

think about. It might be a bit hard for computers to use be-
cause it is a bit complex, and it might not work perfectly
in real-life situations. Moreover, it might not work well in
different types of places.

In a healthcare surface disinfection robot study [23], I. T.
Kurniawan and W. Adiprawita created three key modules: one
for finding its location (Augmented Monte Carlo Localiza-
tion), one for planning its path (Rapidly Exploring Random
Tree*), and another for covering surfaces (Spanning Tree Cov-
erage). These robots can autonomously disinfect surfaces
using ultraviolet-C lamps, achieving high sterilization rates
without human involvement. The robot’s intelligent decision-
making ensures safety by minimizing infection and radiation
risks. Nevertheless, concerns remain, including limited real-
world testing and potential performance variations based on
usage conditions.

In recent research [24], S. Wan, Z. Gu, and Q. Ni explored
the latest developments in mobile healthcare robots with a
focus on strong and fast communication. They worked on
improving tasks that need quick responses and a lot of commu-
nication by offloading some tasks, making healthcare robots
more effective. They split the robot’s functions into edge
and core tasks, emphasizing technologies like human-robot
interaction, navigation, and AI. They also tackled challenges
in wireless communication for these robots and highlighted
AI’s vital role in ensuring safety and reliability in health-
care services. This approach benefits healthcare service users
by enabling quick-response, communication-intensive tasks.
However, it necessitates robust communication and advanced
AI for managing radio signals, movement, and service deliv-
ery efficiently.

A groundbreaking approach was introduced to transform
the creation of dexterous robotic tools, especially for concen-
tric tube robots, as explained in [25]. This innovative method
combines image-based path planning, robot design, and 3-D
printing technology. It uses preoperative ultrasound images to
plan safe paths and set critical parameters for the robot. The
goal is to improve access to diseased areas, especially in pedi-
atric patients, during minimally invasive medical procedures.
This new technique shows great promise for advancing health-
care procedures. However, it has limitations like needing
accurate pre-surgery imaging, potential challenges in cus-
tomizing robots for each patient, and the need for validation
studies in real clinical settings.

The SERROGA research project focuses on creating a
robot companion for older individuals to help with their health
needs at home [26]. This paper presents the robot’s architec-
ture, abilities, and important services as a health assistant. It
also introduces a new way to measure and evaluate how well
the robot navigates in apartments. The research includes tests
in 12 apartments with project staff and seniors, as well as case
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studies with nine seniors living at home. The study looks at
both practical and emotional aspects of the robot’s assistance,
and it shows that seniors found value in its health-related
help and formed emotional bonds with it. This research can
help elderly people, and it introduces a new method to assess
how well robots navigate homes. However, there is still work
needed to improve and test the robot’s reliability in different
home settings.

In the context of real-world applications, M. Gillham et
al. [27] highlight the importance of human-assistive devices,
especially in situations where collision avoidance is crucial.
The approach focuses on giving users control while providing
helpful assistance. It uses a new technique to quickly recog-
nize specific situations using basic sensor data, even when the
data is uncertain. This innovative method could be a valuable
tool for pattern recognition in human-assistive devices. How-
ever, it might face challenges in complex real-world settings
with diverse obstacles. In addition, relying solely on simple
sensor data might limit its ability to make precise decisions
in uncertain situations, potentially leading to suboptimal path
planning results.

Additionally, a recent study [28] introduces an innovative
telemedicine method that utilizes robots for certain medical
procedures. This pioneering approach involves the use of
automated robotic systems, reducing operation time and the
requirement for extensive robot training. With only a few ac-
tions, this automated method improves the quality of medical
procedures, offering exciting possibilities for telemedicine in
robot-assisted healthcare. This research has potential benefits
in telemedicine and robotic-assisted healthcare, but limitations
like adapting to different patients, concerns about accuracy,
and needing more real-world testing and refinement exist.

In the context of the COVID-19 pandemic, P. Manikandan
et al. [29] highlighted the crucial role of robotics in health-
care. This research emphasizes the importance of medical
robots in various medical tasks. Medical robots help reduce
human-to-human contact, improve cleaning and sterilization,
and provide support in quarantine areas, thereby reducing
risks for healthcare workers. The proposed system aims to
aid healthcare professionals in delivering essential supplies
to those who require them. The robot offers benefits like pa-
tient monitoring and precise medication delivery, but it has
drawbacks, including limited human interaction and potential
technical problems. The cost of implementing such robots in
healthcare settings is also a concern.

C. Gap in the Current Research on Path Planning for
Robots

There is ongoing research in this area to address the challenges
discussed earlier and develop more robust and efficient path-
planning algorithms for dynamic environments. One approach

uses machine learning to improve path-planning in dynamic
environments [30]. Machine learning can be used to learn the
behavior of dynamic obstacles and to predict future changes
in the environment. This can help path-planning algorithms
to adapt to changes in the environment more quickly and ef-
fectively. Another approach uses distributed path-planning
algorithms [31]. Distributed path-planning algorithms have
the potential to break down the path-planning task into smaller,
independent subtasks. This approach enhances the scalability
of path-planning algorithms, making them better suited for
navigating extensive and intricate environments. A third ap-
proach uses hybrid path-planning algorithms [32] and [33].
Hybrid path-planning algorithms merge various path-planning
techniques to enhance the efficiency of path-planning in en-
vironments that are in continuous change. For instance, a
hybrid approach could involve employing a sampling-based
algorithm for swift exploration of the search area, comple-
mented by a local planner to fine-tune the path.

However, there are a number of issues with current studies
on path-planning approaches in terms of handling dynamic
obstacles. For instance, lack of real-time adaptability and
responsiveness [34]. Many path-planning algorithms are not
able to adapt to changes in the environment in real time. This
can be a problem in dynamic environments, where the envi-
ronment is constantly changing. A second issue is the inability
to deal with uncertainty and unpredictability [35]. Many path-
planning algorithms are not able to deal with uncertainty and
unpredictability in the environment. This can be a problem
in dynamic environments, where the environment is often
uncertain and unpredictable. A third issue is the inability
to balance collision avoidance and smoothness [36]. Many
path-planning algorithms are not able to balance collision
avoidance and smoothness. This can lead to paths that are
either too safe (or slow) or too risky (and fast). A fourth issue
is the computational complexity [37]. The environment in
dynamic settings is often uncertain and unpredictable, which
means that the path-planning algorithm must be able to make
decisions based on incomplete information [36]. This can be a
difficult task, as it requires the algorithm to be able to estimate
the probability of different outcomes and to make decisions
that minimize the risk of collisions. Many path-planning al-
gorithms are computationally expensive. This can make it
difficult to find a path in real time or for large environments.

The most significant gap that proposed GA-PRM algo-
rithm is trying to address is the need for efficient and adaptable
path-planning algorithms in healthcare environments. This
gap is significant as it directly influences the practical applica-
tion of robotics in healthcare, which requires a unique set of
capabilities compared to other industries. While the literature
review highlights various advancements in robotics and path
planning in healthcare, it also underscores the complexity
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and specific challenges of healthcare settings. GA-PRM algo-
rithm is attempting to fill the gap of providing a robust and
adaptable path-planning solution that can navigate healthcare
environments efficiently and safely. Dynamic obstacles, the
need for smooth and precise movements, and the requirement
for patient safety characterize healthcare environments.

III. METHODOLOGY

In this section, the methodology employed for the develop-
ment and implementation of the novel path-planning algo-
rithm is discussed. A comprehensive description of the algo-
rithm is provided, clarifying its complexities and fundamental
components. Core techniques utilized in the approach are
detailed, underscoring their essential role in effective path-
planning. The seamless integration of genetic algorithms
and probabilistic roadmaps is explained, displaying how this
combination enhances the algorithm’s performance and effi-
ciency. Modifications or enhancements to existing algorithms
are highlighted, spotlighting how these innovations and ad-
vancements refine the approach.

A. Techniques
The GA-PRM algorithm is a path-planning algorithm that
combines the strengths of two other algorithms: Genetic Al-
gorithm (GA) and Probabilistic Roadmaps (PRM).

The GA component of GA-PRM is inspired by natural
selection. It uses a population-based search approach to iter-
atively evolve a set of candidate paths. Each candidate path
is represented as a string of waypoints in the robot’s configu-
ration space. The fitness of each candidate path is evaluated
based on its length and how well it avoids obstacles. The fittest
individuals from each generation are selected to contribute to
the next generation, which helps the algorithm converge to
optimal solutions.

The PRM component of GA-PRM constructs a roadmap
of the workspace. The roadmap is a graph that represents
all the feasible paths between random configurations in the
workspace. Random configurations are sampled uniformly
across the workspace, and collision checking ensures that
they avoid obstacles. The roadmap is built by connecting
configurations through collision-free edges.

The GA-PRM algorithm leverages the strengths of both
the GA and PRM algorithms. The GA component enables the
algorithm to search for optimal paths in a large and complex
search space, while the PRM component ensures that the
algorithm finds feasible paths even in cluttered environments.
The combination of these two algorithms results in a path-
planning algorithm that is both efficient and effective.

The core components and techniques used in the algorithm
are as follows:

1. Roadmap generation: A roadmap is a graph that repre-
sents the possible paths that a robot can take in an envi-
ronment. Randomly sampling configurations within the
workspace and then connecting them with collision-free
paths generate it. The roadmap construction accounts
for the presence of static obstacles, ensuring that the
robot can traverse through open paths.

2. Genetic algorithm: The genetic algorithm is a potent
tool for optimizing robot path planning. It iteratively
improves the path by evolving potential routes through
generations. It starts with a population of path segments,
each representing a possible way for the robot to reach
its goal while avoiding obstacles. These segments are
evaluated based on how well they work. Parents are
selected from the population based on their effective-
ness and used to create new paths through crossover
and mutation. Crossover involves parents exchanging
parts of their paths to make new ones, while mutation
makes small changes to paths. This process continues
over generations until a suitable path is found, allowing
the robot to reach its goal efficiently.

3. Handling dynamic obstacles: To ensure robots nav-
igate safely in dynamic environments, there are two
key methods: potential field-based path-planning and
genetic algorithms. Potential field-based planning cal-
culates forces guiding the robot towards its goal and
away from obstacles, allowing it to adapt its path in
real-time as conditions change. Genetic algorithms, on
the other hand, use iterations to find the best paths by
considering various factors like distance and efficiency,
making them suitable for navigating complex spaces
with both static and moving obstacles. For instance, in
a busy hospital, robots can first use potential field-based
planning to avoid patients and staff, and then optimize
their route with genetic algorithms for safe and efficient
navigation. In healthcare settings, ultrasonic sensors
can complement infrared (IR) sensors by detecting vari-
ous types of moving objects and equipment, ensuring
collision-free movement.

4. Path smoothing: Path smoothing is a crucial part of
path-planning, especially in complex and dynamic set-
tings. It reduces noise and uncertainties caused by sen-
sors and moving obstacles, making the path smoother
and more reliable. Kalman filtering is a statistical tech-
nique used for this purpose. It estimates the robot’s
position and speed by combining previous estimates
and noisy measurements. This process repeats to refine
the estimate, resulting in a more accurate path.

5. Performance metrics: The performance of the new
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Fig. 1. Basic concept of Kalman filtering.

algorithm is evaluated using three metrics: average
path length, average computational time, and average
smoothness. These metrics offer insights into the effi-
ciency and effectiveness of the algorithm across various
scenarios.

B. Kalman Filtering
The proposed algorithm, GA-PRM, effectively addresses the
issue of balancing collision avoidance and smoothness in path-
planning, especially in dynamic environments like healthcare
settings, through the implementation of the Kalman filter [38]
for path smoothness. Kalman Filtering is a widely used tech-
nique in the GA-PRM algorithm to improve path planning
accuracy. It is a systematic approach, which continuously up-
dates and refines its understanding of a system’s performance
using sensor data and their uncertainties. This method is
valuable because it combines noisy sensor data with dynamic
models to provide a more reliable assessment of the system’s
status over time. Kalman Filtering operates in two stages: pre-
diction and adjustment based on new measurements, making
it particularly useful for real-time applications.

Figure 1 illustrates the core stages of Kalman Filtering,
encompassing prediction and update. It visually represents
how the filter not only monitors the average state value but
also estimates the degree of variation. As shown in this figure,
the Kalman filter maintains information about the system’s
estimated state and the level of uncertainty associated with
this estimate. This estimation is refined through the utilization
of a model depicting how the state changes over time and the
inclusion of measurements. Specifically, denotes the estimate
of the system’s state at a given time step k before considering
the k-th measurement yk, while represents the corresponding
level of uncertainty.

C. Algorithm Description
In terms of its contribution to the operation of the GA-PRM
algorithm, the Kalman filter is crucial in balancing a robot’s
path to avoid obstacles while maintaining smooth motion. The

Fig. 2. Flowchart describing the systematic execution of the
GA-PRM algorithm.

genetic algorithm (GA) can be overly cautious or too risky,
affecting navigation speed. To address this, the GA-PRM
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algorithm uses the Kalman filter. This filter uses sensor data
to accurately estimate the robot’s position, reducing errors.
Smoothing the path allows the GA-PRM find a balance be-
tween avoiding collisions and smooth movement. The Kalman
filter updates the robot’s position based on sensor data, en-
suring the robot can navigate safely and efficiently, even in
changing environments, without putting safety at risk or dis-
rupting medical tasks.

The GA-PRM algorithm, as described in the flowchart
in Figure 2, follows a step-by-step process for efficient path
planning. It begins with initialization and then utilizes the
Probabilistic Roadmap (PRM) technique to create a roadmap
by randomly sampling and connecting configurations. Subse-
quently, it generates a path segment from the current position
towards the goal, considering forces to navigate obstacles.
The generated path’s feasibility is checked for goal reachabil-
ity. To optimize the path, a Genetic Algorithm is employed,
creating and refining potential paths within a population. Con-
tinuous goal checking occurs throughout execution. Dynamic
obstacles (people) are introduced by randomly moving them
within the workspace to simulate dynamic environments. The
Kalman Filter enhances path estimation accuracy and mini-
mizes sensor measurement noise. The algorithm concludes its
execution, providing efficient path planning while accommo-
dating obstacles and dynamic scenarios.

D. Modifications and Improvements
In this section, the modifications and improvements made to
existing path-planning algorithms to develop a novel approach
are described. These enhancements aim to address specific
limitations and leverage the strengths of the individual algo-
rithms. The modifications are designed to work together and
perfectly within the framework of the proposed algorithm.

1. Combining Strengths: The algorithm blends Genetic
Algorithm (GA) and Probabilistic Roadmaps (PRM) in
a unique way. GA explores possibilities, while PRM
carefully maps valid paths. They work together: GA
suggests paths, and PRM refines them. This combina-
tion improves path quality and speeds up finding the
best path.

2. Faster Computing: Smart data handling, like the R-
tree index, speeds up PRM’s work, making it suitable
for quick path planning. Additionally, advanced meth-
ods like the Kalman filter improve sensor data process-
ing, reducing the workload and making it even better
for real-time tasks.

3. Balancing Goals: The algorithm considers various fac-
tors like path length, smoothness, and computation time
all at once. This flexible approach gives different op-
tions, allowing users to balance these factors as needed.

Using an R-tree data structure [39] significantly boosts essen-
tial tasks like finding nearby positions and checking for col-
lisions. This unique data structure, the R-tree index, smartly
organizes spatial data. It does this by creating an efficient sys-
tem where information is stored in a way that allows extremely
fast access. This dynamic indexing method is a significant
advancement, especially for real-time applications. Unlike
older indexing methods, which struggle with objects of vary-
ing sizes in complex, multi-dimensional spaces, the R-tree
brings a simplicity that greatly enhances the robot’s ability to
navigate swiftly and accurately.

IV. PROBLEM FORMULATION

This propose approach aims to find the best path for a mo-
bile robot in a workspace with both stationary and moving
obstacles. This involves finding a sequence of grid cells that
connect the start and end points while avoiding collisions with
obstacles. This section formally defines the path-planning
problem and describes the system model.

A. Path-Planning Formalization
Path-planning is the process of finding a safe and efficient
path for a robot to move from one point to another in an
environment. The environment may contain obstacles, such
as walls and furniture, as well as dynamic obstacles, such
as people and vehicles. The path-planning problem can be
broken down into the following steps:

• Representation of the workspace: The workspace is
represented as a grid-based environment. This means
that the environment is divided into a grid of cells, and
each cell represents a specific location in the workspace.
This representation makes it easier for the robot to plan
its path and avoid obstacles.

• Definition of the start and goal points: The start
point is the robot’s initial position, and the goal point
is the desired destination. The path-planning algorithm
must find a path that connects the start and goal points
without colliding with any obstacles.

• Identification of static obstacles: Static obstacles are
obstacles that do not move during the planning process.
Their coordinates on the grid identify these obstacles,
and they are marked as such in the grid representation.

• Accounting for dynamic obstacles: Dynamic obsta-
cles are obstacles that move during the planning process.
These obstacles are represented by their respective mo-
tion models, which describe how they move over time.
The path-planning algorithm must take into account the
motion models of dynamic obstacles when planning the
robot’s path.
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• Consideration of motion constraints: The robot’s
motion is subject to specific constraints, such as maxi-
mum velocity, acceleration, and turning radius. These
constraints must be taken into account when planning
the robot’s path, ensuring that the path adheres to the
robot’s physical limitations.

• Optimization of the path: The goal of the path-planning
algorithm is to find an optimal path, which is a path
that minimizes the total distance traveled from the start
point to the goal point while avoiding collisions with
all obstacles. The path-planning algorithm may use
a variety of techniques to optimize the path, such as
genetic algorithms or probabilistic roadmaps.

The initial positions of the dynamic obstacles are randomly
generated within the workspace. The number of dynamic
obstacles is determined is set to 50 in our code. This means
that when we run the simulation, 50 dynamic obstacles will
be randomly placed within the workspace at the beginning
of the simulation. On the other hand, the speed of dynamic
obstacles is set to 0.3 in the code, which represents the maxi-
mum velocity that dynamic obstacles can have. The velocity
for each obstacle is randomly selected from the range of 0
to velocitymax/2. This randomization adds variability to the
dynamic obstacle movement, making their speed dynamic and
unpredictable.

B. System Model
In this section, we examine the use of a two-wheel differ-
ential mobile robot for path planning. This particular robot
possesses the ability to control the speed of its two driving
wheels, granting it the flexibility to execute a range of tra-
jectory movements, such as moving in straight lines, making
turns, and performing circular maneuvers. We establish a
kinematic model by tracking the robot’s consecutive positions,
as illustrated in Figure 3.

1) The Motion Model of Mobile Robotic System
In the field of mobile robotics, kinematics plays a pivotal
role in comprehending how a robot’s mechanical components,
such as wheels, sensors, and DC motors, operate and posi-
tion themselves within their environment. It provides insights
into how a robot interacts with its surroundings and is indis-
pensable for various tasks, including path planning, obstacle
avoidance, and robot control. Kinematics enables engineers
and researchers to establish precise models of a robot’s be-
havior and make predictions about its actions in diverse sce-
narios. Leveraging mathematical and geometrical principles,
kinematic models are formulated to illustrate the relationship
between the robot’s movements and the commands it receives.
Moreover, robot kinematics proves vital for exacting tasks

Fig. 3. Illustrated example of a path-planning robot diagram.

like navigation, self-localization, and object manipulation,
serving as the foundation for algorithms that empower robots
to reach specific destinations, evade collisions, and execute
tasks with precision and efficiency. In the proposed robot
kinematics model, a differential drive robot with odometry
updates is considered. The robot’s motion can be described
using equations (1) to (3):

dx
dt

=
r
2

(
dφL

dt
+

dφR

dt

)
cos(θ) (1)

dy
dt

=
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2

(
dφL

dt
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dφR

dt

)
sin(θ) (2)

dθ

dt
=

r
2L

(
dφR

dt
− dφL

dt

)
(3)

Where:
(x,y): Robot coordinates in the global frame.
θ : Orientation angle of the robot.
r : Wheel radius L : Wheelbase (distance between the wheels).
dφL/dt,dφR/dt: Angular velocities of the left and right wheels.

Equations (1) to (3) represent the kinematic equations
for the motion of a differential-drive mobile robot. These
equations describe how the robot’s position and orientation
change over time based on the angular velocities of its left
and right wheels.

It is worth noting that the orientation angle of the robot
gives the direction in which the robot is pointed. Typically, θ

is measured relative to some reference, such as the positive
x-axis. For example, if θ is 0 degrees, the robot is facing
directly along the positive x-axis. If θ is 90 degrees, the robot
is facing along the positive y-axis. If θ is 180 degrees, the
robot is facing directly along the negative x-axis, and so on.
In addition, the velocity variables in Equation (3) are crucial
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Fig. 4. Repulsive field method for a mobile robot.

for controlling the robot’s motion. By adjusting the angular
velocities of the left and right wheels (dφL/dt,dφR/dt), the
mobile robot can be controlled to move forward or turn.

2) The Repulsive Field Method
The Repulsive Field Method [40] is a form of potential field-
based path planning in robotics. In this method, the envi-
ronment is represented as a field of repulsive forces, which
push the robot away from obstacles. As shown in Fig. 4, each
obstacle in the environment generates a repulsive field, and
the overall repulsive force experienced by the robot is the sum
of these fields. The robot navigates by moving in the direction
of the resultant force, attempting to minimize the potential
energy associated with the repulsive fields. This approach
allows the robot to avoid obstacles while reaching its destina-
tion. The repulsive field method usually consists of essential
elements, which encompass settings to regulate repulsion in-
tensity, methods for identifying and pinpointing obstacles in
the surroundings, and forces or fields with an attractive nature
employed to direct the robot towards a desired destination.
However, it is important to note that although the repulsive
field method can prove successful in specific situations, it
does have constraints. These limitations include challenges in
dealing with intricate environments characterized by narrow
pathways and the possibility of the robot becoming trapped in
localized low-performance states.

3) Obstacle Avoidance Model
A repulsive potential field method is used to avoid obstacles.
For a circular obstacle located at (ox,oy) with a radius robs,
the potential field is given by equation (4) [41]:

Uobs = kobs

(
1√

(x−ox)2 +(y−oy)2
− 1

robs

)2

(4)

Where:
Uobs: The potential energy associated with obstacle avoidance.
kobs: Gain parameter for obstacle avoidance.

(x,y): Robot coordinates.
(ox,oy): Obstacle coordinates.

This potential field creates a repulsive force that pushes
the robot away from the obstacle. In equation (4), the first
part calculates the inverse of the distance between the robot’s
current position (x,y) and the center of the circular obsta-
cle (ox,oy). It represents the strength of the repulsive force;
shorter distances lead to higher repulsion. Finally, the square
of the difference is taken to enhance the repulsive effect and
ensure it is always positive.

Fundamentally, equation (4) calculates a repulsive poten-
tial field, Uobs , that increases, as the robot gets closer to
the circular obstacle. The gain parameter, kobs, controls the
strength of this repulsion, and the distance-based terms deter-
mine the shape of the repulsive force field. This potential field
is commonly used in robotics for obstacle avoidance, where
robots move away from obstacles by following the gradient
of this field.

4) Dynamic Obstacle Model
When dealing with a moving obstacle, its position can be dy-
namically described as a function of time, denoted as T . This
dynamic position is calculated using equations (5) and (6):

oxdynamic(T ) = oxinitial + vobstacle cos(θobstacle)T (5)

oydynamic(T ) = oyinitial + vobstacle sin(θobstacle)T (6)

Where:
(oxinitial ,oyinitial): These represent the initial coordinates of
the moving obstacle, specifying where the obstacle is located
at the start of its movement.
vobstacle: This parameter signifies the velocity of the moving
obstacle. It defines how fast the obstacle is moving through
space.
θobstacle: The initial orientation of the moving obstacle is
represented by this angle. It indicates the direction in which
the obstacle is initially facing.

Equations (5) and (6) enable to track the dynamic position
of a moving obstacle over time, allowing for effective collision
avoidance and path planning in dynamic environments.

5) Optimal Trajectory
An optimal trajectory in mobile robot path planning is the
most efficient and effective path the robot can take to reach its
destination while meeting specific criteria. “Optimal” implies
that this path is the best choice based on defined metrics. The
key aspects of optimal trajectories include efficiency, obstacle
avoidance, smoothness, consideration of dynamic constraints,
task-specific objectives, global vs. local optimization, and
real-time adaptation [42].
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Efficiency is a critical criterion, focusing on minimiz-
ing factors like time, energy consumption, or distance trav-
eled [41]. Obstacle avoidance ensures safe navigation around
obstacles. Smooth trajectories with minimal changes in direc-
tion and velocity enhance stability and reduce physical deterio-
ration. Dynamic constraints account for limits on acceleration
or deceleration. Task-specific objectives vary depending on
the mission, while trajectory optimization can be global or
local. In dynamic environments, real-time adaptation may be
necessary.

6) Objective Function for Optimal Trajectory
In the pursuit of finding the optimal trajectory for a mobile
robot, an objective function that plays a pivotal role in bal-
ancing various objectives is employed, such as minimizing
time while simultaneously avoiding obstacles. This objective
function, denoted as J, is defined in equation (7).

J = ωtimeT +ωobstacleUobs (7)

Where:
ωtime and ωobstacle: These are weighting factors assigned to
the time and obstacle avoidance components of the objective
function, respectively. They allow to prioritize one aspect over
the other based on their relative importance in the context of
the task. T : This represents the total time required for the
robot to reach its goal along a specific trajectory. It is a crucial
metric in scenarios where minimizing the time of traversal is
a primary objective.

The overarching aim is to minimize the value of the cost
function J. Through optimizing the trajectory, a balance be-
tween minimizing the time taken to reach the goal while also
considering the importance of avoiding obstacles is a stroke
to ensure the safety and efficiency of the robot’s path.

V. EXPERIMENTAL SETUP

In this section, we explain how we set up our experiments
to test different path-planning algorithms. We start by de-
scribing the simulation environment we used for testing and
then discuss how we configured the performance evaluation.
We also explain the metrics and criteria we used to measure
how well the algorithms worked. This experimental setup is
crucial because it ensures that the results we collect from the
evaluation are reliable and unbiased.

A. Simulation Environment
The code was tested in a 2D healthcare simulation with static
and moving obstacles. The robot used sensor data including
ultrasonic and IR readings to plan its path efficiently, and
avoiding collisions. This setup simulated real-world health-
care scenarios, evaluating the robot’s ability to navigate a

hospital environment safely while avoiding obstacles. The
simulation environment was carefully tailored to meet the
specific requirements of the path-planning problem, making
use of the following adjustments:

• Robot Model: The robot utilized in the simulation is a
wheeled mobile robot designed for efficient workspace
navigation. It features motorized wheels for motion
control and an array of sensors, including ultrasonic,
infrared (IR), temperature and humidity sensors. The
robot’s kinematics guarantee smooth and precise move-
ments, and its dynamic capabilities enable it to adapt
paths based on sensor inputs and potential field calcula-
tions during planning.

• Obstacles: Both static and dynamic obstacles emulate
real-world situations in the simulation. Static obstacles
are immovable rectangular blocks carefully placed to
create challenging navigation scenarios. In contrast, dy-
namic obstacles represent moving individuals (people)
within the workspace. The motion of dynamic obstacles
is randomized to replicate unpredictable human move-
ment, requiring the robot to skillfully navigate while
avoiding collisions with them.

• Sensor Simulation: The simulation incorporates sen-
sor emulation to enable the robot’s sensing and navi-
gation abilities. The ultrasonic sensor provides short-
range distance measurements, detecting nearby obsta-
cles, while the IR sensor offers medium-range distance
readings. The temperature and humidity sensor sup-
ply environmental data, allowing the robot to adapt
its behavior to the prevailing conditions. The sensor
simulation ensures the robot effectively perceives and
responds to its surroundings.

B. Performance Metrics
The effectiveness of the algorithm was evaluated through an
examination of three critical performance metrics: average
path length, average computational time, and average smooth-
ness. These metrics were computed using straightforward
mathematical formulas. • Average path length: measures the
average length of the paths generated by each algorithm. A
shorter average path length means that the robot can reach
its destination using the minimum distance possible. This is
more efficient, as it reduces energy consumption and overall
travel time.

• Average computational time: measures the average
time it takes each algorithm to calculate a feasible path
from the starting point to the goal. Faster computa-
tional times are especially important in dynamic envi-
ronments, as they allow for real-time or near-real-time
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path-planning. A more efficient algorithm can reduce
planning delays, allowing the robot to quickly respond
to changes in the environment and dynamic obstacles.

• Average smoothness measures: the continuity and
absence of abrupt changes in the robot’s motion during
navigation. Paths with smoother trajectories lead to
more stable and comfortable robot movements. This
is especially important when the robot is interacting
with humans or in the presence of dynamic obstacles. A
smoother path reduces the risk of collisions, improves
user comfort, and ensures safer robot navigation in
complex environments.

VI. RESULTS

A. Result of Simulation
Fig. 5 visually represents the robot’s movement in the simu-
lated workspace. The workspace is divided into four sections,
each corresponding to a different quadrant. Subfigure (2-A)
shows the robot’s position in quadrant 1, (2-B) in quadrant
2, (2-C) in quadrant 3, and (2-D) in quadrant 4. Each part of
the diagram illustrates the robot’s path as it moves through its
respective workspace section. Gray boxes represent stationary
obstacles, while small black dots depict moving obstacles.

B. Result of Comparison
Fifty tests were conducted to compare the performance of
four path-planning algorithms: A*, RRT, Genetic, and PRM.
In each test, the robot had to move from the starting point
to the target point in a predefined area. The same specific
parameters, workspace size, grid size, fixed and moving ob-
stacles, and sensor settings were used for all four algorithms.
The choice of comparing the GA-PRM algorithm with the A*,
RRT, Genetic, and PRM algorithms is based on their well-
established effectiveness and relevance in motion plansning
and optimization. A* stands out for its efficiency in finding the
shortest paths in grid-based environments [43]. RRT excels
in high-dimensional spaces with dynamic obstacles due to its
probabilistic completeness and fast convergence [1]. Genetic
algorithms offer versatility in optimizing complex spaces,
making them valuable for benchmarking global optimization
by the GA-PRM algorithm [44]. PRM, a sampling-based
method, is known for its simplicity and efficiency in roadmap
construction, making it a suitable comparison for evaluating
the GA-PRM algorithm’s roadmap generation performance
in high-dimensional spaces [3]. Other algorithms, while fun-
damental and well-established path-finding algorithms, may
have characteristics that make them less suitable for direct
comparison in the context of my research. For example, Di-
jkstra’s Algorithm is known for its optimality in finding the
shortest path in static environments. However, it does not

TABLE I. PERFORMANCE COMPARISON BETWEEN
GA-PRM ALGORITHM AND A*, RRT, GENETIC, AND

PRM ALGORITHMS

No. Algorithm APL ACT AS
1 Proposed GA-PRM 25.6235 0.6881 0.3133
2 A* 29.1758 0.7452 0.0803
3 RRT 36.2037 0.6209 0.2911
4 Genetic 37.43 0.7147 1.5308
5 PRM 26.8700 0.9962 1.8543

naturally handle dynamic obstacles or provide probabilistic
roadmaps for path planning [45]. Table I provides a com-
parison between the GA-PRM algorithm and four other path-
planning algorithms (A*, RRT, Genetic algorithm, and PRM).
This comparison is based on three performance metrics: av-
erage path length, average computational time, and average
smoothness.

As can be seen from Table I, the GA-PRM algorithm
achieves the shortest average path length among all the al-
gorithms, with an APL of 25.6235 units. This indicates that
the current algorithm is successful in finding paths that are,
on average, shorter than those generated by the other algo-
rithms. While GA-PRM excels in shortest average path length,
it requires a moderate amount of computational time, with an
ACT of 0.6881 seconds. This indicates that it strikes a balance
between path length and computational efficiency. In addi-
tion, GA-PRM produces paths with a relatively high average
smoothness (AS of 0.3133). This suggests that it achieves a
good balance between path length and smoothness, resulting
in paths with less abrupt changes in direction.

The GA-PRM algorithm demonstrates notable strengths
that make it well suited for deployment in a hospital environ-
ment. Firstly, it excels in generating shorter and smoother
paths, which can be pivotal in healthcare settings where preci-
sion and patient safety are paramount. These characteristics
contribute to minimizing the time taken for robots to navigate
through hospital corridors and reduce the risk of unexpected
obstacles. Secondly, the algorithm’s ability to optimize path
smoothness ensures that robotic movements are fluid and less
likely to cause disruptions or discomfort to patients, staff, and
visitors. Although it may exhibit slightly longer computa-
tion times, the trade-off is justifiable in healthcare, given the
emphasis on safe and efficient navigation within a controlled
and predictable environment. Overall, the GA-PRM algo-
rithm aligns well with the requirements of a hospital setting
by prioritizing path quality and patient well-being.

In Fig. 6, a comparison is made among various path-
planning algorithms using three key performance measures
given above. The algorithms under evaluation include GA-
PRM, A*, RRT, Genetic, and PRM. The chart illustrates these
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(a) Robot in quadrant 1. (b) Robot in quadrant 2.

(c) Robot in quadrant 3. (d) Robot in quadrant 4.

Fig. 5. Path-planning with GA-PRM algorithm.

performance metrics for each algorithm with three distinct
lines. Each line corresponds to one of the performance mea-
sures, and the x-axis displays the names of the algorithms. On
the y-axis, we can see the average value for each metric. To
make it clearer, circular markers are used to denote the data
points for each algorithm. This visual representation enables
an easy understanding of how each algorithm performs in
terms of these metrics.

VII. DISCUSSION

The comparison experiment between our new path-planning
method and existing ones, presented in Table I, reveals impor-
tant insights. These results provide valuable information about
how our approach could be applied in practical, real-world
situations and how it might advance the field.

1. Path length: The GA-PRM algorithm showed an aver-
age path length of 25.62 units. This indicates that the
robot’s paths planned by the GA-PRM algorithm were



256 | Sabeeh & Al-Furati

Fig. 6. Path-planning with GA-PRM algorithm.

more direct and efficient in reaching the goal while
avoiding obstacles. The GA-PRM’s combination of ge-
netic algorithms and probabilistic roadmaps contributed
to the algorithm’s ability to explore the workspace ef-
fectively and find shorter paths. This characteristic is of
utmost importance in various autonomous robotic ap-
plications, as shorter paths translate to reduced energy
consumption and faster completion of tasks, which can
be crucial for time-sensitive missions.

2. Computational time: The GA-PRM algorithm demon-
strated an average computational time of (0.6881), which
was faster in generating path plans as compared to the
other algorithms (except for the RRT algorithm, which
took 0.6209 seconds). The efficiency of the GA-PRM
algorithm can be attributed to its use of genetic algo-
rithms and probabilistic roadmaps, which allowed for
effective exploration of the configuration space while
keeping the computation time low. This characteristic
makes the new algorithm suitable for real-time applica-
tions where prompt decision-making is imperative.

3. Smoothness: The GA-PRM algorithm achieved a mod-
erate level of smoothness (0.3133) in its planned paths.
While the PRM algorithm had the smoothest paths with
the highest average smoothness (1.8543), the GA-PRM
algorithm managed to strike a balance between path
smoothness and path length, leading to an overall more
optimal solution. Smoothness in the path is crucial to
guaranteeing stable and controlled movement of the
robot, particularly in situations with strict safety de-
mands.

Although the proposed GA-PRM algorithm has shown promis-

ing performance in experiments, there are still areas for im-
provement.

First, the algorithm’s performance depends heavily on the
choice of parameters, such as the mutation rate and population
size. These parameters can significantly influence the quality
of the generated paths. Fine-tuning the genetic algorithm’s
parameters and exploring alternative genetic operators could
further improve the algorithm’s convergence and solution
quality.

Second, as the environment becomes more complex and
the count of dynamic obstacles rises, the algorithm’s execu-
tion time also experiences an increase. Although genetic algo-
rithms and probabilistic roadmaps naturally bring in elements
of randomness and adaptability, it remains crucial to inves-
tigate strategies that can enhance computational efficiency
when dealing with larger and dynamic settings.

Another aspect to consider is how to handle dynamic
obstacles with unpredictable trajectories. The current algo-
rithm models dynamic obstacles as random walkers within
the workspace. However, incorporating predictive methods
or learning algorithms to anticipate the future trajectories of
these obstacles could lead to more predictive and preemptive
path-planning behavior for the robot.

Finally, the proposed algorithm currently assumes known
and fixed sensor ranges for ultrasonic, IR, and other sensor
types. Incorporating adaptive sensor models that can dynami-
cally adjust their ranges based on the environment’s charac-
teristics could enhance the algorithm’s robustness in handling
varying obstacle densities.

VIII. CONCLUSION

The GA-PRM algorithm holds significant importance in robotics
and path planning, particularly in dynamic and complex en-
vironments such as healthcare settings. Through combin-
ing the power of genetic algorithms with the efficiency of
probabilistic roadmaps, GA-PRM excels in finding adaptable
and obstacle-aware paths for robots. This characteristic is
crucial for ensuring safe and efficient navigation in environ-
ments where obstacles and conditions are subject to frequent
changes, ultimately contributing to the reliable and effective
deployment of robots in real-world scenarios, including health-
care, logistics, and more.

Future research could optimize GA-PRM parameters, in-
tegrate advanced sensors for context-aware planning, explore
multi-robot systems, and leverage hardware advancements for
real-time implementation.
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