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Abstract
In this paper, an analysis of performance acceleration of an external laser source (ELS) model based polymer fiber
gratings (PFGs) by reducing the turn-on delay time (TDelay) is successfully investigated numerically by optimizing model
parameters. In contrast to all previous studies that relied either on approximate or experimental equations, the analysis
was based on an exact numerical formula. The analysis is based on the investigation of the effect of diode injected
current (Iin j), temperature (T), recombination rate coefficients (i.e. Anr, B, and C), and optical feedback (OFB) level.
Results have demonstrated that by optimizing model parameters the Delay can be controlled and reduced effectively.
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I. INTRODUCTION

With the continuous revolutionary increase in the volume
of transmitted data and the increasing demand for optical
sensing technologies in many important applications, the need
for a tunable laser with a wide range makes it possible for
high potential and good efficiency to manage and transmit
information [1][2], thus improving the ability of the network
in front of the increasing traffic and at the same time its high
ability to sense accurately is one of the most important goals
that must be achieved as requirements for the next generation
of optical transmission networks [3][4].

Recent years have witnessed a noticeable increase in the
use of fiber gratings (FGs) in many fields due to their unique
features, where external environmental conditions such as
stress [5][6] and temperature [7][8][9] play a fundamental
role in determining their basic parameters such as operating
wavelength [10][11][12] and low dispersion loss [13][14][15].
Despite all these advantages, the limited tunability which is
represent the main key for dense wavelength division multi-
plexing networks (DWDM) is a major drawback of silica fiber
gratings (SFGs) [3][4][7].

However, the development in optical fiber manufacturing
technology has made it possible to overcome this major point.
Where, the optical fibers that made of a polymer materials
have thermal and tensile properties that are much higher than
that in the case of a SFGs [7]. The Young’s modulus of the
polymer is 70 times smaller than the Young’s modulus of sil-
ica (i.e. 0.1×1010N/m2 compared to 7.13×1010N/m2) [7],
which gives it a significant advantage in mechanical synthesis
compared to that of a SFGs [7].

Also, the advantages of a wide thermo-optical effect give
them a large ability to adjust the refractive index and thus a
wide tuning range. Moreover, the high flexibility of polymer
fiber gratings (PGFs) can make the tunability extend beyond
the thermo-optical limit [3][4][7]. These unique features give
the PGFs the highest advantage for use as a wavelength tuning
and optical sensing element.

The huge increase in the use of DWDM networks has
led to an increase in demand for using the external cavity
lasers (ECLs) based FGs as an alternative light source for two
important reasons: (1) their ability to generate a light with
highly wavelength stability, where the emission wavelength of
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the ECLs depends only on the Bragg wavelength of the FGs
and does not depend on the injection current (Iin j) of the laser
diode cavity [16][17][18][19][20] and (2) the high ability to
control the operating wavelength for the FGs more precisely
and with great flexibility compared with other laser models
[21].

One of the most important parameters that determines
the dynamic performance for the semiconductor laser diodes
(SLDs) is the turn-on delay time (TDelay) [22][23][24][25][26]
[27]. It defined as the time required for carriers (N) to popu-
late and to reach its threshold level (Nth) at which the initial
value of current (Io) changes to any current (I) greater than
its threshold level (Ith) [22][23]. In this period, photon con-
centrations (P) suffer from a relaxation fluctuation until they
reach their steady-state value [24][25].

Experimentally, the value of TDelay is strongly determined
by the value of the carrier recombination rate coefficients (i.e.
Anr, B and C) [26][27]. However, previous studies have relied
in their analysis either on an approximated or an empirical
relationship [24] or on equations in which one or more pa-
rameters that have an important influence on their behavior
have been neglected [25]. In [28], the authors modeled the
turn-on delay as an parabolic arc approximation and in [29],
the authors have studied the turn-on time delay under the lim-
iting case where the Anr recombination dominates. While in
[30], The authors showed that the effect of the Anr, B and
C parameters was to reduce the delay time, which was later
shown to be inaccurate [31]. These hypotheses, in addition
to the inaccuracy of the results, have eliminated the effect of
some important parameters that have an impact in determining
the true dynamic behavior of the system [26][27]. Moreover,
to the best of our knowledge, all the previous studies that
addressed this important parameter have concerned on the
fiber lasers based SFGs [24][25][26][27].

The growing fields of optical sensing compared to other
sensing technologies [21] and the diversity of promising appli-
cations within optical communication systems make from the
PFGs an important tool sensing applications [32][33][34][35]
[36] [37]. So, studying the dynamic properties of ELS based
PFGs is necessary and of great interest.

II. TURN-ON DELAY TIME OF ELS BASED PFGS

A schematic diagram of a ELS model based PFGs is shown
in Fig. 1. The model is consisting of a 1.55 µm Fabry-Perot
(FP) laser diode coupled to a single-mode fiber with Lext
length with Co coupling coefficient and a PFGs of length LFG
and RFBG reflectivity.

Fig. 1. (a) structure of external laser source based Plastic fiber
gratings model and (b) Simplified configuration [16][38]

According to Fig. 1, the effective reflectivity (Re f f ) of
PFGs is given by [38]

Re f f =
R2

o +R2
OFB +2RoROFB cos(ωτe)

1+R2
oR2

OFB +2RoROFB cos(ωτe)
(1)

In Eq. 1, ωτe represent the phase of the light that reflected,
ROFB =CoRext represent the optical
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In Eq.2, ∆β represent the wavelength detuning, k is the
coupling strength,Q=

√
k2 −∆β 2 , and Ω = iQ=

√
∆β 2 − k2

[7][38]. By taking into account the phase change in Eq. 1,Re f f
can be rewritten as

Re f f =
R2
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OFB +2RoROFB cos(ωτe −Θre f )

1+R2
oR2

OFB +2RoROFB cos(ωτe −Θre f )
(3)

Where Θre f represent the phase coefficient for light reflected
and is given by[16][21][38]

Θre f =

{
tan−1(

Qcosh(QLFG)
∆β sinh(QLFG) ) , i f (kLFG)

2 > (∆βLFG)
2

tan−1(
Ω cos(ΩLFG)
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(4)

The threshold current Ith, f e(T ) of ELS based FPGs after con-
sidering the temperature dependence (TD) and OFB can be
written as [24][25][38]
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Ith, f e(T )= qV Nth, f e(T )
(
Anr +BNth, f e(T )+C(T )N2

th, f e(T )
)

(5)

In Eq. 5,q,V,Anr,C(T ),B and Nth, f e(T ) are represents the
charge of electron, volume of FP active region, non-feedback
(OFB) reflected light that coupled into FP laser, and Rext is
the power reflectivity of grating fiber which is defined as
[16][21][38] radiative recombination rate, Auger process, ra-
diative recombination coefficient, and carrier density at the
threshold condition which is defined by [38]

Nth, f e(T ) = N(T )+
1

Γvg(T )a(T )τp, f e(T )
(6)

where N(T ) is the transparency carrier density, a(T) is the
gain coefficient, and τp, f e(T ) is the photon life time,Γ is the
confinement factor, and vg(T )= c/nd(T ) is the group velocity,
respectively [16][21][38]. In Eq. 6, τp, f e(T ) can be modeled
as [38]

τp, f e(T ) =
1

vg(T )αtot, f e(T )
(7)

In Eq. 7, αtot, f e(T ) is the total FP cavity loss which is defined
by [16][24][25][38].

αtot, f e(T ) = αint(T )+
1

2Ld
ln(

1
R1Re f f

) (8)

where αint(T ) represent the internal FP cavity loss, and 1
2Ld

ln( 1
R1Re f f

) is the FP mirror loss [24][25]. Finally, the Nth, f e

can be expressed as
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1
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}]
(9)

The well-known formula that described the TDelay response of
a SLD is defined by [25]

TDelay =
∫ Nth

Ni

qV
Iin j −qV N(Anr +BN +CN2)

dN (10)

Eq. 10 have been solved numerically (See Appendix A) after
considering the effect of the Re f f which is defined in Eq. 1 to
study the TDelay characteristics of ELS model based PFGs.

TABLE I.
Parameters of ELS based PFGs at room temperature [21] [24]
[25] [26][31][37][38]

Parameter Description
Ld = 400µm Cavity length
d = 0.1µm Active region thickness
w = 2µm Active region width
No = 1.1024m−3 Transparency carrier density
Anr = 1.108sec−1 Non-radiative recombination coefficient
B = 1.10−16m3/sec Radiative recombination coefficient
C = 3.10−41m6/sec Auger recombination coefficient
αint = 1000m−1 Internal cavity loss
R1 = 0.99 Reflectivity of the left facet
a = 2.5×10−20m2 Gain constant
LFG = 4mm Grating length

III. RESULTS AND DISCUSSION

Table I show the common values for ELS based PFGs
model are used in the analysis.

Figure 2 show the TDelay response for an ELS based PFGs
model as a function to the ρ parameter for different values
of σ parameter. Results shown that, by increasing the ρ

value, the value of TDelay has reduced. These results are fully
consistent with the basic principles of laser operation, which
are when the laser has biased near the Nth value, the TDelay
response can be eliminated [24][25].

To illustrate the differences in accuracy in the method
we adopted in our analysis (i.e. Eq. A.1) compared to other
approximated relationships, equations and expressions in the
previous study [24][25][26][27][28][29][30], Fig. 3 shows
the effect of the parameters have been neglected on the TDelay
responses. The difference in the results is clear and this is
expected, and it is surprising how the influence of an impor-
tant parameters have been ignored in the previous studied
[24][25][26][27][28][29][30], where according to Eq. 5, any
increase in Anr, B, and C parameters will lead to an increase in
the Ith value (i.e. Eq. 5)). As it is known [24, 25], the higher
the Ith value, the greater TDelay level. This meaning that, the
effect of increasing any one of the Anr, B, and C coefficients
is to increase the TDelay response value as shown in Fig. 4.

One of the most important parameters that affect the dy-
namic behavior of lasers is the change in temperature [24][25].
The effect of temperature (T) variation on the TDelay response
for the ELS based PFGs is shown in fig. 5. By increasing
the T value, the TDelay response is increases. The reason for
this is due to its direct impact on the Nth value as given in
Eq. 6. However, this effect can be eliminated by increasing
the ρ value. Where by increasing the ρ value (i.e. ρ → 1)
the value of Ni will reach to Nth and this leads to mitigate
TDelay (i.e.TDelay → 0 ). Thus, the ρ value is represented a
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significant/or control parameter for reducing the TDelay.
On the other hand, by increasing of the σ value, the TDelay

value is reduced at a specified value of the ρ parameter; thus,
the effect of temperature can be controlled.

Fig. 2. Effect of ρ and σ parameters on TDelay response.

Figure 6 show the effect of the external optical feedback
(EOF) reflectivity; Rext on the TDelay response as a function of
σ at ρ = 0.5. . As is clear, the effect of increasing reflectivity
works effectively in reducing the TDelay value. This is due to
their effect on decreasing the total cavity losses (Eq. 8), which
in turn leads to an increase in the photons lifetime Eq. 7,
which is leads in decreasing in the value of threshold current
Eq.5 and thus reducing the delay time. Depending on this
result, the value of EOF can be used as a controller to turn-on
the laser by controlling the Nth level.

IV. CONCLUSIONS

In this paper, an analysis on improving the operating time
of an external laser source (ELS) based polymer fiber gratings
(PFGs) model depending on reducing the turn-on time delay
(TDelay) has been investigated numerically. In our analysis,
in contrast to the methods that were adopted in all previous
studies, we did not use an approximate or empirical equations,
but rather relied on an accurate numerical formula. Results
show that the Anr, B and C coefficients have a significant
effect on the TDelay value and not as reported in the previous
study [30]. Also, result show that, the effect of temperature
is to increase the TDelay value. However, this effect can be
eliminated either by increasing ρ value or by increasing σ

value at a constant Ith. On the other hand, the TDelay value can
be controlled through controlling the external optical feedback
(EOF) level.

(a) Anr = B =0

(b) Anr = C = 0

(c) B = C = 0

Fig. 3. Effect of neglected Anr, B, and C parameters on TDelay
value with σ at ρ = 0.5
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(a)

(b)

(c)

Fig. 4. Effect of Anr, B, C coefficients and σ on turn-on time
delay at ρ = 0.5.

Fig. 5. Effect of temperature on TDelay and σ at ρ = 0.5.

Fig. 6. . Effect of Rext and σ parameter on turn-on time delay
at ρ = 0.5.

APPENDIX A
The numerical solution of Eq. 10 is given by [23, 27]

TDelay = ψℜ1 T1+ψℜ2 T2+ψℜ3 T3 (A.1)

Where

T1 = ln

[
h̄
(
ℜ1,Nth, OFB

)
h̄
(
ℜ1,ρNth, OFB

)] (A.2)
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T2 = ln

[
h̄
(
ℜ2,Nth,OFB

)
h̄
(
ℜ2,ρNth, OFB

)] (A.3)

T3 = ln

[
h̄
(
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)
h̄
(
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)] (A.4)

h̄(ℜm,N) = B+λ1ℜm +λ2N (A.5)

λ1 = (AnBξ +9CIin j) (A.6)
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]
(A.7)
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℘1 = ξ
2A2

nrΘ1+ξ Iin jΘ2+27C2I2
in j (A.12)

Θ1 =
(
4AnrC−B2) (A.13)

Θ2 =
(
18AnrC−4B2) (A. 13) (A.14)

℘2 =
[
ξ

2
℘1

(
−108C+12

√
3℘

1/2
3

)]1/3
(A.15)

℘3 =
℘4

℘1
(A.16)

℘4 = 4ξ
2B2

Θ3+108ξ
2C2Iin jΘ4+729C4I2

in j (A.17)

Θ3 =
(
20.25A2

nrC
2 −9AnrB2C+B4) (A.18)

Θ4 =
(
4.5AmC−B2) (A.19)

And ξ = eV and ρ(0 < ρ(1) represents the ratio of the Ni to
the Nth value (i.e. ρ = Ni/Nth ).
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