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Abstract
Clustering is a fundamental data analysis task that presents challenges. Choosing proper initialization centroid
techniques is critical to the success of clustering algorithms, such as k-means. The current work investigates six
established methods (random, Forgy, k-means++, PCA, hierarchical clustering, and naive sharding) and three innovative
swarm intelligence-based approaches—Spider Monkey Optimization (SMO), Whale Optimization Algorithm (WOA) and
Grey Wolf Optimizer (GWO)—for k-means clustering (SMOKM, WOAKM, and GWOKM). The results on ten well-known
datasets strongly favor swarm intelligence-based techniques, with SMOKM consistently outperforming WOAKM and
GWOKM. This finding provides critical insights into selecting and evaluating centroid techniques in k-means clustering.
The current work is valuable because it provides guidance for those seeking optimal solutions for clustering diverse
datasets. Swarm intelligence, especially SMOKM, effectively generates distinct and well-separated clusters, which is
valuable in resource-constrained settings. The research also sheds light on the performance of traditional methods such
as hierarchical clustering, PCA, and k-means++, which, while promising for specific datasets, consistently underperform
swarm intelligence-based alternatives. In conclusion, the current work contributes essential insights into selecting and
evaluating initialization centroid techniques for k-means clustering. It highlights the superiority of swarm intelligence,
particularly SMOKM, and provides actionable guidance for addressing various clustering challenges.
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Clustering, K-means, Centroid Initialization, Swarm Intelligence, Performance Evaluation.

I. INTRODUCTION

Clustering is a popular technique used in many data mining
and machine learning applications for grouping similar data
points into clusters [1]. One of the most widely used cluster-
ing algorithms is K-means, which partitions the data into k
clusters by iteratively assigning each data point to the nearest
centroid and updating the centroids based on the mean of the
assigned points [2]. However, despite its effectiveness in many
scenarios, K-means clustering has several significant limita-
tions [3]: (i) It is sensitive to the initial placement of centroids,
making it prone to suboptimal solutions; (ii) It assumes that
clusters have spherical shapes, limiting its ability to handle

complex data structures; (iii) Predefining the number of clus-
ters can be difficult in real-world applications; (iv) K-means
is sensitive to outliers, which can distort clustering results;
and (v) It is not well-suited for categorical or non-numeric
data. Many initialization techniques have been proposed to
address the first limitation, including random initialization,
K-means++ initialization, and hierarchical clustering. In re-
cent years, swarm intelligence algorithms have emerged as
a promising alternative for optimizing the initialization of
cluster centroids in K-means clustering.

The main objective of this paper is to explore the use
of swarm intelligence algorithms for optimizing K-means
initialization and investigate four research questions:
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• RQ1: How can swarm intelligence algorithms be used
to optimize the initialization of cluster centroids in K-
means clustering?

• RQ2: Can swarm algorithms effectively initialize clus-
ter centroids for K-means compared to traditional algo-
rithms?

• RQ3: Which swarm intelligence algorithms are most
effective for selecting the optimal initial centroids in
K-means clustering?

• RQ4: How does the choice of swarm intelligence al-
gorithm affect the performance of K-means clustering
concerning centroid initialization?

The paper is structured as follows: Section II. covers re-
lated works; Section III. discusses the theoretical background,
including the K-means algorithm with common initialization
centroid techniques and swarm intelligence algorithms; Sec-
tion IV. presents the current work; Section V. displays the
results and provides a discussion; and Section VI. concludes
the paper.

II. RELATED WORKS

Numerous initialization methods have been proposed to ad-
dress the challenges of the K-means algorithm. However, their
results have been somewhat limited. This section presents an
overview of the research conducted in this domain.

In [4], four initialization methods for the K-means al-
gorithm were compared: random, Forgy, MacQueen, and
Kaufman. The authors conducted experiments to draw up the
probability distribution of the square-error values of the final
clusters returned by the K-means algorithm, independently
of the initial clustering and the order of the instances when
each of the four initialization methods was used. The results
showed that the random and Kaufman initialization methods
outperformed the other methods, making K-means more ef-
fective and less dependent on the initial clustering and the
order of the instances. The Kaufman initialization method
also induced a more desirable behavior with respect to the
convergence speed than the random initialization method.

The work in [5] presented a deterministic initialization
method for K-means clustering called PCA-Part. The method
was based on PCA and the divisive hierarchical approach.
PCA-Part led K-means to generate clusters with the sum of
squared error (SSE) values close to the minimum SSE values
obtained by 100 random start runs. Furthermore, PCA-Part
often led K-means to faster convergence compared to random
methods.

In [6], the work introduced modifications to Var-Part and
PCA-Part, deterministic and linear hierarchical K-means ini-
tialization methods. The modified versions were compared to

popular linear methods such as Forgy’s, MacQueen’s, Max-
imin, and K-means++, using diverse UCI Machine Learning
Repository data sets. Despite being deterministic, results re-
vealed that Var-Part and PCA-Part were highly competitive
with K-means++, one of the best random initialization meth-
ods. The proposed modifications significantly enhanced the
performance of both hierarchical methods. These modified
variants of Var-Part and PCA-Part offered effective initial-
ization for K-means, particularly in time-sensitive applica-
tions with large data sets, and could also function as approxi-
mate clustering algorithms without the need for subsequent
K-means refinement.

The authors in [7] provided an overview of various initial-
ization methods for the K-means clustering algorithm, focus-
ing on their computational efficiency. They compared eight
commonly used linear time complexity methods using diverse
datasets and performance criteria. Through non-parametric
statistical tests, the analysis demonstrated that popular meth-
ods such as Forgy, MacQueen, and Maximin frequently pro-
duced poor results. The paper highlighted the existence of sig-
nificantly better alternatives with comparable computational
requirements. Overall, the findings offered recommendations
for practitioners, suggesting more effective initialization meth-
ods for K-means clustering.

In [8], the work addressed the sensitivity of K-means clus-
tering to initial centroid selection and proposed a selection
method for improved performance. The proposed method
began by randomly selecting initial centroids and evaluating
their suitability based on distance calculations, i.e., Euclidean
and Manhattan, with other data points in the dataset. The
study evaluated the proposed initialization method on vari-
ous datasets with different characteristics and complexities.
Experimental results demonstrated that the proposed method
was more effective and yielded more accurate clustering than
random initialization. The work concluded by highlighting
the significance of good clustering algorithms and emphasized
the practicality and efficiency of the proposed initialization
method, which outperformed standard K-means in terms of
both speed and accuracy.

The work in [9] discussed the performance of three classi-
cal K-means initialization strategies: Random Partition Method,
K-means++, and PCA-based K-means. The experiment evalu-
ated their performance on the UCI Machine Learning hand-
written digits dataset regarding runtime and clustering quality.
The results showed that all three strategies found similar clus-
ter centroids with comparable clustering accuracy. However,
the PCA-based K-means strategy significantly improved the
running time and outperformed the other strategies.

In [10], the authors presented improvements in the perfor-
mance of the rough k-means clustering algorithm by propos-
ing a new initialization algorithm, a new performance measure,
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and a new method for selecting the zeta value. The results
show that the proposed algorithm outperforms the existing
ones on various datasets regarding S/O index, RMSSTD, and
computational complexity. However, the proposed work does
not consider the impact of the weights of lower and upper
approximations, and it only applies to the Peters refined rough
k-means algorithm.

In [11], the authors conducted a critical and experimental
analysis of different variants of the k-means algorithm on
six benchmark datasets. The results indicate that no single
solution exists for the problems of the k-means algorithm and
that each variant is either data-specific or application-specific.

In [12], the work discussed the different initialization
methods for the K-means clustering algorithm and their ef-
fects on its performance. The K-means algorithm is widely
used but has limitations such as sensitivity to outliers and
reliance on data features. Various initialization techniques
have been proposed to overcome these issues. The study com-
pared methods like Random, K-means++, Maximin, Robust
Initialization (ROBIN), Kaufman, and DK-means++ to in-
vestigate their impact on K-means variations. It showed that
sophisticated initialization methods can reduce performance
differences among K-means implementations, and determin-
istic methods like DK-means++ can achieve better average
performance. However, stochastic methods may perform bet-
ter if executed multiple times.

In [13], the authors proposed an entropy-based initial-
ization method for the K-means clustering algorithm and a
method to determine the optimal number of clusters. The
proposed methods achieve better clustering results with faster
convergence and lower computational cost than other methods.
However, there are some limitations, such as dependence on
the threshold value for the entropy-based initialization and
difficulty choosing the best cluster validity index for different
data sets.

In [14], the authors proposed a method for selecting initial
cluster centers for K-means. The method finds outer points
using a Convex Hull, selects the farthest points as initial cen-
troids, and discards nearest neighbors to avoid choosing from
the same cluster. The method outperforms conventional K-
means and other methods regarding clustering error, compu-
tation time, and Cluster Compactness and Separation Index
(CCPI) for four real-world datasets. However, it is sensitive
to outliers and requires a parameter.

In [15], the authors proposed a new method, BRIk, to
initialize the k-means clustering algorithm. BRIk uses boot-
strapped replications of the data and randomly initialized
k-means to obtain a set of centroids. These centroids are
then clustered again, and the deepest point in each cluster is
chosen as an initial seed. BRIk performs well in minimizing
distortion and recovering the true cluster structure, especially

for complex datasets with high dimensions and many clusters.
However, BRIk has a higher computational cost than some of
the other methods.

In [16], the authors compared 17 k-means initialization
algorithms on 6,000 synthetic and 28 real-world datasets. The
results show that no single algorithm outperforms all others
in all cases, and the performance depends on various factors,
such as the data distribution and the number of clusters. The
limitations of the proposed work are that it does not consider
other aspects of clustering quality, such as the interpretability
of the clusters, and it does not explore the impact of data
pre-processing or parameter tuning on the algorithms. Below
is a summary of the related works in Table I.

III. MATERIALS AND METHODS

A. The K-means clustering
One of the most commonly used clustering techniques is K-
means clustering. It has numerous applications in computer
vision, pattern recognition, and information retrieval. Its main
objective is to group similar data points by partitioning the
input dataset of n points into k clusters [17]. The process
involves assigning each point to the cluster with the nearest
centroid through an iterative process. The centroid of each
cluster is then recalculated by calculating its mean. Algorithm
1 illustrates the pseudocode of K-means clustering [3].

Algorithm 1 K-means clustering

1: An initial clustering is created by choosing k random
centroids from the dataset.

2: For each data point, calculate the distance from all cen-
troids and assign its membership to the nearest centroid.

3: Recalculate the new cluster centroids by the average of
all data points that are assigned to the clusters.

4: Repeat steps 2-3 until convergence.

Selecting initial centroids for K-means clustering is a
challenging task, and it can be approached in various ways
using common initialization methods. These methods include
random initialization, Forgy initialization, K-means++ initial-
ization, initialization based on hierarchical clustering, and
initialization based on prior knowledge or domain expertise.
Each method has its own factors to consider, and the choice
of initialization method depends on the specific dataset and
problem at hand. Experimenting with multiple initialization
methods is often recommended to determine the most suitable
one for achieving optimal clustering results. The initialization
step plays a crucial role in the K-means algorithm, setting the
starting point for the iterative optimization process.

Here are some concise explanations of the most frequently
used methods for choosing initial centroids in K-means clus-
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tering:

1) Random Technique
This technique randomly selects K data points from the dataset
as the initial centroids. It is easy to implement but may lead
to suboptimal clusters if the initial centroids do not accurately
represent the true cluster centers [4].

2) Forgy Technique
This technique is similar to random initialization, but instead
of randomly selected data points, it samples K data points
directly from the dataset. This technique can improve upon
random initialization by ensuring that the initial centroids
are representative of the data distribution. However, it can
still suffer from limitations associated with selecting arbitrary
initial centroids, such as the possibility of converging to a
suboptimal clustering solution [2].

3) Initialization Based on Hierarchical Clustering
This technique involves performing hierarchical clustering
on the dataset and then selecting K clusters at an appropriate
level of the dendrogram. The centroids of these clusters are
then used as the initial centroids for the K-means algorithm.
This technique can provide a promising starting point for
optimization by leveraging the hierarchical structure of the
data [8].

4) K-means++ Technique
This technique has been developed to overcome the limitations
of random and Forgy initialization methods. It involves select-
ing initial centroids evenly distributed throughout the dataset,
achieved by giving higher probabilities to data points further
away from existing centroids. This ensures that the chosen
centroids reflect the overall distribution of the data [12].

5) Initialization Based on PCA
This technique involves applying PCA (Principal Component
Analysis) to the dataset. PCA identifies the most informative
features in the dataset by transforming the data into a lower-
dimensional space that preserves the most variance. The
clustering algorithm is then initialized by selecting K data
points from the reduced-dimensional space. This method
aims to capture the significant sources of variation in the data
by considering the principal components, potentially leading
to improved clustering results [18–20].

6) Naive sharding Technique
It is a technique for partitioning a dataset into multiple shards
or subsets without considering the underlying data distribu-
tion. It typically divides the data evenly into fixed-size shards,
regardless of the data characteristics. This simplistic approach

may not consider the data’s clustering structure and can re-
sult in imbalanced shards, leading to suboptimal clustering
performance [21].

B. Swarm Intelligence Algorithms
This section will cover three commonly used swarm intel-
ligence algorithms: Grey Wolf Optimizer (GWO), Spider
Monkey Optimization (SMO), and Whale Optimization Al-
gorithm (WOA). These algorithms were chosen over other
optimization algorithms due to their natural inspiration and
demonstrated efficacy in addressing diverse optimization chal-
lenges, particularly those involving numerous variables or
significant nonlinearity and relatively newer status. While par-
ticle swarm optimization (PSO), artificial bee colony (ABC),
and genetic algorithm (GA) are also established and effec-
tive, GWO, SMO, and WOA have exhibited superior global
solution-finding efficiency. The optimal algorithm selection
depends on problem characteristics, but all three – GWO,
SMO, and WOA – are strong contenders for various optimiza-
tion problems.

1) GWO
GWO is a population-based metaheuristic algorithm inspired
by the leadership hierarchy and hunting behavior of grey
wolves. GWO consists of four types of wolves: alpha, beta,
delta, and omega, which represent the four best solutions
within the population. The algorithm begins by initializing a
population of solutions randomly. During each iteration, the
wolves adjust their positions by referencing the positions of
the alpha, beta, delta, and omega wolves. The termination
of the algorithm is determined by meeting a predetermined
stopping criterion. Algorithm 2 illustrates the pseudocode of
the GWO algorithm [22].

Algorithm 2 GWO algorithm

1: Initialize the grey wolf population Xi (i = 1, 2, ..., n)
2: Initialize a, A, and C
3: Calculate the fitness of each search agent
4: Xα = the best search agent
5: Xβ = the second-best search agent
6: Xδ = the third-best search agent
7: while (t < Max number of iterations) do
8: for each search agent do
9: Update the position of the current search agent

10: end for
11: Update a, A, and C
12: Calculate the fitness of all search agents
13: Update Xα , Xβ , and Xδ

14: t = t + 1
15: end while
16: return Xα
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TABLE I.
RELATED WORKS

Ref Year Technique(s) Dataset(s) Results
[4] 1999 • Random

• Forgy approach
• Macqueen approach
• Kaufman approach

• Iris
• Ruspini
• Glass

• The random and Kaufman initialization methods
are more effective and robust than the Forgy and
MacQueen initialization methods when used with
the K-means algorithm.
• The Kaufman initialization method exhibits a
more desirable behavior with respect to conver-
gence speed than the random initialization method
when used with the K-means algorithm.

[5] 2004 • PCA-Part
• Random seed
• Random partition

• Pendigits
• Segmentation
• Letter

• PCA-Part is a promising initialization method for
K-means clustering that often leads to significantly
faster convergence and significantly lower SSE val-
ues.
• Further research is needed to explore other ways
of partitioning the sample space or combining ran-
dom and deterministic restarts for initializing K-
means.

[6] 2012 • Forgy method
• MacQueen
• Maximin method
• K-means++ method
• PCA-Part method
• Var-Part method
• Modification to Var-
part and PCA-part

• Abalone
• Breast Cancer Wisconsin
(Original)
• Breast Tissue
• Ecoli
• Glass Identification
• Heart Disease
• Ionosphere
• Iris (Bezdek)
• ISOLET
• Landsat Satellite (Statlog)
• Letter Recognition
• MAGIC Gamma Telescope
• Multiple Features (Fourier)
• Musk (Clean2)
• Optical Digits
• Page Blocks Classification
• Pima Indians Diabetes
• Shuttle (Statlog)
• Spambase
• SPECTF Heart
• Wall-Following Robot Nav-
igation
• Wine Quality
• Wine
• Yeast

• The paper proposes a modification to two hier-
archical K-means initialization methods, Var-Part
and PCA-Part, using Otsu’s method, which signifi-
cantly improves their performance.
• The modified methods can be used effectively in
time-critical applications with large data sets.

[7] 2013 • Linear time
complexity
o Forgy method
o Jancey method
o MacQueen
o Ball and Hall method
o Simple Cluster Seek-
ing method

• Breast cancer wisconsin
(original)
• Cloud cover (DB1)
• Concrete compressive
strength
• Corel image features
• Covertype
• Ecoli

• Eight linear-time initialization methods for the
K-means clustering algorithm were compared on
a large and diverse collection of real and synthetic
data sets.
• The study demonstrated that popular initialization
methods often perform poorly and that there are
strong alternatives to these methods.
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o Spath method
o Maximin method
o Al-Daoud density-
based method
o Bradley and Fayyad
method
o K-means++ method
o PCA-Part method
o The Var-Part method
o Lu et al.’s method
o Onoda et al.’s method
• Loglinear time-
complexity
o Hartigan’s method
o Al-Daoud variance-
based method
o Redmond and
Heneghan method
o The ROBIN (ROBust
INitialization) method
• Quadratic-
complexity
o Astrahan method
o Lance and Williams
o Kaufman and
Rousseeuw method
o Cao, Liang, and
Jiang
• Other methods
o Binary-splitting
method
o Directed-search
binary-splitting
method
o Global K-means
method

• Steel plates faults
• Glass identification
• Heart disease
• Ionosphere
• ISOLET
• Landsat satellite (Statlog)
• Letter recognition
• MAGIC gamma telescope
• Multiple features (Fourier)
• MiniBooNE particle identi-
fication
• Musk (Clean2)
• Optical digits
• Page blocks identification
• Parkinsons
• Pen digits
• Person activity
• Pima Indians diabetes
• Image segmentation
• Shuttle (Statlog)
• SPECTF heart
• Telugu vowels
• Vehicle silhouettes (Stat-
log)
• Wall-following robot navi-
gation
• Wine quality
• World TSP
• Yeast

[8] 2013 • Random method
• DIMK-means
(Distance-based Initial-
ization Method for K-
means)

• Artificial datasets
o Ruspini
o Rfivec
• Real datasets
o IRIS
o Wine recognition
• Libras Movement

• The proposed method improves the K-means al-
gorithm by reducing its sensitivity to initial cen-
troid selection, resulting in more accurate and con-
sistent clustering results.
• The proposed method outperforms random se-
lection in terms of speed, accuracy, stability, and
reliability on different datasets and measures.

[9] 2018 • Random Partition
method
• K-means++ method
• PCA-based K-means

• Hand-written digits • The study compares three K-means initialization
strategies on the UCI machine learning handwrit-
ten digits dataset.
• The study finds that the PCA-based K-means
strategy is significantly faster than the other two
strategies and produces clustering results with sim-
ilar accuracy.



277 | Obaid & Alabbas

[10] 2020 • New centroids initial-
ization algorithm for
rough k-means

• Synthetic
• Forest cover
• Microarray

• The proposed algorithm outperforms the existing
ones on various datasets in terms of S/O index,
RMSSTD, and computational complexity.
• The proposed work does not consider the impact
of the weights of lower and upper approximations,
and it only applies to the Peters refined rough k-
means algorithm.

[11] 2020 • Variants of the k-
means algorithms

• Cleveland Heart Disease
• KDD-Cup 1999 (10%)
• Wisconsin Diagnostic
Breast Cancer
• Epileptic Seizure Recogni-
tion
• Credit Approval
• Postoperative

• The results indicate that no single solution exists
for the problems of the k-means algorithm and that
each variant is either data-specific or application-
specific.

[12] 2021 • Random method
• K-means++ method
• Maximin method
• Kaufman method
• ROBIN method
• Density K-means++
(DK-means++)

• Iris
• Ionosphere
• Wine
• Breast cancer
• Glass
• Yeast

• More sophisticated initialization techniques re-
duce the difference in performance among the K-
means variations. Deterministic methods perform
better than stochastic methods on average.
• Stochastic methods can achieve better clustering
performance if executed multiple times. However,
deterministic methods can still be competitive for
large data sets where execution time is a factor.

[13] 2021 • Maximization of
Shannon’s entropy of
the data distribution
(initial points)
• Four cluster validity
indexes: partition co-
efficient, classification
entropy, separation
index, and partition
index (select K)

• synthetic data
• real-life data

• The proposed methods can achieve better clus-
tering results with faster convergence and lower
computational cost than other methods.
• The proposed methods have some limitations,
such as dependence on the threshold value for the
entropy-based initialization and difficulty choos-
ing the best cluster validity index for different data
sets.

[14] 2021 • Convex Hull algo-
rithm

• Synthetic
• Iris
• Wine
• Letter
• Ruspini

• It outperforms the conventional K-means and
other existing methods regarding clustering error,
computation time, and CCPI for four real-world
datasets. Also, it performs well on a synthetic
dataset with six clusters.
• It is sensitive to outliers, requires a parameter that
may vary depending on the data distribution and
may not work well when the number of clusters is
two.

[15] 2021 • BRIk: Bootstrap
replications and per-
forms Randomly Ini-
tialized k-means

• Simulated (synthetic
data)
• Real data
o Breast cancer diagnostic
(BC)
o Breast tissue (BT)
o Ecoli (EC)
o Forest types (FT)
o Glass identification (GI)

• BRIk effectively minimizes distortion and recov-
ers true cluster structure, especially for complex
datasets.
• BRIk is computationally expensive, but this can
be reduced by using a small bootstrap size or run-
ning it multiple times.
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o Heart disease-Hung. Re-
processed (HD)
o Hill valley-training (HV)
o Image segmentation (IS)
o Ionosphere (I)
o Libras movement (LM)
o Multiple features (MF)
o Page blocks classification
(PBC)
o Parkinson (P)
o Pima Indians diabetes
(PID)
o Spambase (SB)
o Steel plates faults (SPF)
o Synthetic control chart
(SCC)
o Vertebral column (VC)
o Wine (W)
o Wine quality red (WQ)

[16] 2022 • Random
• Continuous K Means
(Ck-Means)
• Milligan (Milligan)
• Katsavounidis, Kuo
& Zhang (Kkz)
• Bradley & Fayyad
(Bf)
• Global K-Means
(Gkm)
• Yuan Et Al. (Yuan)
• Hand & Krzanowski
(Hk)
• Intelligent K-Means
(Ik 1 And Ik 2)
• K-Means++ (Km++)
• Single Pass Seed
Selection (Spss)
• Erisoglu, Calis &
Sakallioglu (Ecs)
• Hatamlou Binary
Search (Bs)
• Khan’s Seed Selec-
tion Algorithm (Khan)
• Onoda, Sakai &
Yamada (Osy 1 And
Osy 2)

• Synthetic
• real-world
o Avila
o Blood Transfusion
o Breast Cancer (Diag.)
o Breast Cancer (Orig.)
o Breast Tissue
o Ecoli
o Fossil
o Glass
o HTRU2
o Haberman
o Iris
o Leaf
o Letter Recognition
o Libras Movement
o Musk 1
o Musk 2
o Optical Recognition
o Page Blocks
o Parkinsons
o Pen-Based Recognition
o Sonar all
o Spambase
o Vehicle Silhouettes
o Vertebral Column
o Wine
o Wine Quality (Red)
o Wine Quality (White)
o Yeast

• No single k-means initialization algorithm out-
performs all others in all cases. The performance
depends on various factors, such as the data distri-
bution and the number of clusters.
• The proposed work does not consider other as-
pects of clustering quality, such as the interpretabil-
ity of the clusters, and it does not explore the im-
pact of data pre-processing or parameter tuning on
the algorithms.
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2) SMO
SMO is a nature-inspired metaheuristic algorithm that mimics
the foraging and communication strategies of spider monkeys
to solve optimization problems. SMO utilizes a population
of solutions and uses various operators such as exploration,
exploitation, and information sharing to navigate the search
space effectively. It demonstrates competitive performance
compared to other metaheuristic algorithms across benchmark
functions [23]. SMO offers a promising approach for address-
ing complex optimization tasks and has potential applications
in diverse real-world domains. Algorithm 3 illustrates the
pseudocode of the SMO algorithm [24].

Algorithm 3 SMO algorithm

1: Initialize Population, LocalLeaderLimit, GlobalLeader-
Limit, pr.

2: Calculate fitness
3: Select global leader and local leaders by applying greedy

selection.
4: while (Termination criteria is not satisfied) do
5: For finding the objective (Food Source), generate the

new positions for all the group members by using self
experience, local leader experience and group members
experience.

6: Apply the greedy selection process between existing
position and newly generated position, based on fitness
and select the better one.

7: Calculate the probability probi for all the group mem-
bers.

8: Produce new positions for the all the group members,
selected by probi, by using self experience, global leader
experience and group members experiences.

9: Update the position of local and global leaders, by
applying the greedy selection process on all the groups.

10: If any Local group leader is not updating her position
after a specified number of times (LocalLeaderLimit) then
re-direct all members of that particular group for foraging.

11: If Global Leader is not updating her position for a
specified number of times (GlobalLeaderLimit) then she
divides the group into smaller groups.

12: end while

3) WOA
WOA is a metaheuristic algorithm inspired by the hunting
behavior of whales. It utilizes three key operators: encircling
prey, bubble-net feeding, and searching for prey. The algo-
rithm starts by initializing a population of whales randomly.
In each iteration, the whales update their positions based on
the equations derived from the operators. The algorithm ter-
minates when a specified stopping criterion is met, indicating

the discovery of an optimal solution. Algorithm 4 illustrates
the pseudocode of the WOA algorithm [25].

Algorithm 4 WOA algorithm

1: Initialize the whale’s population Xi (i = 1, 2, ..., n)
2: Calculate the fitness of each search agent
3: X∗ = the best search agent
4: while (t < maximum number of iterations) do
5: for each search agent do
6: Update a, A, C, l, and p
7: if (p < 0.5) then
8: if (|A|< 1) then
9: Update the position of the current search

agent
10: else if (|A| ≥ 1) then
11: Select a random search agent (Xrand)
12: Update the position of the current search

agent
13: end if
14: else if (p ≥ 0.5) then
15: Update the position of the current search
16: end if
17: end for
18: Check if any search agent goes beyond the search

space and amend it
19: Calculate the fitness of each search agent
20: Update X∗ if there is a better solution
21: t = t + 1
22: end while
23: return X∗

C. Clustering Evaluation
To assess the clustering outcome, the Silhouette coefficient is
utilized. The silhouette coefficient measures the quality and
separation of clusters in a clustering analysis. It is calculated
for each data point and represents the cohesion within its
cluster and the separation from neighboring clusters. The
silhouette coefficient is calculated using Eq. 1.

Silhouettei =
(bi −ai)

max(ai,bi)
, (1)

where Silhouettei is the silhouette coefficient for data
point i, ai is the average dissimilarity between i and other data
points in the same cluster, and bi is the minimum average
dissimilarity between i and any other cluster. Silhouettei
ranges from -1 to 1. A value close to 1 means well-clustered
data, 0 suggests data on the boundary, and -1 implies possible
misassignment of data to clusters [9].
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IV. THE CURRENT WORK

In the current work, we employed three swarm intelligence
algorithms, namely GWO, SMO, and WAO, to address the
challenge of initializing centroids in the K-means clustering
algorithm. The subsequent lines present a detailed overview
of the specific aspect of the current study that is aimed to
address the first research question (RQ1).

A. Individual Representation
There are two techniques for representing initial centroids as
individuals in swarm algorithms. The indirect technique rep-
resents an individual’s position by the indices of data points
in the dataset. Each index corresponds to a specific sample.
The direct technique represents an individual’s position by
the attributes of data points in the dataset. Each position
corresponds to a distinct sample. In this study, we focus pri-
marily on the direct technique due to its superior performance
compared to the indirect technique [26].

In this study, each individual in the population is repre-
sented by a 2D matrix with K rows (number of clusters) and
D columns (number of attributes), representing the data points
of the dataset as initial centers for the problem. Here is an
example of an individual with 3 clusters and 4 attributes:

Centers Attribute
1

Attribute
2

Attribute
3

Attribute
4

Cluster 1 6.7 3.1 5.6 2.4
Cluster 2 6.2 3.4 5.4 2.3
Cluster 3 5.0 3.4 1.5 0.2

In this representation, each row corresponds to a cluster
center, and the columns contain the attribute values of the
respective centroids.

B. Objective Function
To achieve a balance between clustering quality and computa-
tional speed, a two-part objective function is proposed. The
first part quantifies the clustering quality by transforming the
silhouette coefficient into a minimization problem by subtract-
ing it from 1. The second part evaluates the computational
speed by employing the number of iterations required to ob-
tain the results. The objective function is computed using Eq.
2, which combines these two aspects in a unified framework.
By optimizing this objective function, a trade-off between
clustering performance and computational efficiency can be
achieved.

f (ind) = a×(1−Silhouette(KM(ind)))+b× iterations
Max iter

,

(2)

where f is the objective function, ind is an individual, KM
is the K-means algorithm, a and b are real numbers within
the interval [0, 1], and a+b = 1. They are coefficients that
represent the weights assigned to the clustering quality and
computational speed, respectively. The value of a determines
how much weight is given to the clustering quality in deter-
mining the value of f , while the value of b determines how
much weight is given to the computational speed. These coef-
ficients can be adjusted to change the relative importance of
these two measures in the equation and to achieve the desired
values of f .

A lower objective function value, f , signifies improved
clustering quality with enhanced cluster distinctiveness and
cohesion. Additionally, it indicates faster convergence.

C. Systems
We have investigated three different swarm intelligence-based
systems:

1) GWOKM
In this system, the initial centroids for the KM algorithm are
selected using a GWO algorithm, as shown in Algorithm 2.
The system employs the individual representation described
earlier and evaluates the clustering quality using the objective
function outlined in Eq. 2.

2) SMOKM
This system is similar to GWOKM, except that it employs the
SMO algorithm, as shown in Algorithm 3, as the optimization
algorithm instead of the GWO algorithm.

3) WOAKM
This system is similar to GWOKM, except that it employs the
WOA algorithm, as shown in Algorithm 4, as the optimization
algorithm instead of the GWO algorithm.

V. RESULTS

A. Parameters Setting
For all experiments conducted in this study, the parameter
settings specified in Table II were used consistently for all
swarm intelligence algorithms.

TABLE II.
PARAMETERS SETTING

Parameters Value
Population Size 20
Maximum Iterations 100
Number of Runs 10



281 | Obaid & Alabbas

B. Tested Datasets
To assess the effectiveness of the current study, ten well-
known real datasets were used to evaluate the proposed ap-
proaches, compared with other techniques. The characteristics
of these datasets are provided in Table III.

TABLE III.
DESCRIPTIONS OF TESTED DATASETS

ID Dataset Numbers×
Attributes

Number of
clusters

1 Glass 214 × 9 6
2 Bupa 345 × 6 2
3 Seed 210 × 7 3
4 Iris 150 × 4 3
5 Breast-Cancer 569 × 30 2
6 Mall-Customers 200 × 5 5
7 Digits 1797 × 64 10
8 Heart 270 × 13 2
9 Haberman 306 × 3 2

10 CMC 1473 × 9 3

C. Results
In this work, we investigated the performance of six initial-
ization centroid techniques for K-means clustering: Random,
PCA, Forgy, K-means++, Naive sharding, and Hierarchical
Clustering (see Section III (A)). We also investigated the per-
formance of three proposed swarm intelligence techniques:
SMOKM, WOAKM, and GWOKM (see Section IV. ). We
evaluated these techniques on ten diverse real-world datasets:
Glass, Bupa, Seed, Iris, Breast-Cancer, Mall-Customers, Dig-
its, Heart, Haberman, and CMC (see Table III). Our objective
is to evaluate the clustering performance and computational
efficiency of these techniques to identify the most effective
approaches on different real-world datasets. The results of
these experiments, in terms of (mean ± standard deviation),
for ten runs, are summarized in Table IV.

D. Discussion
The results presented in TableIV provide valuable insights
into the effectiveness and performance of various centroid
initialization techniques for K-means clustering. These results
offer insights into how different initialization strategies impact
the quality of clustering results. By examining the measures
of clustering quality and computational speed presented in
the table, we can gain a deeper understanding of how these
techniques perform and their implications for clustering al-
gorithms. Let us now discuss the results in detail to uncover
patterns, trends, and noteworthy observations.

For the Glass dataset, the SMOKM technique stood out as
the superior option, achieving the highest average silhouette

coefficient of 0.592 ± 0.001. This indicates that SMOKM pro-
duced well-defined and separated clusters, resulting in better
clustering performance. Moreover, SMOKM demonstrated a
relatively fast convergence rate, requiring an average of 3.0
iterations. Considering both the high silhouette coefficient
and the efficient convergence rate, SMOKM emerged as the
preferable choice for clustering the Glass dataset.

Similarly, for the Bupa dataset, SMOKM, WOAKM, and
GWOKM techniques exhibited the highest average silhou-
ette coefficients with a minimal standard deviation of 0.634 ±
0.0, indicating consistent and well-separated clusters. Among
these techniques, SMOKM demonstrated the fastest conver-
gence rate with an average of 2.0 iterations. While all three
techniques achieved comparable clustering performance, SMO-
KM’s combination of high quality and computational effi-
ciency made it the preferred option for clustering the Bupa
dataset.

Moving on to the Seed dataset, SMOKM and WOAKM
techniques showed the highest average silhouette coefficients
with low standard deviations of 0.473 ± 0.0, indicating supe-
rior clustering performance. SMOKM also exhibited faster
convergence, requiring an average of 2.3 iterations compared
to WOAKM’s 3.3 iterations. Thus, SMOKM proved effective
in producing well-separated clusters and offered a faster com-
putational speed, making it the preferred choice for clustering
the Seed dataset.

In the case of the Iris dataset, several techniques, includ-
ing PCA, Hierarchical Clustering, SMOKM, WOAKM, and
GWOKM, yielded the highest average silhouette coefficients
of 0.553 ± 0.0 with minimal standard deviation. These tech-
niques consistently produced well-separated clusters, indi-
cating superior clustering performance. Regarding computa-
tional efficiency, Hierarchical Clustering and SMOKM stood
out with low iteration counts of 2.0 ± 0.0 and minimal standard
deviations. Therefore, these techniques provided a favorable
balance of clustering performance and computational speed
for the Iris dataset.

For the Breast-Cancer dataset, multiple techniques, like
Random, PCA, Forgy, K-means++, Naı̈ve sharding, SMOKM,
WOAKM, and GWOKM, demonstrated equal silhouette coef-
ficient values of 0.697 ± 0.0, indicating consistent and well-
separated clusters. However, when considering the number
of iterations required for convergence, SMOKM, WOAKM,
and GWOKM exhibited faster convergence rates of 2.0 ± 0.0
compared to other techniques. Therefore, if computational
efficiency is a priority, SMOKM, WOAKM, and GWOKM
could be preferable due to their faster convergence rates.
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Analyzing the Mall-Customers dataset, Naive sharding,
SMOKM, WOAKM, and GWOKM techniques yielded the
highest average silhouette coefficients of 0.554 ± 0.0 with
minimal standard deviation. These techniques consistently
produced well-separated clusters, indicating superior cluster-
ing performance. Among them, SMOKM demonstrated the
fastest convergence rate of 2.9 ± 0.3, followed by WOAKM
and GWOKM. Considering the quality of clustering results
and computational speed, SMOKM emerged as the preferred
choice for the Mall-Customers dataset.

Regarding the Digits dataset, GWOKM emerged as the
better option, achieving the highest average silhouette coef-
ficient of 0.189 ± 0.001. GWOKM produced well-defined
and separated clusters, resulting in better clustering perfor-
mance. Regarding speed, GWOKM required an average of
8.2 iterations, suggesting a relatively efficient convergence
process. Therefore, considering the high silhouette coefficient
and the relatively efficient convergence rate, GWOKM was
the preferable choice for clustering the Digits dataset.

For the Heart dataset, PCA, SMOKM, WOAKM, and
GWOKM techniques exhibited the highest average silhouette
coefficients of 0.38 ± 0.0 with minimal standard deviation.
These techniques consistently produced well-separated clus-
ters, indicating superior clustering performance. Among them,
SMOKM demonstrated low iteration counts of 2.3 ± 0.458
with minimal standard deviations, indicating both effective
clustering and computational efficiency. Therefore, SMOKM
provided a favorable balance of clustering performance and
computational speed for the Heart dataset.

Moving on to the Haberman dataset, the results show that
Hierarchical Clustering has the highest mean value (0.422)
but also the highest standard deviation (5.551). SMOKM,
WOAKM, and GWOKM have the same mean value (0.401)
and a standard deviation of 0.0. This suggests that Hierarchi-
cal Clustering might perform slightly better on average, but
its results are more variable and less consistent. SMOKM,
WOAKM, and GWOKM, on the other hand, are more consis-
tent and, therefore, better choices due to their lower variability.
Moreover, SMOKM exhibited a relatively fast convergence
rate, requiring an average of iterations 2.0±0.0 with minimal
standard deviations. Considering both the high silhouette
coefficient and the efficient convergence rate, Hierarchical
Clustering emerged as the preferable choice for clustering the
Haberman dataset.

Lastly, for the CMC dataset, PCA, SMOKM, WOAKM,
and GWOKM techniques showed the highest average silhou-
ette coefficients of 0.443 ± 0.0 with minimal standard devia-
tion. These techniques consistently produced well-separated
clusters, indicating superior clustering performance. SMOKM
and GWOKM demonstrated a low iteration count of 3.1 ± 0.3
with minimal standard deviations, indicating both effective

clustering and computational efficiency. Therefore, these tech-
niques provided a favorable balance of clustering performance
and computational speed for the CMC dataset.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we extensively evaluated six well-known tradi-
tional initialization centroid techniques for K-means cluster-
ing with three proposed swarm intelligence-based techniques.
The results demonstrate that the proposed swarm intelligence-
based techniques surpassed all traditional centroid initializa-
tion methods for K-means clustering. This is because swarm
intelligence algorithms can adapt to different dataset charac-
teristics and adjust the number and position of centroids based
on data distribution and similarity, resulting in more robust
and flexible clustering results. Swarm intelligence-based tech-
niques are also more robust to noise and outliers. Therefore,
swarm intelligence-based techniques are promising for im-
proving clustering results on various datasets, responding to
the research question (RQ2). SMOKM, in particular, emerged
as the superior method, consistently achieving the highest
average silhouette coefficient and converging in the fewest it-
erations across most tested datasets. WOAKM and GWOKM
proved to be on par with SMOKM, presenting themselves as
equally viable alternatives for achieving commendable clus-
tering results. These findings can respond to the research
questions (RQ3 and RQ4).

The findings of this study have important implications
for the field of clustering. SMOKM, with its robust perfor-
mance and computational efficiency, stands out as the pre-
ferred choice for clustering diverse datasets. Its ability to pro-
duce well-defined and separated clusters makes it a valuable
tool in various applications, especially when computational
resources are limited.

Furthermore, other traditional techniques such as Hier-
archical Clustering, PCA, and K-means++ also showcased
promising results on specific datasets. These techniques can
be viable alternatives to swarm intelligence-based techniques
in cases where dataset characteristics or computational con-
straints necessitate different approaches.

As for future work, exploring the applicability and perfor-
mance of swarm intelligence techniques on larger and more
complex datasets would be beneficial. Additionally, inves-
tigating the combination of multiple initialization centroid
techniques or the development of hybrid methods could poten-
tially further enhance clustering performance. Furthermore,
exploring the impact of parameter tuning and optimization
strategies specific to each technique would be valuable to
refine and maximize their effectiveness.

Overall, this research contributes valuable insights into the
selection and performance evaluation of initialization centroid
techniques for K-means clustering. The findings emphasize
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the superiority of swarm intelligence techniques, particularly
SMOKM, and guide researchers and practitioners in seeking
optimal solutions for clustering diverse datasets.

CONFLICT OF INTEREST

The authors have no conflict of relevant interest to this article.

REFERENCES

[1] C. Yuan and H. Yang, “Research on k-value selection
method of k-means clustering algorithm,” J — Multidis-
ciplinary Scientific Journal, vol. 2, pp. 226–235, June
2019. https://doi.org/10.3390/j2020016.

[2] T. Kodinariya and D. P. R. Makwana, “Survey on exist-
ing methods for selecting initial centroids in k-means
clustering,” International Journal of Engineering Devel-
opment and Research (IJEDR), vol. 2, no. 2, pp. 2865–
2868, 2014.

[3] S. Shukla and S. Naganna, “A review on k-means data
clustering approach,” International Journal of Informa-
tion & Computation Technology, vol. 4, no. 17, pp. 1847–
1860, 2014.

[4] J. M. Pena, J. A. Lozano, and P. Larranaga, “An
empirical comparison of four initialization meth-
ods for the k-means algorithm,” Pattern recogni-
tion letters, vol. 20, no. 10, pp. 1027–1040, 1999.
https://doi.org/10.1016/s0167-8655(99)00069-0.

[5] T. Su and J. Dy, “A deterministic method for initializing
k-means clustering,” in 16th IEEE international confer-
ence on tools with artificial intelligence, (Boca Raton,
FL, USA), pp. 784–786, IEEE, 15-17 November 2004.
https://doi.org/10.1109/ictai.2004.7.

[6] M. E. Celebi and H. A. Kingravi, “Deterministic ini-
tialization of the k-means algorithm using hierarchical
clustering,” International Journal of Pattern Recogni-
tion and Artificial Intelligence, vol. 26, no. 07, pp. 1–25,
2012. https://doi.org/10.1142/s0218001412500188.

[7] M. E. Celebi, H. A. Kingravi, and P. A. Vela, “A
comparative study of efficient initialization methods
for the k-means clustering algorithm,” Expert systems
with applications, vol. 40, no. 1, pp. 200–210, 2013.
https://doi.org/10.1016/j.eswa.2012.07.021.

[8] R. T. Aldahdooh and W. Ashour, “Dimk-means”
distance-based initialization method for k-means clus-
tering algorithm”,” International Journal of Intelligent
Systems and Applications, vol. 5, no. 2, pp. 41–51, 2013.
https://doi.org/10.5815/ijisa.2013.02.05.

[9] B. Li, “An experiment of k-means initialization strate-
gies on handwritten digits dataset,” Intelligent Infor-
mation Management, vol. 10, no. 2, pp. 43–48, 2018.
https://doi.org/10.4236/iim.2018.102003.

[10] V. P. Murugesan and P. Murugesan, “A new initialization
and performance measure for the rough k-means cluster-
ing,” Soft Computing, vol. 24, no. 15, pp. 11605–11619,
2020. https://doi.org/10.1007/s00500-019-04625-9.

[11] M. Ahmed, R. Seraj, and S. M. S. Islam, “The k-means
algorithm: A comprehensive survey and performance
evaluation,” Electronics, vol. 9, no. 8, pp. 1–12, 2020.
https://doi.org/10.3390/electronics9081295.

[12] A. Vouros, S. Langdell, M. Croucher, and E. Vasi-
laki, “An empirical comparison between stochastic and
deterministic centroid initialisation for k-means vari-
ations,” Machine Learning, vol. 110, pp. 1975–2003,
2021. https://doi.org/10.1007/s10994-021-06021-7.

[13] K. Chowdhury, D. Chaudhuri, and A. K. Pal, “An
entropy-based initialization method of k-means clus-
tering on the optimal number of clusters,” Neural Com-
puting and Applications, vol. 33, pp. 6965–6982, 2021.
https://doi.org/10.1007/s00521-020-05471-9.

[14] Z. Rahman, M. S. Hossain, M. Hasan, and
A. Imteaj, “An enhanced method of initial clus-
ter center selection for k-means algorithm,” in
2021 Innovations in Intelligent Systems and Appli-
cations Conference (ASYU), pp. 1–6, IEEE, 2021.
https://doi.org/10.1109/asyu52992.2021.9599017.

[15] A. Torrente and J. Romo, “Initializing k-means clus-
tering by bootstrap and data depth,” Journal of
Classification, vol. 38, no. 2, pp. 232–256, 2021.
https://doi.org/10.1007/s00357-020-09372-3.

[16] S. Harris and R. C. De Amorim, “An extensive
empirical comparison of k-means initialization algo-
rithms,” IEEE Access, vol. 10, pp. 58752–58768, 2022.
https://doi.org/10.1109/access.2022.3179803.

[17] S. F. Raheem and M. Alabbas, “Optimal k-means
clustering using artificial bee colony algorithm with
variable food sources length.,” International Jour-
nal of Electrical & Computer Engineering (2088-
8708), vol. 12, no. 5, pp. 5435–5443, 2022.
https://doi.org/10.11591/ijece.v12i5.pp5435-5443.

[18] A. Kazemi and G. Khodabandehlouie, “A new
initialisation method for k-means algorithm in
the clustering problem: data analysis,” Interna-
tional Journal of Data Analysis Techniques and



285 | Obaid & Alabbas

Strategies, vol. 10, no. 3, pp. 291–304, 2018.
https://doi.org/10.1504/ijdats.2018.10015167.

[19] J. A. Alhijaj and R. S. Khudeyer, “Integration of effi-
cientnetb0 and machine learning for fingerprint classi-
fication,” Informatica, vol. 47, no. 5, p. 49–56, 2023.
https://doi.org/10.31449/inf.v47i5.4724.

[20] G. S. Ohannesian and E. J. Harfash, “Epileptic seizures
detection from eeg recordings based on a hybrid sys-
tem of gaussian mixture model and random forest clas-
sifier,” Informatica, vol. 46, no. 6, p. 105–116, 2022.
https://doi.org/10.31449/inf.v46i6.4203.

[21] M. M. Mayo, “An arithmetic-based deterministic cen-
troid initialization method for the k-means clustering
algorithm,” 2016.

[22] S. Mirjalili, S. M. Mirjalili, and A. Lewis,
“Grey wolf optimizer,” Advances in engi-
neering software, vol. 69, pp. 46–61, 2014.
https://doi.org/10.1016/j.advengsoft.2013.12.007.

[23] S. F. Raheem and M. Alabbas, “Dynamic artifi-
cial bee colony algorithm with hybrid initialization
method,” Informatica, vol. 45, no. 6, p. 103–114, 2021.
https://doi.org/10.31449/inf.v45i6.3652.

[24] J. C. Bansal, H. Sharma, S. S. Jadon, and M. Clerc,
“Spider monkey optimization algorithm for numerical
optimization,” Memetic computing, vol. 6, pp. 31–47,
2014. https://doi.org/10.1007/s12293-013-0128-0.

[25] S. Mirjalili and A. Lewis, “The whale op-
timization algorithm,” Advances in engi-
neering software, vol. 95, pp. 51–67, 2016.
https://doi.org/10.1016/j.advengsoft.2016.01.008.

[26] A. Q. Obaid and M. Alabbas, “Hybrid variable-length
spider monkey optimization with good-point set initial-
ization for data clustering,” Informatica, vol. 47, no. 8,
p. 67–78, 2023. https://doi.org/10.31449/inf.v47i8.4872.


	Introduction
	Related Works
	Materials and Methods
	The K‑means clustering
	Random Technique
	Forgy Technique
	Initialization Based on Hierarchical Clustering
	K‑means++ Technique
	Initialization Based on PCA
	Naive sharding Technique

	Swarm Intelligence Algorithms
	GWO
	SMO
	WOA

	Clustering Evaluation

	The Current Work
	Individual Representation
	Objective Function
	Systems
	GWOKM
	SMOKM
	WOAKM


	Results
	Parameters Setting
	Tested Datasets
	Results
	Discussion

	Conclusions and Future Work

