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Abstract
This paper presents a new optimization algorithm called corrosion diffusion optimization algorithm (CDOA). The
proposed algorithm is based on the diffusion behavior of the pitting corrosion on the metal surface. CDOA utilizes
the oxidation and reduction electrochemical reductions as well as the mathematical model of Gibbs free energy in its
searching for the optimal solution of a certain problem. Unlike other algorithms, CDOA has the advantage of dispensing
any parameter that need to be set for improving the convergence toward the optimal solution. The superiority of the
proposed algorithm over the others is highlighted by applying them on some unimodal and multimodal benchmark
functions. The results show that CDOA has better performance than the other algorithms in solving the unimodal
equations regardless the dimension of the variable. On the other hand, CDOA provides the best multimodal optimization
solution for dimensions less than or equal to (5, 10, 15, up to 20) but it fails in solving this type of equations for variable
dimensions larger than 20. Moreover, the algorithm is also applied on two engineering application problems, namely the
PID controller and the cantilever beam to accentuate its high performance in solving the engineering problems. The
proposed algorithm results in minimized values for the settling time, rise time, and overshoot for the PID controller.
Where the rise time, settling time, and maximum overshoot are reduced in the second order system to 0.0099, 0.0175 and
0.005 sec., in the fourth order system to 0.0129, 0.0129 and 0 sec, in the fifth order system to 0.2339, 0.7756 and 0, in the
fourth system which contains time delays to 1.5683, 2.7102 and 1.80 E-4 sec., and in the simple mass-damper system to
0.403, 0.628 and 0 sec., respectively.
In addition, it provides the best fitness function for the cantilever beam problem compared with some other well-known
algorithms.
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I. INTRODUCTION

Nature is the main inspiration source of many scientific laws
and theories. Therefore, natural phenomena that occur auto-
matically without intervention are a source that often attracts
the attention of scientists and researchers. The natural behav-
iors are usually used for the purpose of deriving equations,
laws, and working principles for many industrial and engi-
neering applications. The behavior of various kinds and types

of creatures can be utilized in different ways for simulating
certain industrial or scientific process. For example, many
laws and algorithms were inspired from some behaviors of
living organisms [1] such as organs of the living systems,
the collective way of life of these living beings, their way
of living, or their mass migration. Most of the algorithms
are inspired from some natural behaviors like bio algorithms,
physics, chemical reactions, and changes of elements in na-
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ture. Many algorithms have been invented to emulate the
natural systems in such a way that serves the industrial and
scientific kinds of problems. The following are the main ex-
amples of these algorithms. ant colony (AC) algorithm [2]
was proposed in 1992 as an algorithm that follows the ant
colony intelligence of communication in solving the optimiza-
tion problems. In this algorithm, the searching efficiency was
improved by increasing the randomness to present variety in
the solutions and avoiding falling in local optima [3]. In 1995,
particle swarm optimization (PSO) [4] was proposed. This
algorithm is based on migration movement of a swarm of
birds over a wide searching area. In 2010, an algorithm called
cuckoo search algorithm (CS) [5] that relies on the cuckoo
species co-parsing in parasitism was presented. An algorithm
was proposed in 2012 known as flower pollination algorithm
(FPA) [6]. This algorithm is based on the different pollination
methods used in agricultural fields and orchards. In addition,
there are some algorithms that were inspired from the natu-
ral behavior of elements via their chemical reactions without
the presence of catalyst such as Multi objective Atomic Or-
bital Search (MOAOS) [7]. Furthermore, some algorithms
were created based on the physical changes such as big bang-
big crunch algorithm [8], central force optimization [9] and
An improved pedestrian dead reckoning algorithm based on
smartphone [10].
Generally, there are many classifications for the optimization
algorithms. However, in this work, the classification that is
relied on follows the source of inspiration as in [1] at which
the algorithms are divided into four categories:
1) Swarm intelligence (SI) based
2) Bio-inspired, but not SI based
3) Physics and chemistry based
4) Other algorithms
The SI algorithms are the most popular type of algorithms.
All SI algorithms use multi–agent or multi-particle. There
are many reasons for this popularity. One of the most impor-
tant reasons is the information- sharing between particles or
agents which results in faster convergence to the optimum
situation. Another reason for the popularity of SI algorithms
is that it can be parallelized easily, so it can easily be worked
in large scale of optimization. There are many examples of
this type algorithms such as Modified camel travelling be-
havior algorithm (MCA) [11], Artificial bee colony (ABC)
[12], Bat algorithm (BA) [13], Bee colony optimization(BCO)
[14], and Virtual ant algorithm (VA) [15]. The second type
of this classification is the bio-inspired that are not SI-based
algorithms. These algorithms depend on the behavior of a
certain organism or creature regardless its communication
with other mates. Fungi kingdom expansion algorithm [16],
biogeography-based optimization [17], brain storm optimiza-
tion [18], fish-school search [19], and shuffled frog leaping

algorithm [20] are examples of this type of algorithms. The
third inspiration comes from the physical and chemical prop-
erties. The physical algorithms are inspired from the physical
theories and laws, while the chemical algorithms are inspired
from the interactions and the chemical properties of materials.
There are many algorithms that are physically and chemically
inspired such as black hole [21], charge system search [22],
and water cycle algorithm [23]. The algorithm introduces in
this paper which is called Corrosion Diffusion Optimization
Algorithm (CDOA) is categorized in this type of classifica-
tion. Finally, the last type of this classification is called other
algorithms. Sometimes, the researchers introduce and develop
algorithms that are difficult to include under the above three
types. It may be an algorithm inspired from nature but it is
not bio, physically, or chemically. Therefore, it is placed un-
der the above mentioned category. Examples of this type are
anarchic society optimization [24] and artificial cooperative
search [25]. Variety of optimization algorithms are proposed
due to several reasons such as the diversity and multiplicity of
problem in engineer and industrial applications, and there is
no algorithm that solves all engineering and industrial appli-
cations problems according to No Free Lunch (NFL) theorem
[26].
In this paper, a new algorithm called Corrosion Diffusion
Optimization Algorithm (CDOA) is presented. It is based on
the corrosion distribution on the metal surfaces. This paper is
organized as follows. Section II discusses the method from
which the algorithm is inspired. The implementation of the
proposed algorithm is demonstrated in Section III, while Sec-
tion IV verifies the performance of the proposed algorithm
with the aid of some benchmark functions to compare it with
some other well-known algorithms. Some engineering appli-
cations are presented in Section V to fortify the superiority
of this algorithm. Section VI is the final conclusion of this
research.

II. BEHAVIOR OF CORROSION DIFFUSION

This section demonstrates the inspiration method that was
followed in presenting the proposed algorithm. Therefore,
this section is divided into the following two subsections.

A. Inspiration Method
Corrosion can be defined as a failure or dissolution of a metal
or alloy due to a chemical or electrochemical interaction with
the medium surrounding it. When the corrosion is caused by
physical reasons, it is called wear. However, the corrosion that
results from chemical factors and with the help of mechani-
cal factors takes other names such as erosion corrosion and
retting corrosion[27], respectively. The study of corrosion is
an important matter for humanity because of its impact on the
everyday life. The corrosion may results in a huge financial
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Fig. 1. Structure of the corrosion cell.

wastage, depletion in nature resources, and human discomfort
[28]. In general, the dry corrosion and wet corrosion are the
main two types of corrosion. The dry corrosion occurs when
the metal surface is exposed to dry hot gas. The wet corrosion
refers to the exposure of the metal surface to aqueous solution
acid or alkali which represents an electrochemical reaction
[29]. The chemical corrosion results from a direct reaction
between a metal and its surrounding environment or another
metal without any catalyst. An example of this corrosion is
the corrosion of the reaction of iron with acid chloride hy-
drogen to generate the corrosion of the iron and liberation of
hydrogen. On the other hand, the electrochemical corrosion
takes place through an electrochemical interaction between
the metal and the surrounding environment. In fact, the elec-
trochemical corrosion depends on oxidation and reduction.
The oxidation is the metal’s loss of electrons, whereas the
second interaction is gaining an electron from the surrounding
environment. The two reactions can also be described by the
following two chemical equations [30],
where M represents an arbitrary metal and the surrounding
environment is represented by X.

M → Mn++ne (1)

Equation 1 represented Oxidation reaction

Nx++ne− → Xn (2)

Equation 2 represented Reduction reaction
The corrosion can be expressed by a corrosion cell whose
components are illustrated in Fig. 1. The corrosion does
not occur if any of the corrosion cell components is missing
[31],[32]. These components are as follows: 1) Anode: rep-
resents the metal or the site in which the oxidation reaction
(loss of electron) occurs.

2) Cathode: represents the metal or the site in which the reac-
tion of reduction (gaining electron) occurs.
3) Electrolyte: is conductive medium between the anode and
cathode.
4) Electrical connection between anode and cathode.
5) Potential difference should be available between the anode
and cathode to move the electrons from anode to cathode.
The conditions that may lead to an increase in the corrosion
rate and may lead to a decrease in the corrosion rate are as
follows [33]:
• Effect of oxygen and oxidizer: The corrosion rate increases
with the increase of oxygen.
• Effect of velocity: the velocity has the same effect as the
oxygen since the velocity controls the polarity of corrosion.
• Effect of temperature: since corrosion is a chemical reac-
tion, the rate of corrosion increases exponentially when the
temperature increases.
• Effect of corrosive concentration.
• Effect of galvanic coupling [34].

B. Pitting Corrosion
The corrosion can take different forms depending on the emer-
gence and the environmental conditions that led to its occur-
rence [35]. Some of the most common forms of corrosion
are uniform corrosion, intergranular corrosion, galvanic corro-
sion, selective corrosion, crevice corrosion, erosion corrosion,
stress corrosion, and pitting corrosion. Our proposed algo-
rithm is inspired from the pitting corrosion.The pitting cor-
rosion has the mechanism of the phenomenon of the electro-
chemical corrosion that is explained previously in this section.
A break occurs in the area of a passive layer so that a small
part of the metal surface is exposed to the external environ-
ment. If the environment conditions are suitable to produce a
potential difference to drive the current between the metal and
the surrounding environment, the electrochemical reaction
does exist. In other words, the base metal is considered as
the anode, and the surrounding environment is considered as
the cathode of electrochemical cell. Therefore, the electron
moves from the metal to the environment [36].
The pitting corrosion passes through three steps. These steps
are the initiation or nucleation of pits, pit growth or pit propa-
gation process, and re-passivation of pits [33]. The stability
of pit growth depends on the electrolyte, type of metals, and
pit-bottom potential. Finally, the spontaneous occurrence and
absence of the corrosion can be determined with the aid of
the Gibbs free energy [33]. This energy is mathematically
expressed in the following formula [31]:

∆G =−nFEcell (3)

where ∆G is the Gibb’s free energy, n represents electron trans-
fer from anode side to cathode side, F is faraday constant, and
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E cell denotes the electrical cell potential(E cathode+E anode).
When ∆G < 0, corrosion becomes spontaneous, while ∆G >
0 results in nonspontaneous corrosion[33].

III. IMPLEMENTATION OF CORROSION
DIFFUSION OPTIMIZATION ALGORITHM

(CDOA)
The proposed algorithm in this study is mainly based on the
pitting corrosion diffusion. As mentioned earlier, this type of
corrosion goes through three stages. Firstly, it passes though
the initiation stage, where the onset of this type of corrosion
is random on the surface of the metal. Therefore, suppose that
there are a number of pits on the surface of the metal which
represents the number of pitting (W ). Each of these pits has a
number of electrons and ions that move from the positive side
which is represented by the surface of the metal to negative
side which is represented by the surrounding environment.
The number of transferred electrons or ions is symbolized
by (N). Actually, N is the dimension of each variable x that
represents each pit. Therefore, it is possible to describe the
case of the x at the iteration (iter) as in the below matrix:

xiter =

 x1,1iter · · · x1,Niter

...
. . .

...
xW,1iter · · · xW,Niter

 (4)

where N = (1, 2,. . . , D), the D represents the dimension of each
variable, W = (1,2,. . . ,number of pitting), and the iteration
number iter = (1,2,. . . , itermax).
Initially, the pitting distributes randomly on the surface of the
metal as described in the following formula:

xi.iter
n = xmin +RAND∗ (xmax − xmin) (5)

where RAND is random number uniformly distributed be-
tween 0 and 1, and xmax , xmin represent the boundary reign
on the metal where xmax is the maximum limited of transfer
electrons or ions, and xminis the minimum limited of transfer
electron or ions. It has already been clarified that the envi-
ronmental conditions surrounding the corroded metal have a
very significant impact on the corrosion rate. It is possible to
increase or decrease the corrosion rate by changing the envi-
ronmental conditions. For this reason, equation (6) combines
the effect of the conditions mentioned in Section II.A in the
following form:

ENVEFFECT = 1+
ENVFACTOR −LOENCON

HIENCON −LOENCON

(6)

where ENVEFFECT represents the environmental effects on

corrosion rate, HIENCON is the high environmental condition,
LOENCON is the low environmental condition, and ENVFactordenotes
the random disruption between the high environmental condi-
tion and low environmental condition given by:

ENVf actor = LOENCON +RAND(HIENCON −LOENCON ) (7)

The previous subsection also reveals that the stability and
growth of the pit mainly depend on the amount of electrical
potential difference between the electrodes of the corrosion
cell as well as Gibbs free energy equation. For the purpose of
determining the stability of the pit, it is necessary to have a
decision equation which depends on the potential difference
of cell and the number of transferred electrons as given in (8):

energylevel = −N ∗ uni f orm rand[lowvoltage,highvoltage]

∗ (xoldbest − xprivous)

(8)

where (energylevel) represents Gibb’s free energy, (uniform
rand) represents a uniform disruption between low and high
stander level voltages, xoldbest is the global best value, and
xprivous is the previous iteration value of x.
At each iteration, the sum of the row, which represents the
sum of the energy of each pit, is named (sum of energy level).
The sum of energy that represents Gibb’s free energy is used
to determine the stability of the pit as given below two condi-
tions:
CASE ONE : THE UNSTABLE STATE
In this case, the sum of energy level is less than zero, and the
potential difference exists. Therefore, it is considered as an
unstable situation, and by sure it is not the optimum solution.
The updating equation is as follows:

xi iter
d = xi iter−1

d + ENVEFFECT ∗ (xi iter best
d − xi iter−1 best

d )

(9)

CASE TWO : THE STABLE STATE
This case happens when the sum of energy level is greater
than or equal to zero, or when the potential difference is equal
to zero. Therefore, it is considered a stable state in which the
value of x remains as it is in the previous iteration.

(10)xi iter
d = xi iter−1

d

Fig. 2. and Alg. 1. show the flow chart and the pseudo-code
of the proposed algorithm, respectively.

IV. PERFORMANCE COMPARISON BASED ON
BENCHMARK FUNCTIONS

To verify the performance and efficiency of the proposed al-
gorithm, different types of benchmark functions were used.
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Fig. 2. Flow chart for corrosion diffusion optimization
algorithm (CDOA).

CDOA was applied to two sets of benchmark functions [37],
namely unimodal and multimodal functions as listed in Table
I. The algorithm has been performed using MATLAB R2020a.
The proposed algorithm is compared with the following algo-
rithms to highlight its high performance:
A. particle swarm optimization [4].
B. A modified camel algorithm [11].
C. Crow Searching Algorithm [38].
D. Sine Cosine Optimization [39].

Algorithm 1 Corrosion Diffusion Optimization Algorithm
(CDOA)

1. Set the range of environment condition, cathode voltage,
and anode voltage.
2. Set number of pitting (w) and number of electrons trans-
ferred (N) and number of maximum iteration.
3.Initialized the cell voltage from

xi.iter
n = xmin +RAND∗ (xmax − xmin)

4.Determine the value of cost function.
5.Determine the current best voltage.
6.For I < itramax.
7.Initialized environment factor from

ENVf actor = LOENCON +RAND(HIENCON −LOENCON )
8. Determine the environment effect from

ENVEFFECT = 1+
ENVFACTOR−LOENCON

HIENCON −LOENCON
9. Calculate the energy level in

uni f orm rand[lowvoltage,highvoltage] ∗ (xoldbest −
xprivous)
10.Determine the sum of the row.
11. If sum of row < 0
12. Calculate the update of x as

xi iter
d = xi iter−1

d + ENVEFFECT ∗ (xi iter best
d −

xi iter−1 best
d )

13. Else .
14. Remain the value of x as pervious value

xi iter
d = xi iter−1

d
15.End if.
16.Subject the resulted pitting to the fitness function
17.Determine the current best voltage
18.End for.
19.Determine the best voltage

E. Fungi kingdom algorithm [16].
Different variable dimensions (5, 10, 15, and 20) were applied
on each algorithm. The comparison has been carry out under
the same conditions for all algorithms, where the maximum
iteration is equal to 1000, the variable size is equal to 50,
and the dimensions of each variable are as mentions above.
Note that all benchmark functions have a minimum when the
variable value is equal to zero. For the purpose of comparison
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TABLE I.
SOME BENCHMARK FUNCTIONS

#FUN Name Range Function
FUN1 De Jong’s sphere function [–5.12, 5.12] Unimodal
FUN2 Hyper-ellipsoid function [–5.12, 5.12] Unimodal
FUN3 Sum of different power [–1, 1] Unimodal
FUN4 Ackley’s function [–32.768, 32.768] Multimodal
FUN5 Griewangk’s function [–600, 600] Multimodal
FUN6 Rastrigin’s function [–5.12, 5.12] Multimodal

between CDOA and the above algorithms, the acceptable error
percentage should be determined. Equation (11) shows the
error percentage adopted in this work. The best solution is
accepted if its difference with the optimal solution is less than
or equal one percent.

(11)|Bestcost − optimalcost|≤ 0.01

Due to the randomness of the initial values and the selection
of conditions, single run for the program is not a wise solution
to assess the performance of each algorithm. For this reason,
each algorithm is executed thirty times in this work. The
success rate of each algorithm is given in (12), where the
success rate (SR) is the percentage of the number of successful
runs to the total number of runs.

(12)SR =
number o f success f ul run

number o f run
× 100%

In Tables (II, III, IV, and V), the comparisons between the
algorithms that have already been mentioned above are rep-
resented for dimensions (5, 10, 15, and 20) respectively.
Through these tables, one can notice that the comparison
was made on the basis of the statistical results represented by
mean, standard deviation, best cost median, and success rate.
These statistical calculations were done through the program
(IBM SPSS Statistics 26) program version 20. The tests were
carried out by using a laptop with Core i7, 2.4 GHz processor,
Windows 10 Pro, a 512 Gb SSD and 16 Gb RAM.
After analyzing the statistical results, it is noted that the pro-
posed CDOA provides an excellent performance compared
to the other algorithms for the unimodal functions in all di-
mensions. For the multimodal function, the results were also
acceptable and can be relied on for the dimensions less than or
equal to 20. For dimensions larger than 20, the success rate is
low in some functions. This is a real interpretation of the No
Free Lunch theorem (NFL) [26] which stipulates that there
is no algorithm that can solve all equations and engineering
applications. Moreover, the algorithm can find the solution
for dimensions larger than 20 to a certain type of the equation
and fail in other types. It is worth mentioning here that the
proposed algorithm does not match the dimensions of more
than twenty variables of the multimodal functions, otherwise

CDOA is very efficient and reliable. Among the properties
of the algorithms that should be mentioned are the speed of
response, speed of implementation, and speed of convergence.
For convergence assessment purposes, Fig. 3. demonstrates
the convergence of the proposed algorithm toward the opti-
mum solution for some of the benchmark functions given
previously. A few iterations are required for CDOA to con-
verge to the optimal solution, and this is considered as one
of the main advantages of this algorithm. V lists the time
required to execute each algorithm. It is clear that CDOA
speed of execution is comparable with the fast modified CA
algorithm. Another important feature for the proposed algo-
rithm can be noticed in this work. When looking at CDOA
and comparing it with its counterparts, it can be seen that
there is no parameter in this algorithm that need to be set to
increase its convergence speed. In contrast, PSO requires four
setting parameters namely individual learning factor, maxi-
mum velocity, inertia weight, and social learning factor. CSA
requires setting adjustable parameters called flight, length,
and awareness probability. Modified CA parameters that need
to be set are the camel endurance and the camel visibility.

V. ENGINEERING APPLICATIONS

A. PID Controller
The term PID is an abbreviation of the words proportional,
integral, and derivative. Consequently, the controller has three
coefficients to be optimized one for the proportional gain, the
other for the integration gain, and the third is for the derivative
gain. Each coefficient has a certain effect on the system;
for example, it is possible to improve the steady state error
by controlling the proportional coefficient, or to eliminate
the steady state error through the integration coefficient. In
addition, the overshoot of the system is controlled through
the derivative coefficient [40]. The structure of PID controller
system is shown in, Fig. 4. The three coefficients of the PID
controller (KP,Ki,andKd) given in (13) can be optimized to
improve the performance of the entire system.

control signal = KPe(t)+Ki

∫ t

0
e(t)dt +Kd

d
dt

e(t) (13)

where e(t) is the error signal that is corresponding to the
difference between the input r(t) and the output of the system
y(t). The main function of PID controller is to keep the value
of the error signal as low as possible. As mentioned earlier,
the error signal can be reduce by optimizing the controller
coefficients KP,Ki,andKd . The transfer function L(s) of the
controller is given by [41]:

L(s) =
KdS2 +KpS+Ki

S
(14)
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The open loop gain of the uncontrolled system is symbolized
as G(s), so the transfer function of closed loop system with
PID controller is as given below:

Gcloseloop(S) =
L(S)G(S)

1+L(S)G(S)
(15)

In fact, the main goal of the PID controller is to obtain high ac-
curacy of data in addition to the level of quality in the transient
process [42]. Thus, the three main parameters that are used to
describe the quality of the transient response any system are
listed below [43]:
• Rising time tr: The time required for the response change to
reach 90% of its steady state value.
• Settling time ts: the time required for the response to be
within l2%l of the steady state value.
• Overshoot Mr (%) : the maximum value that the response
reaches above the steady state value.
In this work, the CDOA is used to optimize the PID coeffi-
cients KP,Ki,andKd to get the best transient response which
has as minimum values of tr, ts,andMr. The fitness function
that is used to optimize the aforesaid three transient response
parameters is as follows[41]:

F = min
[
(1− e−α)(MP −ESS)+ e−α(tr + ts)

]
(16)

where α is the weight factor, and ESS is the steady state error
which denotes Laplace transform of the error signal e(t) at
the steady state (t → ∞) as given in (17)[41].

Ess = lim
S 7→0

S
R(s)

1+Gcloseloop
(17)

where R(s) is the desired set of input in S-domain. If the input
is a unit step, its Laplace transform is equal to 1

s . As a result,
the steady state error becomes as in (18):

Ess =
1

1+Gcloseloop(0)
(18)

The CDOA is applied to different standard systems, and the
time response is demonstrated before and after the optimiza-
tion process. The standard systems that were selected in this
work are as follows [41]:
A. Second order system: G(S) = 20

S2+0.5S+10
B. Forth order system:
G(S) = 25.2S2+21.2S+3

S4+16.4825S3+23.8021S2+14.8566S+10.2497
C.Fifth order system
G(S) = 25.2S2+21.2S+3

S5+16.58S4+25.41S3+17.18S2+11.7S+1
D. Forth order system with time delay
G(S) = 10

S4+10S3+35S2+50S+24 e−3S

E. Simple mass – damper system:
G(S) = 1

S2+10S+20
Based on the fitness function in (16) and by selecting α to
be equal to 0.5 for each system, the unit step response after
optimization results in the coefficient values given in Table
VI: To know the performance of each system before and After
applying the PID controller, Table VII gives a comparison
of the time response before and after inserting the optimized
controller, where the optimized system results in negligible
values of rising time, settling time, and overshoot for all sys-
tems. Fig. 5. illustrates the unit step time response for each
system before and after the optimization process.

B. Cantilever Beam
In mechanical engineering systems, there is an important
element called the cantilever beam shown in. Fig. 6. From
Table IX, it is noticed that the resulted best value of the fitness
function in the proposed algorithm is less than that of other
algorithms. This indicates the success of the algorithm in
this application. The results can be seen in Table IX row No.
7, which lists the best values of the fitness functions for this
application.
The main objective in this optimization process is to reduce the
weight of the side beam. As shown in the figure, the cantilever
beam contains five hallows in the form of square boxes. The
lengths of the five boxes in this process are variable. The
fitness function and its constraints for this problem are as in
(19) and (20), respectively [44].

f (x) = 0.6224(x1 + x2 + x3 + x4 + x5) (19)

g(x) =
61
x3

1
+

27
x3

2
+

19
x3

3
+

7
x3

4
+

1
x3

5
−1 ≤ 0 (20)

where x1,x2,x3x4,andx5 represent the dimensions of the can-
tilever beam. The rang of these variables is 0.01 ≤ xi ≤ 100.
Table IX gives the results of the optimization for this prob-
lem after applying the proposed CDOA algorithm, and then
comparing it with particle swarm optimization (PSO), ge-
netic algorithm (GA), multi-verse optimizer (MVO), water
wave optimization (WWO), sine cosine algorithm (SCA), and
whole optimization algorithm (WOA) whose results are listed
in [45].

VI. CONCLUSION

A new algorithm based on the diffusion of the pitting corro-
sion on the metal surface has successfully been presented in
this work. The oxidation-reduction chemical reactions and the
Gibbs free energy equation have been utilized to describe the
corrosion diffusion that emulates the searching mechanism
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TABLE II.
PERFORMANCE COMPARISON FOR THE BEST COST OF THE SIX ALGORITHMS WITH 1000 ITERATIONS, 30 RUNS AND

VARIABLE DIMENSION = 5

FUN# Method Best Mean Std. Median SR%

FUN1

CDOA. 8.91E-210 1.7740581E-56 4.0924500E-57 9.98E-97 100
Modified CA 1.18E-29 8.06E-25 2.27E-24 9.04E-27 100

FKE 3.456E-50 6.7632E-30 1.11E-28 7.9845E-29 100
CSA 1.87E-20 2.28E-18 4.49E-18 7.21E-19 100
PSO 0 0 0 0 100
SCA 5.17E-08 0.00004 5.61E-05 6.13E-07 100

FUN2

CDOA. 1.75E-236 2.3733333E-59 1.29992820E-58 1.67E-111 100
Modified CA 5.24E-27 1.12E-24 2.24E-24 1.24E-25 100

FKE 7.5865E-29 3.78627E-27 3.332E-26 2.67E-26 100
CSA 1.79E-20 2.08E-18 4.28E-18 9.18E-19 100
PSO 0 0 0 0 100
SCA 0.080856 0.080972 0.00036 0.091922 100

FUN3

CDOA. 6.37E-204 6.7520666E-57 3.68765899E-56 3.82E-99 100
Modified CA 2.49E-23 7.46E-18 1.75E-17 6.45E-19 100

FKE 1.389E-27 8.429E-20 8.765E-19 5.412E-22 100
CSA 1.17E-21 1.28E-15 4.38E-15 5.47E-17 100
PSO 0 0 0 0 100
SCA 0.009435 0.0089954 0.00032 0.08864 85

FUN4

CDOA. 4.44E-15 9.7032666E-14 2.6550080E-13 7.99E-15 100
Modified CA 3.29E-14 1.14E-11 2.26E-11 3.93E-12 100

FKE 2.182E-15 2.751E-10 1.7193E-9 1.729E-9 100
CSA 2.19E-09 9.39E-09 4.32E-09 8.75E-09 100
PSO 4.35E-14 0.1142 0.3527 1.13E-12 93
SCA 0.008321 0.00066785 4.02E-08 0.009953 70

FUN5

CDOA. 1.21E-189 7.1333333E-60 3.90708757E-59 1.12E-93 100
Modified CA 0 0 0.0073 0.0099 60

FKE 2.447E-121 5.193E-33 2.221E-28 3.629E-51 100
CSA 0 0.0131 0.0107 0.0123 50
PSO 0 0.0171 0.0171 0.016 50
SCA 0.0071067 0.0071037 4.02E-06 0.062754 45

FUN6

CDOA. 5.56E-163 9.233333E-61 5.057304E-60 2.82E-89 100
Modified CA 0 4.77E-09 2.61E-08 0 100

FKE 0 1.188E-15 3.3664E-14 1.519E-14 100
CSA 0 1.3598 0.9944 0.995 20
PSO 0 0.4643 0.8152 0 67
SCA 0.00005643 6.87695E-07 0.0000439 0.0006675 95



198 | Al-mtory, Alnahwi & Ali

TABLE III.
PERFORMANCE COMPARISON FOR THE BEST COST OF THE SIX ALGORITHMS WITH 1000 ITERATIONS, 30 RUNS AND

VARIABLE DIMENSION = 10

FUN# Method Best Mean Std. Median SR%

FUN1

CDOA. 8.34E-23 7.8456444E-07 4.0852034E-06 1.35E-17 100
Modified CA 5.07E-20 1.60E-17 5.61E-17 2.07E-18 100

FKE 4.822E-19 3.775E-18 4.662E-16 3.101E-17 100
CSA 1.14E-19 1.70E-18 2.44E-18 8.03E-19 100
PSO 0 0 0 0 100
SCA 1.46E-07 2.70E-05 6.02E-05 2.57E-06 100
SCA 9.15E-24 5.71E-21 9.86E-21 6.66E-23 100

FUN2

CDOA. 1.55E-23 8.7531616E-07 4.7830732E-06 2.47E-16 100
Modified CA 3.27E-20 1.68E-17 2.61E-17 2.96E-18 100

FKE 1.001E-19 2.311E-16 3.85E-16 4.1073E-17 100
CSA 1.25E-19 2.73E-17 3.35E-18 7.12E-18 100
PSO 0 0 0 0 100
SCA 6.59325E-07 2.59838E-05 8.9E-05 8.69E-06 100

FUN3

CDOA. 2.23E-24 2.9200013E-06 0.00001 6.81E-19 100
Modified CA 2.40E-16 4.34E-14 7.06E-14 1.43E-14 100

FKE 7.926E-15 9.251E-13 1.395E-13 2.592E-13 100
CSA 8.03E-12 1.24E-09 2.05E-09 3.26E-10 100
PSO 0 0 0 0 100
SCA 1.9732E-06 0.0000024 6.5E-07 2.976E-06 100

FUN4

CDOA. 1.07E-24 0.000013 0.00005 7.38E-15 100
Modified CA 3.26E-10 2.72E-08 5.81E-08 1.36E-08 100

FKE 1.096E-9 3.966E-07 4.27E-07 7.553E-07 100
CSA 3.14E-06 8.25E-01 9.58E-01 5.73E-04 57
PSO 4.44E-15 5.27E-15 1.53E-15 4.44E-15 100
SCA 5.98E-05 2.46E-04 3.57E-04 6.87E-03 90

FUN5

CDOA. 7.58E-18 4.9596798E-06 0.00003 1.18E-12 100
Modified CA 0 0.0583 0.0282 0.0253 50

FKE 2.443E-12 2.467E-04 0.000024 0.00415 56.667
CSA 1.24E-10 0.0416 0.0306 0.032 37
PSO 0 0.0641 0.0374 0.0363 30
SCA -0.0071067 0.0071011 7.18E-06 -0.0099654 70

FUN6

CDOA. 2.73E-25 1.32000004E-08 4.3326666E-08 1.77E-18 100
Modified CA 0 9.47E-09 5.19E-15 0 100

FKE 4.592E-21 1.629E-06 8.264E-06 2.639E-14 100
CSA 0 3.6482 1.7786 3.9798 10
PSO 0 0.796 0.661 0.995 43
SCA 0.00004598 0.005697 2.46E-03 0.0005699 65
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TABLE IV.
PERFORMANCE COMPARISON FOR THE BEST COST OF THE SIX ALGORITHMS WITH 1000 ITERATIONS, 30 RUN AND

VARIABLE DIMENSION = 15

FUN# Method Best Mean Std. Median SR%

FUN1

CDOA. 1.79E-18 1.7658937E-15 1.347340E-10 9.62E-14 100
Modified CA 8.93E-17 7.0285433E-15 1.178094E-14 3.19E-15 100

FKE 1.639E-17 8.3173492E-14 5.19412E-9 3.6142E-13 100
CSA 5.80E-09 5.68E-08 3.68E-06 4.79E-08 100
PSO 0 0 0 0 100
SCA 0.00009671 0.0006719 0.00036 0.0001156 100

FUN2

CDOA. 1.46E-16 2.7790667E-07 6.150042E-07 3.73E-11 100
Modified CA 9.52E-17 9.58720667E-15 1.583618E-14 3.25E-15 100

FKE 4.1936E-14 7.206E-6 3.8412E-6 6.4196E-10 100
CSA 2.57E-12 6.87E-11 6.55E-10 9.57E-11 100
PSO 0 0 0 0 100
SCA 0.00004872 0.0009475 0.001 0.0002257 100

FUN3

CDOA. 3.99E-21 5.6101150E-09 1.501606E-08 1.06E-11 100
Modified CA 1.59E-17 4.4628E-16 1.101611E-15 1.14E-16 100

FKE 2.8583E-19 2.4817E-08 5.1935E-07 2.741E-10 100
CSA 9.67E-10 9.85E-09 8.71E-08 9.75E-09 100
PSO 0 0 0 0 100
SCA 0.0001157 0.0009846 0.00087 0.003741 100

FUN4

CDOA. 1.11E-21 3.537724082E-09 1.053506E-08 1.06E-12 100
Modified CA 1.08E-15 0.00000000000026 2.813018E-13 1.63E-13 100

FKE 2.0381E-20 5.281E-08 7.2481E-07 1.7429E-11 100
CSA 6.15E-04 9.67E-01 9.75E-01 4.58E-03 46
PSO 6.84E-13 7.35E-12 9.74E-12 5.48E-10 100
SCA 2.25E-03 8.29E-03 9.17E-03 1.11E-02 83

FUN5

CDOA. 5.78E-16 0.0057 0.01319 3.50E-07 84
Modified CA 3.66E-05 0.0754 0.04497 7.32E-02 43

FKE 6.195E-08 0.0931 0.06342 9.420E-02 40
CSA 3.46E-05 0.3357 0.5486 0.9745 30
PSO 0 0.6485 0.7435 0.9974 27
SCA -0.06843 0.036419 2.21E-02 -0.77642 66

FUN6

CDOA. 1.60E-20 4.22325632E-08 1.077977E-07 5.59E-11 100
Modified CA 1.24E-17 1.37837133E-14 2.434454E-14 2.57E-15 100

FKE 2.052E-19 5.91302481E-08 4.719304E-06 7.019283E-10 100
CSA 0 4.6547 2.0021 4.1297 6
PSO 0 1.3479 1.27941 1.5697 33
SCA 0.0044587 0.068721 6.57E-02 0.2347 56
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TABLE V.
PERFORMANCE COMPARISON FOR THE BEST COST OF THE SIX ALGORITHMS WITH 1000 ITERATIONS, 30 RUNS AND

VARIABLE DIMENSION = 20

FUN# Method Best Mean Std. Median SR%

FUN1

CDOA. 8.61E-13 4.343590E-06 0.00001 3.34E-06 100
Modified CA 4.28E-13 0.000000000001 2.497574E-12 2.73E-13 100

FKE 1.8274E-12 2.001E-10 8.162E-10 3.47E-12 100
CSA 2.25E-08 5.48E-07 3.36E-05 6.79E-06 100
PSO 2.536E-11 1.478E-09 1.5E-09 4.578E-10 100
SCA 0.0005476 0.006578 0.00421 0.006715 100

FUN2

CDOA. 1.02E-18 3.1268824E-06 3.996994E-06 1.65E-06 100
Modified CA 6.24E-14 0.0000000000015 1.803449E-12 8.40E-13 100

FKE 9.4182E-12 1.390E-9 4.7726E-10 8.40E-11 100
CSA 6.94E-11 4.72E-10 7.76E-09 6.48E-10 100
PSO 6.55E-30 2.60E-28 1.64E-26 1.36E-26 100
SCA 0.00099173 0.002846 0.00337 0.0067941 100

FUN3

CDOA. 1.89E-12 3.1365680E-08 4.576027E-08 1.82E-08 100
Modified CA 2.14E-15 5.5209666E-14 9.923128E-14 3.65E-14 100

FKE 1.0849E-13 7.5104E-12 8.6103E-12 8.889E-12 100
CSA 6.49E-09 3.42E-08 3.80E-07 2.82E-08 100
PSO 3.65E-21 3.50E-18 6.48E-17 6.48E-20 100
SCA 0.0036749 0.0045679 0.06479 0.022457 93.33

FUN4

CDOA. 1.15E-11 0.0000033 4.576027E-08 2.78E-06 90
Modified CA 4.45E-15 4.63056667E-14 3.445415E-14 4.87E-14 100

FKE 3.591E-9 2.956E-4 8.4139E-06 5.827E-04 86.66
CSA 2.59E-03 9.90E-01 1.00E+00 3.15E-02 40
PSO 8.21E-13 9.88E-12 1.56E-11 6.21E-10 100
SCA 6.48E-03 9.97E-03 1.21E-02 6.48E-02 70

FUN5

CDOA. 1.76E-11 3.0391017E-06 0.00000442 7.31E-07 100
Modified CA 6.52E-05 0.0171 0.02164 1.07E-03 50

FKE 1.184E-04 0.00247 0.003357 8.426E-03 56.66
CSA 8.67E-04 0.57894 0.87614 1.00324 26
PSO 0 0.8736 0.83201 1.0457 50
SCA -0.0088745 0.065134 7.30E-02 -0.0090247 53

FUN6

CDOA. 2.87E-08 0.0002 0.00042 1.00E-04 100
Modified CA 1.21E-09 1.9891667E-08 2.401251E-08 1.38E-08 100

FKE 9.0648E-08 4.7263E-07 1.9472E-07 7.5936E-06 100
CSA 0.024567 5.0147 3.657 5.98461 0
PSO 0 1.5367 1.4249 1.6794 30
SCA 0.008674 0.07894 8.86E-02 0.30497 43
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Fig. 3. curve of convergence (cost value with iteration) for different variable dimensions and different fitness function a: De
Jong’s sphere function, b: Ackley’s function, c: Griewangk’s function, and d: Rastrigin’s function
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Fig. 4. PID controller of a closed loop system

of the proposed algorithm. With the aid of some unimodal
and multimodal benchmark functions, it is found that the algo-
rithm gives the best solution compared with PSO, CA, CSA,
and SCA for the unimodal problems at any dimension for the
optimization variable. However, the optimum solution of the
proposed algorithm is the best compared to other solutions
only for dimension of variable less than or equal to 20. For
the PID kind of close loop control systems, the proposed algo-
rithm provides a negligible amount of rise time, settling time,
and overshoot. Finally, CDOA results in a minimum fitness
function for the cantilever beam compared to PSO, GA, MVO,
WWO, SCA, and WOA algorithms.
− Future Works As a future work, the chaos based initializa-
tion and pitting spreading will be used instead of the random
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Fig. 5. The step response of different control system where are (a): system – A, (b): system – B, (c): system – C, (d): system –
D, and (e): system – E.
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TABLE VI.
EXECUTION TIME FOR EACH ALGORITHM WITH VARIABLE DIMENSION = 10 AND 1000 ITERATIONS

FUN# Method Time of 30 runs (s) Av. Time of single run (s)
CDOA. 8.182886 0.2827628

Modified CA 5.026145 0.183246
PSO 96.064317 3.281444
SCA 30.9517536 1.398778

FUN1

FKE 120.453223 4.03333334
CDOA. 8.237817 0.2755939

Modified CA 5.51047 0.198275
PSO 97.913156 3.352465
SCA 42.2693127 1.422136

FUN2

FKE 130.6689 4.366667
CDOA. 8.030139 0.2787653

Modified CA 12.43114 0.43207
PSO 100.251417 3.363865
SCA 68.963951 3.336548

FUN3

FKE 111.99865 3.73333334
CDOA. 8.146566 0.272987895

Modified CA 7.569398 0.271435
PSO 99.617142 3.436092
SCA 73.741268 2.458223

FUN4

FKE 114.698453 3.833334
CDOA. 8.158127 0.2749393

Modified CA 8.344597 0.294662
PSO 94.737667 3.20187
SCA 69.785214 2.335697

FUN5

FKE 100.5437 3.366667
CDOA. 8.172816 0.272876

Modified CA 6.912578 0.247527
PSO 89.546399 3.015565
SCA 78.379128 2.6987426

FUN6

FKE 95.8775 3.2

Fig. 6. Cantilever beam design problem

TABLE VII.
PID COEFFICIENTS FOR SYSTEM-A, SYSTEM-B,

SYSTEM-C, SYSTEM-D, AND SYSTEM-E
System Kp proportional coefficient Ki integral coefficient Kd derivative coefficient
System -A 10.54 11 6.223
System -B 2.2465 6.1281 6.5486
System -C 1.9558 4.1135 2.3717
System -D 4.8670 10.47404 2.6363
System -E 32.0583 0.0314 68.8086

dispersion. This may complicate the algorithm but may results
in faster convergence to the optimal solution.
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TABLE VIII.
THE TRANSIENT PARAMETER WHEN WITHOUT PID CONTROLLER AND WITH PID CONTROLLER AFTER OPTIMIZED

THE PROPORTIONAL COEFFICIENT, INTEGRAL COEFFICIENT, AND DERIVATIVE COEFFICIENT

#System System-A System-B System-C System-D System-E
without PID with PID without PID with PID without PID with PID without PID with PID without PID with PID

tr 0.3505 0.0099 0.1877 0.0129 2.1694 0.2339 7.3892 1.5683 0.8843 0.403
ts 15.1287 0.0175 24.5412 0.0229 33.5405 0.7756 14.1136 2.7102 1.5894 0.628

MP 77.9429 0.005 377.305 0 7.1052 0 0 1.80E-04 0 0

TABLE IX.
Compassion between the result of different algorithms for cantilever beam problem

Variables PSO GA WWO MVO SCA WOA CDOA
X1 6.05099 6.03277 5.99823 6.05099 5.67787 5.78636 6.0265
X2 4.93196 5.31962 5.24612 4.93196 5.33850 5.57995 4.8966
X3 5.2118 4.48431 4.49356 5.21118 4.86170 4.28758 4.5686
X4 3.94183 3.48147 3.60865 3.94183 3.45494 3.74891 3.5013
X5 1.88577 2.15591 2.13733 1.88577 2.30102 2.16705 2.0950

F(x) 1.37063 1.33655 1.33702 1.37063 1.34650 1.34251 1.31251
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