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Abstract
Multiplication-accumulation (MAC) operation plays a crucial role in digital signal processing (DSP) applications, such
as image convolution and filters, especially when performed on floating-point numbers to achieve high-level of accuracy.
The performance of MAC module highly relies upon the performance of the multiplier utilized. This work offers a
distinctive and efficient floating-point Vedic multiplier (VM) called adjusted-VM (AVM) to be utilized in MAC module
to meet modern DSP demands. The proposed AVM is based on Urdhva-Tiryakbhyam-Sutra (UT-Sutra) approach and
utilizes an enhanced design for the Brent-Kung carry-select adder (EBK-CSLA) to generate the final product. A (6*6)-bit
AVM is designed first, then, it is extended to design (12*12)-bit AVM which in turns, utilized to design (24*24)-bit AVM.
Moreover, the pipelining concept is used to optimize the speed of the offered (24*24)-bit AVM design. The proposed
(24*24)-bit AVM can be used to achieve efficient multiplication for mantissa part in binary single-precision (BSP)
floating-point MAC module. The proposed AVM architectures are modeled in VHDL, simulated, and synthesized by
Xilinx-ISE14.7 tool using several FPGA families. The implementation results demonstrated a noticeable reduction in
delay and area occupation by 33.16% and 42.42%, respectively compared with the most recent existing unpipelined
design, and a reduction in delay of 44.78% compared with the existing pipelined design.
Keywords
Multiplier-Accumulator (MAC), Enhanced Brent-Kung Carry-Select Adder (EBK-CSLA), Adjusted Vedic multiplier
(AVM), Carry Save Adder (CSA).

I. INTRODUCTION

Multiply-Accumulated (MAC) module is considered the most
important module in digital signal processor (DSP), multi-
media information processing, microprocessors systems and
hence, it has a considerable effect on their performance in
terms of speed and area occupancy [1]. MAC module can
be employed for both fixed-point and floating-point compu-
tations. Floating-point arithmetic is widely utilized in DSP
applications like, filters, correlation, convolution and image
processing applications to attain higher accuracy. A MAC
module is comprised of an (n*n) multiplier and a (2n+c) ac-
cumulated adder, with c symbolizes the extra bits to avert
overflow case [2]. MAC performance mainly relies on its

multiplier performance. Multiplication of two floating-point
numbers can be accomplished using various multipliers and
exploiting diverse algorithms. Vedic multiplier (VM) is con-
sidered as one of the most important multipliers for its good
efficiency in terms of high speed [3–6]. The floating-point is
a data structure utilized to exemplify real numbers in a binary
form. The IEEE-754 Standard floating-point numbers encom-
passes two basics binary formats, namely single-precision (32-
bit) and double precision (64-bit),that comprise arithmetic op-
erations and round mechanisms [7]. IEEE-754 binary single-
precision (BSP) and binary double-precision (BDP)formats
are widely utilized in MAC modules. Fig. 1 illustrates the
implementation of the BSP-floating-point operand (X) [8]. It
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Fig. 1. The format of BSP floating-point number [8]

is consist of three filed: sign-bit (SX ), biased exponent (EX ),
and the mantissa (or significand (Mx = 1.FX ) [9]. Where FX is
the fraction bits of the mantissa. These three fields are packed
into a word such that.

X = (−1)SX ·MX ·2EX (1)

Floating-point multiplier is used to carry out the mantissa
multiplications of two floating-point operands [10]. Multipli-
cation two (n-bit) numbers X and Y can be carried out by the
following three steps [4] :
Step 1: generation of partial-products.
Step 2: reduction these partial-products using a set of adders,
like (3:2) carry-save adders (CSA) (or simply CSA) to pro-
duce the intermediate product in sum and carry vectors form.
The (3:2) in CSA denotes the number of inputs/outputs of the
adder.
Step 3: generation the final product (final multiplication re-
sult) using fast adder. The inputs of this adder are the sum
and carry vectors produced in step 2.
Generally, the multiplier speed essentially depends on the
accumulation of the sum and carry vectors to produce the final
multiplication result and the multiplication algorithm utilized.
The goal of this work is to design high speeding and low
area VM based on Urdhva-Tiryakbhyam-Sutra (UT-Sutra)
approach for BSP floating-point MAC modules to achieve
high-performance digital-signal processing. This goal may be
accomplished throughout the steps bellow:
- Design an efficient adder to add the intermediate sum and
carry vectors that generated from the CSA to produce the
final multiplication result, since the speed of the multiplier is
highly relied on the speed of that adder.
- Usage of the improved XOR gate in [11] to design the entire
parts of the proposed multiplier, and
- Improve the speed of the proposed multiplier further using
the pipelining concept.
Based on the above steps, this work presents a distinctive
design for a (6*6)-bit VM called here adjusted-VM (simply,
AVM). The design has utilized the conventional (3*3)-bit
VM along with an enhanced design for the Brent-Kung carry-
select adder (EBK-CSLA) in [11] to produce the final product
result from the sum and carry vectors. The (6*6)-bit AVM
circuit is in turn, utilized to design (12*12)-bit and then, a

(24*24)-bit AVM which can be utilized to fulfill the mantissa
multiplication for BSP floating-point numbers. The proposed
(24*24)-bit AVM is then, optimized using the pipelining ap-
proach. The proposed AVM architectures are built using the
improved XOR-gate to substantially improve the multiplier
performance. The proposed AVMs are coded in VHDL, sim-
ulated in Xilinx 14.7 ISE software tool, and synthesized by
different FPGA families, such as: Virtex-5, Virtex-6, Virtex-7,
Zynq. and then, a complete analysis for their performances is
provided.
This work is arranged as follows: Sec. II. reviews some of
the previous works related to the floating-point multipliers
and MAC modules. Sec. III. , explains the general design of a
BSP floating-point MAC module. Section IV. affords details
of the proposed AVM using an EBK-CSLA architecture, after
which the details of the implementation results, simulations,
and comparing the effectiveness of the proposed multiplier
with the existent multiplier designs are offered in Sec. V. , and
the conclusion is given in Section VI. .

II. LITERATURE REVIEW

In 2015, N. Jithendra et al [12] have presented two approaches
to design MAC modules one to perform fixed-point signed
numbers and the other to perform floating-point numbers.
Their architectures were designed utilizing Wallace-tree mul-
tiplier and ripple carry adder (R-CA). Their multiplier and
MAC designs had presented enhancement in terms of power,
but gained higher delay and area consumption due to using the
Wallce tree structure and due to the utilization of the R-CA
which leads to high carry propagation delay during addition.

In 2016, authors in [13] had proposed a VM for floating-
point operands. Their design had based on using three cas-
caded carry lookahead-adders (CLA-A)s to perform the partial-
product reduction and the final addition to generate the final
product. Nevertheless, their design had consumed higher area
and had a considerable delay due to the carry propagation
among the three adders.

In [14, 15], authors had designed (24*24)-bit Vedic based
multipliers to perform mantissa multiplication for floating-
point inputs. Their designs had comprised three cascaded
levels of R-CAs to add the generated partial-products and to
produce the final product. Their designs have achieved low
speed due to using the R-CA which is considered the slowest
adder among the adders.

G. Jha et al [16] had designed four kinds of multipliers
to be used in MAC module, namely modified-booth, Wallace
tree-reduction, add-shift, and combinational array multipliers
and analyzed its performance when using these multipliers.
However, none of these multipliers have introduced good
performance in terms of power, delay and area occupation on
the designed MAC. For example, the Wallce tree-reduction
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based MAC had achieved better speed than the others, while
the modified booth-encoding based MAC had the lowest area
than other multipliers they used.

A. S. K. Vamsi et al [6] had proposed an (8*8)-bit VM us-
ing the UT-Sutra approach for (8*8)-bit MAC module (simply
16-bit MAC). Their design had utilized two cascaded CSAs to
reduce the partial-products generated from the four (4*4)-bit
VMs into two vectors: namely, the sum and carry vectors.
However, their design is incomplete and inaccurate, as the de-
sign lacks the most important part which is the adder that must
be used to generate the final multiplication result (namely, the
final product). The inputs of that adder should be the sum
and carry vectors generated from the cascaded CSAs of their
design in order to produce the final multiplication result.

K. Thiruvenkadam and S. Saravanan [17] had used a modi-
fied full-adder (FA) to design array multiplier for BSP floating-
point numbers. Their design has relied on Divide and Con-
quer (D-C) algorithm. The design had implemented using the
pipelining concept. Although their design had some improve-
ments in terms of power and area, but it had incurred more
delay.

R. Sravani et al [18] have presented a BSP floating-point
VM based on the Karatsuba algorithm. The multiplier is called
carry-save VM and it consists of a top-level of 23 half-adders
(HAs) followed by multilevel of FAs; each level consists of
23 FAs. The delay of their carry-save VM design is relatively
high due to the carry propagation of the multilevel FAs.

Authors in [19, 20] have proposed multipliers using Karat-
suba algorithm for fixed-point/floating-point MAC module.
Their multipliers had involved three cascaded CSAs to re-
duce the generated partial-products into sum and carry vec-
tors. To generate the final product, the authors had they used
the Kogge-stone adder. However, their designed multiplier
incurred delay and area occupation due to the use of three
cascaded CSAs prior to the Kogge-stone adder.

III. FLOATING -POINT MAC MODULE

Floating-point MAC module is desirable for higher accuracy
and performance computations to perform the operation F as
shown:

F = ∑X ∗Y (2)

Where X and Y are inputs operands. It incorporates a floating-
point adder, floating-point multiplier, and an accumulator-
register. The performance of a DSP system depends substan-
tially on the performance of its MAC module and precisely on
the speed of multiplication processes within the MAC mod-
ule [21, 22].
The backbone of all digital signal computations is the lies in
floating-point arithmetic field [23–26]. BSP format of IEEE-
754 standard is used to design (32*32)-bit floating-point MAC

(64-bit MAC) module [7], as depicted in Fig. 2. Fig. 3 illus-
trates the floating-point MAC module internal organization.
To perform a (32*32) floating-point multiplication, two 32-bit
floating-point operands X and Y are used, each consists of
three fields namely mantissa (M): M = 1.F , where F denotes
to the fraction bits (23-bit) and the integer bit 1 is hidden),
8-bit exponent (E), and a sign bit (S) are used [27–32].

The multiplication of X and Y is accomplished using three
operations performed in parallel as follows:
-Generate the sign of the product:
-The most significant bits (MSB)s of the two inputs X and Y
are XORed together to produce the sign of the product.
-Compute the exponent (E) of the product: The exponent of
X and Y (EX ,EY ) are added using any adder and the bias is
subtracted from the result, namely

E = EX +EY −bias (3)

(the bias=127 for single-precision) [23].
-Multiplication of the mantissas (M): A (24*24)-bit multiplier
such as VM is utilized to perform mantissa multiplication as
shown:

M = MX ∗MY (4)

where MX = 1.FX and MY = 1.FY

Fig. 2. Block scheme of floating-point MAC module
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Fig. 3. Internal organization of Single-precision
floating point MAC.

IV. PROPOSED ADJUSTED VM (AVM)
This section presents a distinctive design for a (24*24)-bit
VM based on UT-Sutra approach called here adjusted VM
(AVM) to be used for floating-point DSP’s MAC module. The
work starts by designing a (6*6)-bit AVM, then it is extended
to design (12*12)-bit and (24*24)-bit AVMs accordingly.

A. Proposed (6*6)-bit AVM.
A (6*6)-bit AVM is designed using four (3*3)-bit conventional
VMs, a single (6-bit) CSA to add three intermediate partial
products and generate two (6-bit) vectors: the sum and carry
vectors. An enhanced 6-bit Brent-Kung carry-select adder
(EBK-CSLA) has proposed and be incorporated in the AVM
design to add the resultant two vectors generated from the
CSA for producing the final product as illustrated in Fig. 4.
The 6-bit EBK-CSLA consists of two (3-bit) Brent-Kung
(BK) adders, a 4-bit binary-to-access-1 convertors (BEC1),
and a 3-bit MUX. The three MSBs of the final product can
be obtained using a 3-bit increment-by-1 convertor (IB1C)
instead of using an adder, for its high speed, since it consists
of fewest logic gates in comparison to with any adder.

B. Design of (24*24)-bit AVM
The (6*6)-bit AVM can be easily extended to design a (12*12)-
bit AVM. In this case, four (6*6)-bit AVM modules, a 12-bit
CSA to reduce the intermediate partial products from three
vectors to two (12-bit) vectors (namely, sum and carry), and
then, an 11-bit EBK-CSLA is used to produce the final product
bits of the intermediate stage, followed by a 6-bit EBK-CSLA
which is used to generate the most significant 6- bits of the
product, as demonstrated in Fig. 5.

Similarly, the (24*24)-bit AVM is designed from the
(12*12)-bit AVM, as illustrated in Fig. 6. The proposed

Fig. 4. The Proposed (6*6)-bit AVM.

Fig. 5. The Proposed (12*12)-bit AVM.

(24*24)-bit AVM consists of four (12*12)-bit AVMs, followed
by a single (24-bit) CSA to reduce the partial products gener-
ated from the (12*12)-bit AVMs to two vectors: the sum (S-
vector) and the carry vector (C-vector). The S-vector consists
of 24-bit (bits S[23:00]), while the carry vector (C-vector) con-
sists of 24-bit (bits C[24:01]). The least significant bit (LSB)
of the S-vector (namely; bit S[00]) represents the 12th bit of
the final product (namely, S[00]≡Pr[12]). This means that
one can minimize the size of the proposed EBK-CSLA which
is used to generate the final product bits from 24-bit to 23-bit.
This step will further improve the performance of the AVM
design. The output of the (23-bit) EBK-CSLA represents the
product bits Pr[35:13]. Fig. 7 depicts the design of the (23-
bit) EBK-CSLA, it consists of six blocks of variable bit sizes
BK-adders along with five BEC and a set of MUXs to carry
out carry selection. To generate the most significant 12-bit of
the final product (namely, bits Pr[47:36]), two (6-bit) EBK-
CSLA modules are utilized. The two output-carry signals c1
and c2 generated from the CSA and the (23-bit) EBK-CSLA,
respectively are OR-ed together to enable the first (6-bit) EBK-
CSLA for generating the product bits Pr[41:36]. The output
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Fig. 6. The Proposed architecture of a (24*24)-bit
AVM using fast 23-bit EBK-CSLA.

Fig. 7. Internal organization of the proposed 23-bit
EBK-CSLA.

carry of this adder is used as a carry-in to the second (6-bit)
EBK-CSLA to update the final product bits (bits Pr[47:42])
by adding the six most-significant bits of the partial-product
with ‘000001’ instead of utilizing IB1C circuit.

In this work, the improved XOR-gate is utilized in de-
signing the AVM to improve its performance further. The
improved XOR-gate architecture consists of three logic gates
(namely, AND, NAND, and OR) instead of five logic gates.
To optimize the speed of the AVM more, the pipeline concept
is applied [23]. The pipeline stage can be applied either before
the CSA or within the EBK-CSLA to generate the product
bits from the multiplier faster. In this work, it is found that the
(24*24)-bit AVM designed utilizing (3x3)-bit pipelined-VM
gives the best performance results.

V. RESULTS AND DISCUSSION

All the proposed multipliers in this work, namely, the (6*6)-
bit, (b)-bit, and (24*24)-bit AVMs with/without pipelining
are coded in VHDL and their performances in terms of the
area occupation in FPGA and the delay (speed=1/delay) are
assessed in Xilinx using four FPGA families: Virtex-5, Virtex-
6, Virtex-7, and Zynq, as demonstrated in Table I. Note that the

TABLE I.
PERFORMANCE RESULTS OF DIFFERENT BIT SIZE AVM

CIRCUITS

Parameters FPGA
Family

Proposed AVM
(24*24)-bit

(6*6)
-bit

(12*12)
-bit unpipelined piplined

No. of
FPGA LUTs

Virtex-5 72 310 1260 568
Virtex-6 72 306 1014 594
Virtex-7 68 294 962 563

Zynq 61 288 1014 558

Delay(ns)

Virtex-5 4.88 7.956 12.74 3.65
Virtex-6 4.82 7.92 12.395 3.352
Virtex-7 4.71 7.832 11.583 2.843

Zynq 4.34 7.074 11.583 2.58

FPGA Virtex families are chosen for the comparison purpose
with previous designs, while the Zynq family is utilized for
its high features in achieving the best performance parameters
which can be noticed clearly in Table I.

Fig. 8 demonstrates the register-transfer-level (RTL)-schematic
of the synthesized (24*24)-bit AVM. It can be noticed that the
design has utilized the following number of hardware modules:
four modules of (12*12)-bit AVM, a CSA to carry out 24-bit
addition, one (23-bit) EBK-CSLA, two (6-bit) EBK-CSLA, a
(2:1) MUX, and an OR-gate.

Fig. 8. RTL- scheme of the proposed (24*24)-bit AVM
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TABLE II.
PERFORMANCE COMPARISON OF UNPIPELINED
FLOATING-POINT (24*24)-BIT MULTIPLIERS

Ref. FPGA family Delay(ns) No. of LUTs
[26] Virtex-7 Design1 47.33 164

Design2 28.02 2928
Design3 27.76 1121

[3] Virtex-6 21.823 -
[28] Virtex-7 17.33 1763

Proposed
Virtex-5 12.74 1260
Virtex-6 12.395 1018
Virtex-7 11.583 1015
Zynq 11.583 1014

TABLE III.
PERFORMANCE COMPARISON OF PIPELINED
FLOATING-POINT (24*24)-BIT MULTIPLIERS

Ref. FPGA family Delay(ns) No. of LUTs
[31] Virtex-5 6.61 -

Proposed

Virtex-5 3.65 568
Virtex-6 3.452 564
Virtex-7 3.117 563

Zynq 2.58 558

The internal organization RTL-scheme of the synthesized
AVM with more details is depicted in Fig. 9.

The (24*24)-bit AVM is simulated to validate their func-
tionality in multiplying mantissa parts of two floating-point
operands. The functionality of the (24*24)-bit AVM is verified
by providing several cases of inputs (the inputs are in deci-
mal representation) to verify the corresponding outputs. For
example, case1: 100*24 = 2400, case2: (570*320) =182400,
and case3: (1320*23450) =30954000, etc. as illustrated in
Fig. 10.

Tables II and III show a comparison between the proposed
(24*24)-bit multiplier without/with pipelining with some ex-
isting multipliers. It is shown from Table II that the proposed
unpipelined (24*24)-bit AVM has achieved reduction in delay
and area utilization of 33.16 % and 42.42%, respectively than
the multiplier offered one in [28] for the same FPGA family
which is Virtex-7.

For pipelined design case, it can be noticed from table III
that the proposed (24*24)-bit AVM has achieved less delay of
44.78% than the one proposed in [31] for the same FPGA fam-
ily (virtex-5), and that the lowest delay and area occupation
for the pipelined (24*24)-bit AVM are obtained when using
the FPGA Zynq family. It is clear from Tables II and III that
the proposed (24*24)-bit AVM yields less delay and achieves
significant reduction in area utilization compared with the
mentioned multipliers. The reduction in delay is due to the
use of the EBK-CSLA along with a single CSA to eliminate

any propagation for the carry during the partial product re-
duction step and the final addition step performed to generate
the final product. Thus, the proposed (24*24)-bit AVM can
be used to design an efficient floating-point MAC module to
meet the requirements of cutting-edge DSP applications.

Fig. 9. Internal organization of the (24*24)-bit AVM
scheme in RTL.

Fig. 10. Simulation input/output waveforms of
(24*24)-bit AVM.
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VI. CONCLUSION

In this work, a (24*24)-bit adjusted-Vedic multiplier (AVM)
with high speediness and low area consumption is proposed
and implemented. The utilization of an enhanced design for
the Brent-Kung carry-select adder (EBK-CSLA) which used
to perform the final addition has eliminated any propagation
for the carry and thus, its highly reduced the delay of the
multiplier. Moreover, the use of the improved XOR-gate to
design the multiplier is extremely reduced the area occupa-
tion and the delay of the design. The proposed (24*24)-bit
AVM offers efficient speed and area utilization for integra-
tion into fast floating-point MAC module of the DSP systems.
The proposed AVM achieves reduction in delay and FPGA
area occupation by 33.16% and 42.42%, respectively for the
unpipelined design, and reduction in delay of 44.78% for
pipelined design compared with the existing designs.
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