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Abstract

Video prediction theories have quickly progressed especially after a great revolution of deep learning methods. The
prediction architectures based on pixel generation produced a blurry forecast, but it is preferred in many applications
because this model is applied on frames only and does not need other support information like segmentation or flow
mapping information making getting a suitable dataset very difficult. In this approach, we presented a novel end-to-end
video forecasting framework to predict the dynamic relationship between pixels in time and space. The 3D CNN encoder
is used for estimating the dynamic motion, while the decoder part is used to reconstruct the next frame based on adding
3DCNN CONVLSTM2D in skip connection. This novel representation of skip connection plays an important role in
reducing the blur predicted and preserved the spatial and dynamic information. This leads to an increase in the accuracy
of the whole model. The KITTI and Cityscapes are used in training and Caltech is applied in inference. The proposed
Jframework has achieved a better quality in PSNR=33.14, MES=0.00101, SSIM=0.924, and a small number of parameters

(2.3 M).
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I. INTRODUCTION

Video prediction (VP) is the most interesting approach in com-
puter vision and object trajectories. It utilizes the sequence
of consecutive data as input to appreciate what will occur
in the next frames. This procedure is considered valuable
in the scope of object segmentation [1], [2], anomaly detec-
tion [3], [4], motion prediction [5], [6], autonomous driving
applications [7], human pose estimation and recognition [8],
pedestrian detection and tracking [9], [10], weather forecast-
ing [11]and many other applications depend on predicting fu-
ture frames of a video sequence. There are many concepts in
video prediction; such as motion recognition and object detec-
tion. These applications are discriminator methods and need
to extract principle information helping for recognition and/or
detection without preserving the whole dynamic information

in each frame, then the excessive or irrelevant information is
discarded [12]. However, another concept of video prediction
used in many applications is a generative method that imposes
simulation of the whole environment. These models extract
different levels of dynamic information from the frames to
create the value of each pixel that belongs to the next frames.
Generally, generative models are more exciting than discrimi-
nator models [13]. Recently, VP approaches have depended
on enhancing the method of extracting spatial and dynamic in-
formation by applying many patterns of models. For example,
many studies suggested decomposing video frames into spa-
tial and dynamic parts at first and using CNN/RNN models to
sample the dynamics component [14]. Other recent works pro-
posed evolving high-level spatial features from input frames,
predicting the dynamic features based on high-level features,
and applying decoder models to reconstruct future frames [15].
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This method is applied in our study to extract the dynamic and
spatial features. In this approach, we suggested an end-to-end
generative model that merges the 2D and 3D CNN convolu-
tion layers to build the Autoencoder model and added a 3D
CNN-CONVLSTM2D in skip connection to extract the dy-
namic features from the intermediate output of each encoder
level. Firstly, our approach extracted the dynamic features
based on the high-level spatial features which are extracted
depending on 2D CNN models. The 2D CNN model is ap-
plied on each frame to produce the high-level features in each
frame in a separate manner. The Encoder part consists of five
input frames which are applied to 2D CNN models; the inter-
mediate outputs of each layer are concatenated and applied to
3D CNN high-level block and 3D CNN-2D CONVLSTM2D
skip connection to extract the dynamic features from the low
and mid-level dimensional features. This novel type of skip
connection preserves the Spatiotemporal distribution consis-
tency of our approach and captures the dynamic information
on heretical features without any additional information on
the input video. Finally, our approach applied the Cityscapes
and KITTI datasets for training the proposed model and the
CalTech dataset for testing the model. This study is organized
as follows: Section II. displays an overview of the related
video prediction model. Section III. produces a complete
description of all blocks applied in our deep model. Section
IV. describes the evaluation matrices used to measure the
performance of the models. Section V. compares the experi-
mental results with different methods based on single-frame
and multi-frame prediction. Finally, the conclusion of this
study is explained in Section VI. , in addition to the future
works are suggested.

II. RELATED WORKS

The expectation of the future frames itself is a difficult issue.
Intuitively, the techniques should be able to capture the pixel-
wise modification and the estimated dynamic motion to allow
pixel values based on past or current frames transformed into
the next frames [16]. based on Predictive techniques [17] like
2D Auto-Encoders (AE) [18] and recurrent neural networks
(RNN) [19]. But, most 2D AE models suffer from blurry
prediction results due to the inconsistency between spatial
and temporal features. So, many algorithms are proposed to
enhance the prediction performance by adding many layers in
the Encoder and Decoder parts [20], building the intermediate
block between the encoder and the decoder [14], as shown in
Tablel.

Padmashree Desai et.al. [21] proposed a VP model based
on the CONVLSTM encoder-CONVLSTM decoder. Yun-
boWang et.al [22] proposed a VP model that combined the
3D-LSTM with 3D CONYV based on the AE. W. Lotter et.
al. [23] suggested a predictive neural network model (Pred-
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TABLE 1.
VIDEO PREDICTION TECHNIQUES
Add RNN Layers
Papers Techniques
P.Desai [21] 2D CONVLSTM AE.
Y.Wang [22] 3D LSTM+3D CONV AE
Intermediate Block
W. Lotter [23] PredNet+the ConvLSTM
R. Villegas [14] CONVLSTM+2D AE
Z. Straka [24] Estimator Block+2D AE.
Xi Ye [25] NP block+2D AE
Z. Gao [26] ST translator+2D AE
Multi model AE

Denton [13] content and motion AE model.

H. Wei [27] spatial+flow models

Z. Chang [6] Motion+spatial models
Add Skip connection into 2D AE

R.Zhang [28] |  Skip Attention AE model

Net) which combined the ConvLSTM with predictive coding
concept to predict next frames by creating a local prediction
in each layer. Ruben Villegas et.al. [14] introduced a 2D AE
model with a CONVLSTM as the bottleneck stage to pre-
dict the next frame at the pixel level. While. Zdenek Straka
et.al. [24] suggested AE with Predictive Coding Net (PreCNet)
which is applied as an estimator block between the encoder
and decoder parts. Xi Ye [25] presented a AE model with an
intermediate neural process (NP) block that maps spatiotempo-
ral input coordinates to produce each pixel value of the output.
Zhangyang Gao et.al. [26] proposed simple spatial-temporal
features translator between the encoder and the decoder part
to enhance the blurry prediction. In contrast, Denton, E.L. et
al. [13] proposed decomposition approaches to analyze each
frame’s content and motion, and then fed into separate en-
coders. Henglai Wei et al. [27] proposed the 2D CNN spatial
model and 2D CNN flow model to capture the spatial and
dynamic information separately based on Auto-encoder mod-
els. while Zheng Chang et al. [6] used a motion model to
predict the next frame based on extracting Spatial-Temporal
features from a series of frames that are encoded in 2D CNN
models. On the other side, J. CHO et al. [29] suggested an
Auto-encoder model based on a direct skip connection with a
special stage of global context propagation networks (GCPN)
between the encoder and decoder model. R. Zhang [28] sug-
gested Skip Attention Encoder—Decoder (SAED) to preserve
the attention of human motion features in Spatial-Temporal
features based on Gated Recurrent Unite(GRU). All the above
approaches still suffer from blurry prediction and complexity
of the design. So, a novel lightweight VP method is suggested
which applies a novel 3D CNN skip connection and high level
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3D CNN as an intermediate block to decrease the inconsis-
tency between the spatial and temporal features in a small
number of parameters. The proposed model uses five 2D
CONYV models to capture the spatial features from five con-
secutive input frames. The cubic 3D CNN models are used to
capture a dynamic feature without any other supported infor-
mation or additional models to decrease the blurry prediction.
The dimensions of x and y of each frame extract the spatial
features in the SPN model (Spatial Prediction Network) while
the t-axis or z-axis of the multi-input frame extracts the tem-
poral features from the 3D CNN Network which represents
a novel bottleneck between the encoder and the decoder part.
Instead of using a direct skip connection between the encoder
and decoder part; the 3D CNN-CONVLSTM 2D skip connec-
tion is modified to enhance the prediction performance and
decrease the blurry prediction by capture the most proper mo-
tion features,as shown in Fig. 1. The main added by this paper
are explained as follows: 1) Our model applied a sequence of
previous and current frames as inputs of SPN and then used
three models’ 3D CNN Networks; The first 3D block is to
compress the dynamic information from low-resolution fea-
tures. The second and the third model are used to determine
the mid and high-resolution features as described in Fig. 1.
The CONVLSTM layers are added to increase the accuracy
of the model and preserve the dynamic information in the exe-
crated low and high-resolution features from 3D CNN models.
2) We present a novel lightweight model of a small number
of parameters and record a good performance i.e., PSNR and
MSE.

III. THE PROPOSED METHOD

A. The Overview of the Model

Let X; is the ith frame in the inputs of video frames X = [X;_;,
.., X;]. The basic target of our model is to predict the next fu-
ture m frames O =[Oy 1,..., O;+p,] depending on the sequence
of input X. The difficulty of the proposed model is managing
the complicated evolution of each pixel by combining two
essential scene elements, namely the scene’s content context
and motion dynamics [30]. The framework takes n consecu-
tive input frames X; € R H, W, C where i € 0, n. In this paper,
the number of input frames is 5 consecutive frames [31]. Our
eventual goal is to get accurate forecasting results of future
frames by applying complex RGB frames at time steps fg, 1,
«ev......, tn. The encoder is built by using spatial prediction
networks (SPN). The 3D CNN is used to extract the dynamic
sense of motion in each pixel of 5 frames and features. The
addition of a 3D CNN-CONVLSTM 2D skip connection can
increase the accuracy of the features, Fig. 1.
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Fig. 1. The proposed model

B. The Spatial Prediction Networks (SPN)

The Encoder part of our model consists of 5 blocks of SPN, as
shown in Fig. 2(a). The SPN can generate the low, mid, and
high-resolution features for each frame. This model consists
of three layers of CONV 2D and batch normalization (B.N.),
as shown in Fig. 2(b). A good performance can be achieved by
employing multi-layers of convolutions at multi-frame video
prediction because it processes the spatial invariance of the
frame. In this model, the spatial features are separately taken
from each frame by applying SPN models on each input. The
ground truth of each block is the next frame depending on the
input of each block. The detailed specifications of each layer
are described in Table II. The five models of SPN represent
the encoder part.

C. The 3D CNN Network

The output of each model in the encoder part is passed to
the next stage (3D CNN Models). The layers in this model
are 3D CONYV and B.N. to extract the dynamic sense from
input features as explained in Fig. 3. This part of our method
contains three models; each model consists of 4 Blocks, as
shown in Fig. 4. The Model has five groups of input features
of [H, W, F,] described as [5, H, W, F,]. H and W are the
height and width of the input. The 3D model calculates the
dynamic sense of motion depending on time (t) and space.The
dimension of time is used to extract the dynamic features and
another dimension is not changed to preserve the intensity and
colors of pixels. The outputs of the 3D CNN Model are [1,
H, W, F,]. The design of the three models is the same but the
difference is the filter numbers. The F,, in the first model is
128 and 64, and 32 in the second and third models respectively.
In each model, the F;, is still constant in all layers of models.
the aim of applying the 3D CNN layers is to find the proper
dynamic features in consecutive frames. Table III describes
the details of each layer in the 3D CNN Model.
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Fig. 2. The SPN architecture (a) The encoder model. (b) The
SPN architecture.

D. The Decoder Model

The proposed decoder depends on the skip connection [32],
As seen in Table IV which describes all the details of the
Decoder part and the second stage of the skip connection. The
main purpose of skip connections in a classical AE Model is
to reconstruct the details of the target data or object which
enhances the performance of the models. From this point,
we suggest modifying the connection method between the
compatible layers on both sides of AE networks. In our net-
work, these connections are modified by adding 3D CNN-
CONVLSTM 2D. The proposed skip connection contains two
stages, the first stage is represented by the 3D-CNN model at
fn =32, and 64, and the second stage is the 2D CONVLSTM
layer, as shown in Fig. 1. This stage is described in the de-
coder part as shown in Fig. 5. These connections mitigated
the trouble of the information bottleneck [16]. The extracted
features from the SPN layers are united with the resulting

—— Extracting temporal
—» features in the t domain

O and x, y is not change
[ ]

Extracting Spatial
features in x, y domain
and time is not change

Fig. 3. Spatial and temporal relationship over adjacent Frame

) canures Features
224x224xfnP o
Output
Input Filter Filter Filter Fiter (' W £l
[5, HW,fn] no.=fn, no.=fn, no.=fn, no.=fn, T
K=(3x3x3) K=(3x3x3) K=(3x3x3) K=(3x3x3)
S=(2,1,1), S=(2.1.1), S=(2.11), S=(2,1,1),
Relu Relu Relu Relu
sD-coNN - [ BN

Fig. 4. The 3D CNN model

features of the current and past frames. So, the 3D CNN-
CONVLSTM 2D connection generates new data which is an

TABLE IL
SPN MODEL LAYERS
Layer type | Kernelsize | no.Filter(F;,) | Stride
2D CONV (3,3) 32 1,1
B.N. - - -
2D CONV (3,3) 64 1,1
B.N. - - -———
2D CONV (3,3) 128 (1,1
B.N. -——— -——— -———
TABLE III.
3D CNN MODEL LAYERS
Layer type | Kernel size | no.Filter(F,) | Stride
3D CONV (3,3,3) F, (1,1,1)
B.N. -——— ——— ———
3D CONV (3,3,3) F, (2,1,1)
B.N. ——— —-—— —-——
3D CONV (3,3,3) F, (2,1,1)
B.N. -——= ——= ——=
3D CONV (3,3,3) F, (2,1,1)
B.N. ——— ——— ———
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TABLE IV.
DETAILED SPECIFICATIONS OF EACH LAYER IN DECODER MODEL.
Block type Input layer Layer type Kernel size | No.Filter(F;) | Stride output
Featureyg 3D CONV 3,3,3) 128 (1,1,1) | Freconsiog
-——= B.N. -——= -——= -——= -——=
Freconsiyg 3D CONV 3,3,3) 64 (1,1,1) ———
——— B.N. ——— ——= ——— | Freconsea,
Skip connection | Featuregs | 2D CONVLSTM (3,3) 64 (1,1) | Freconsea,
——— Concatenate [Freconses, ,F'reconses, | — —— | Fconcatyg
Fconcatpg 3D CONV 3,3,3) 64 (1,1,1) —-———
-——= B.N. -——= -——= -——= —-———
-——— 3D CONV 3,3,3) 32 (1,1,1) —-———
- —— B.N. - —— - —— ——— | Freconsy,,
Skip connection | Feature3; | 2D CONVLSTM (3.3) 32 (1,1) | Freconssy,
—-——— Concatenate [Freconss,, Frecons3, | ——— | Fconcatgy
Fconcatgy 3D CONV 3,3,3) 64 (1,1,1) —_—
-——= B.N. -——— -——= -——= ———
-—— 3D-CONV 3,3,3) 32 1,1,1) - ——
——— B.N. -——= -——= -——= ———
Output layer —-—— = 2D CONV (3,3) 3 (1,1) | Next frame
Featwre | 1, coNVLSTM IV. EVALUATION METRICS
x32 The quality of image is typically measured by the Mean
Feature_2 2D- Square Error (MSE), Peak Signal Noise Ratio (PSNR), Struc-
1x224x224  CONVLSTM tural Similarity Index (SSIM) [33] etc. In this study, we
XG4 fundamentally applied MSE, PSNR, and SSIM as metrics
e r ' '_> pPredicted to estimate model quality. In image compression and other
1x224x224 P '_ frame domains, PSNR is frequently employed as a means of sig-
x128 nal reconstruction quality monitoring. It is computed using
3D- Equation 1 [30].
Fn=1 FIn=6 Fn= Fn=3 Fn=3 CONN
28 4 54_ 2 B 2](,3 2552
gj ?2—31' gj ;:3 o ' BN PSNR(GT,PF) = 10log ¥ 4 » (1)
Relu Relu Relu Relu Relu 2D- Z (GT'— PF?)
CONV =0

Fig. 5. The decoder architecture

amended feature map to the decoding layer. The enhancement
of data connections between the encoder and decoder layers
is very useful for forecasting, especially when the next frame
is extremely correlated with the previous one. This helps to
boost motion continuity. The major purposes of 3D CNN-
@D-ConvLSTM skip connections are: (i) Shun the encoder
bottleneck to conserve low and mid- levels of information.
(i1) Enhance the performance of the model by updating the
intermediate connection information which makes the motion
flow better.

Where:

PF: represents the predicted frame.

GT: is the ground truth of the frame.

The SSIM is one of the best metrics that deal with the mean
of the data to gauge brightness, variance, and covariance fac-
tors. The variance is applied to evaluate the contrast, while
the covariance is used to assess data structure. These three
factors are more closely related to human perception to com-
pare the similarity of images. SSIM is typically employed in
jobs requiring the evaluation of image quality such as image
super-resolution, image compression, and others, which is
determined as Equation 2 [30].

(2 Wy, kv, +¢1) (20v,y, +¢2)
(43 + 13 +e1) (of + 03, +e2)

SSIM (Y1,Y2) = 2)
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Where:
Uy, : is the mean of ground truth frame Y;.
Uy, : is the mean of the expected frame.
Oy, : is the variance of an image of ground truth frame Y;.
Oy,: is the variance of the predicted frame.
Oy,y, :is the covariance of Y1,Y, .
C1 and G, are described in Equation 3 [30].

C) = (KiL)? and G = (K>L)? (3)
C1 and C: are utilized to preserve the stability of the compu-
tational procedure.
L: determines the dynamic range of each pixel value. In our
approach, we choose k; =0.01 and k; =0.03 [34]. The values
of SSIM are in the range of [-1,1], A high value of SSIM
means that more compatibility between the prediction result
and the real data or ground truth data. In this model to mea-
sure the SSIM in our Python code, the sliding window size is
11 x 11, and the variance of the Gaussian distribution is 1.5.

V. EXPERIMENTS

1) Training Details

Keras and TensorFlow are used to implement the model. To
increase the stability of the model, the Batch normalization is
applied after each layer except the output layer, and the Adam
optimizer is tuning at (learning rate Ir = 0.0001; betal = 0.9;
beta2 = 0.999). The Batch size=5 and epoch=100. The system
is executed and applied on an NVIDIA RTX3060 GPU with
12 Giga Bytes memory. The training and testing operation
is applied in an end-to-end way, we resize the frames of the
Cityscapes and KITTI dataset to 224x224.

A. Datasets

1) KITTI [35]

This is the most public dataset for VP, autonomous driving,
and mobile robotics, and is considered a standard set for com-
puter vision models. It consists of 57 videos with 1392x512
RGB pixel resolution based on hours of traffic scripts applied
with a different modality of sensors, this dataset included
gray-scale stereo cameras, high-resolution RGB, and a 3D-
laser scanner [36]. the original dataset did not compose GT
for semantic segmentation, because of the popularity of this
set, many researchers were encouraged to add parts of the
dataset. in 2015, the KITTI dataset was modified by adding a
200-frame for both instance and semantic segmentation in a
pixel-level formula [37].

2) Cityscapes [38]

This dataset is very similar to the KITTI dataset and many
papers used the KITTI and Cityscapes together. Cityscapes
introduces a large-scale database based on 50 videos with

2048x1024 RGB pixel resolution. This dataset contains instance-
wise, semantic, and dense pixels for 30 categories grouped
into 8 classes of urban street scenes. The dataset is approx-
imately composed of 5K fine-explained images (1 frame in
30 seconds) and 20K annotated coarse ones (one frame every
20-seconds or 20 meters recorded by the car). This set was
recorded in 50 different cities spending several months in good
conditions weather, and daytime. All frames are produced as
stereo pairs. The dataset also consists of extra High-level data
like outside temperature, vehicle sensors, and GPS tracks to
increase the performance of VP models.

B. Single Frame Prediction

We apply three evaluation metrics to compare our proposed
model with prior studies: Peak Signal-to-noise Ratio (PSNR),
Mean square error, and Structural Similarity Index Measure
(SSIM). Firstly, it must determine the input frames in our
model, we choose 5 frame inputs by applying different num-
bers of frame (3-10) input frames and measure the perfor-
mance of the system as shown in Table V.

TABLE V.
NUMBER OF FRAMES APPLIED
no.input frames MSE PSNR | SSIM
2 0.00159 | 28.905 | 0.821
4 0.00139 | 29.012 | 0.891
5 0.00101 | 33.135 | 0.924
6 0.00101 | 33.135 | 0.924
7 0.00101 | 33.135 | 0.924
8 0.00101 | 33.135 | 0.924
9 0.00101 | 33.135 | 0.924
10 0.00125 | 30.011 | 0.910

The metric values of PSNR, MSE, and SSIM are gener-
ally constant in 5 frames and above. But, when the number
of inputs reaches to 10 frames, the prediction performance
decreases because the structure of our model cannot extract
the suitable features. So, A good next-frame prediction is
achieved in the proposed model as shown in Fig. 6, we apply
5-frame inputs. The results are displayed in Table VI com-
pared with other state-of-the-art models applied to predict
the next frame and utilized the same data (all state-of-the-art
models use the KITTI data set for training and Caltech for
testing).

Our proposed system is outperforming in MSE, PSNR,
and many parameters in comparison to others. However, PreC-
Net [24] outperformed our system in SSIM. That is due to
the reduced number of parameters required for training. Our
model is qualitatively applied to 10 training repetitions in
many frames of the KITTI and Cityscape dataset. The results
of different approaches [23], [39], [24] applied the KITTI
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Fig. 6. The qualitative analysis from Cityscapes and KITTI training datasets. The first five columns contain actual frames at
t=i-4, i-3, 1-2, i-1, and i. The sixth column contains the GT. The final column describes the results of our approach.

TABLE VI.
THE PERFORMANCE ON CALTECH PEDESTRIAN DATASET
AFTER TRAINING ON KITTI DATASET

Method MSE PSNR | SSIM | no.Par.
last feame [39] 0.0079 23.2 0779 | ———
Beyond MSE [36] | 0.00326 | ——— | 0.881 | ———
DM-GAN [40] 0.00241 | ——— | 0.899 | 113M
CtrlGen [41] - —— 26.5 0900 | ———
PredNet [23] 0.00242 | 27.6 0.905 | 6.9M
DVF [42] 0.0022 27.9 0.904 | 3.8M
PreCNet [24] 0.00209 | 28.3 0.926 | 7.0M
ContextVP [39] 0.00194 | 28.7 0.921 | 8.6M
RC-GAN [43] 0.00161 29.2 0919 | ———
OURs 0.00101 | 33.135 | 0.924 | 2.3M

and Cityscape dataset as the training set are compared with
our study, as shown in Fig. 7. All models recorded a good
result but we tend to decrease the blurry prediction as small
as possible by preserving on the details of frames. Our results
are mostly better than other methods because the modified
of skip connection can preserve the details and edges of the

frame which tends to be subtler and sharper compared with
the GT frame. We observe that our proposed model outper-
forms PredRNN and PreCNet by extracting motion features
and protecting detailed structures for spatial and time steps,
while the prediction results of PredRNN, PreCNet, and Con-
textVP become blurry especially in the edges of objects in the
frame as shown in the red and yellow area in Fig. 7.

C. Multi Frame Prediction
To evaluate our approach in forecasting multiple frames, we
employed the same single-frame proposed prediction model
Fig. reffig:fig2. A next-frame prediction approach is used to
access the first 5 frames in each step, i.e., The first five frames
at (t=1,2,3.4,5) are applied to predict frame 6 at t=6. Then,
the predicted frame is concatenated with another previous
frame to predict the seventh frame at t=7. The eighth frame
is predicted at t=8 depending on the seventh predicted frame
another previous frame, as shown in Fig. 8. A quantitative
analysis of the PreCNET model, PredNet model, and RC-
GAN in multiple frame prediction is presented in Table VII.
In our approach, the numbers of input frames are 5 se-
quence frames and the sequence of predicted frames is 5
frames too. The PredNet applied 2 input frames [23], the
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PredNet PreCNet

ContextVP

Fig. 7. A qualitative comparison of PreCNet, PredNet, and Context VP models. Based on Caltech Pedestrian Dataset by rows:

set07-v011, set10-v010, set10-v010, set06-v009.
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Fig. 8. Our proposed approach in multi-frame prediction

PreCNet recorded the best results in 7 input frames [24], and
the RC-GAN [37] utilized 4 frame input. Our model out-
performs other state-of-the-art models and recorded the best
result in PSNR, and SSIM. Although our model recorded the
second rank in SSIM when predicting the first frame predic-
tion, the degradation of results when predicting other frames
are a little smaller and the best results compared with other
models, the modified skip connection preserved the details of
features and this makes the multi-frame prediction is pretty
good, as described in Fig. 9.

The results look good until t=10, unfortunately, the quanti-
tative measurements exposed that our approach suffered from
a blurry prediction after t=10 because of the accumulated er-
ror of predicted frames which were used as input to the next
stage of multi-frame predicted models. So, we can say that

our model works in 5-frame input and 5-frame output.

VI. CONCLUSION

This study presents a lightweight method of connection be-
tween the analysis and reconstruction sides of the AE model
by the cubic 3D CNN-ConvLSTM 2D network. our model
depends on the resolution of the spatial-temporal learning by
adding a multi-frame as a group of input data to estimate the
deep-in-time structure. This strengthens and enhances the
dynamics feature which is very important in video prediction
applications. The modified of skip connection by adding a
cubic 3D CNN-ConvLSTM 2D alleviates and decreases the
vanishing gradient problem. The proposed 3D CNN mid-level
features play as a bottleneck between the encoder and the de-
coder part to capture the proper and suitable dynamic features.
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TABLE VII.
THE QUANTITATIVE ANALYSIS FOR MULTI FRAME
MODELS

Method metric t=6 t=17 t=28
PSNR | 27.6 | 217 | 203
PredNET [23] | qqim | 0905 | 072 | 0.66
PSNR | 292 | 259 | 223
RC-GANBITI | gqrm | 091 | 083 | 073
PSNR | 285 | 234 | 202
PreCNet 241 | soim | 093 | 082 | 0.69
oo PSNR | 33.135 | 26.108 | 23.802
u SSIM | 0.924 | 0818 | 0.792
t=6 t=7 t=8 t=9 t=10
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Fig. 9. A qualitative evaluation of multi frame prediction
algorithms that were selected. The inputs of PredNet and
PreCNet are 10 frames, and RC-GAN used 4 input sequences.
Our approach is applied 5 input frames.

These two additional blocks increase the prediction perfor-
mance. The basic idea of our model is to define different
levels of spatial features by 2DCONYV layers representing in
the SPN model, and then use 3DCONYV layers to estimate the
temporal dynamics features at each hierarchical level. The low
and mid features are passed into 3DCNN-CONVLSTM2D

skip connection which represents the novel step of our model
and reinforces the dynamics features between the encoder
and decoder. The high-level 3DCNN represents the bottle-
neck between the encoder and the decoder parts. These ad-
ditional blocks enhance the experimental results and get the
best performance in PSNR and MSE when compared with
other state-of-the-art models. In single-frame prediction, the
model ranked first in PSNR and second with SSIM=0.924.
The proposed approach was training on a widely used bench-
mark dataset. i.e., KITTI and Cityscapes for training, Caltech
Pedestrian Dataset for testing, which contains videos from
complex environments listed from a car-mounted camera. n
the other side, in multi-frame prediction, the results of our
approach are suitable at 5 frame prediction and more accu-
rate and better than some of the competitors. A quantitative
comparison describes that our approach records high PSNR
with the small number of parameters in five output predictions
and the multi-frame prediction results are slowly degrading
with less blurred frame prediction. We plan to enhance the
results of our model by adding a 3DCNN-CONVLSTM Skip
connection in U-net architecture instead of a direct skip con-
nection and show how much this idea can increase the SSIM
and PNSR. In multi-frame prediction, we need to increase the
number of frames that can be predicted (more than r = 10)
and keep high resolution in the output frame by enhancing the
PSNR and SSIM.
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