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Abstract

This article introduces a novel Quantum-inspired Future Search Algorithm (QFSA), an innovative amalgamation of the
classical Future Search Algorithm (FSA) and principles of quantum mechanics. The QFSA was formulated to enhance
both exploration and exploitation capabilities, aiming to pinpoint the optimal solution more effectively. A rigorous
evaluation was conducted using seven distinct benchmark functions, and the results were juxtaposed with five renowned
algorithms from existing literature. Quantitatively, the QF SA outperformed its counterparts in a majority of the tested
scenarios, indicating its superior efficiency and reliability. In the subsequent phase, the utility of QFSA was explored in
the realm of fault detection in underground power cables. An Artificial Neural Network (ANN) was devised to identify
and categorize faults in these cables. By integrating QFSA with ANN, a hybrid model, QFSA-ANN, was developed
to optimize the network’s structure. The dataset, curated from MATLAB simulations, comprised diverse fault types at
varying distances. The ANN structure had two primary units: one for fault location and another for detection. These
units were fed with nine input parameters, including phase- currents and voltages, current and voltage values from zero
sequences, and voltage angles from negative sequences. The optimal architecture of the ANN was determined by varying
the number of neurons in the first and second hidden layers and fine-tuning the learning rate. To assert the efficacy of
the QF SA-ANN model, it was tested under multiple fault conditions. A comparative analysis with established methods
in the literature further accentuated its robustness in terms of fault detection and location accuracy. this research not
only augments the field of search algorithms with QFSA but also showcases its practical application in enhancing
Jfault detection in power distribution systems. Quantitative metrics, detailed in the main article, solidify the claim of
QFSA-ANN’s superiority over conventional methods.
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I. INTRODUCTION rate and efficient fault detection, and Location are essential
for minimizing the impact of these faults on the power distri-
bution network [3]. Artificial intelligence (Al) represents an
effective solution to introduce successful fault analysis, with
various Al techniques mentioned in the literature [3], such as

Underground power cables play a crucial role in modern
power distribution systems, ensuring a reliable and efficient
electricity supply [1]. However, faults in these cables can
cause significant disruptions and financial losses [2]. Accu-
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artificial neural networks (ANN) [4], random forests [5], fuzzy
logic [6-8], and adaptive-neuro fuzzy [7]. The ANN is one of
the earliest and most influential Al techniques in fault analy-
sis. ANNs draw inspiration from biological neural systems,
comprising interconnected processing nodes that mimic the
function of neurons. These networks are adept at recognizing
intricate patterns, making them invaluable when fault symp-
toms are subtle or embedded within a larger dataset. Many
scholars have detailed their successful applications, emphasiz-
ing their adaptability and precision in diagnosing a wide array
of faults. On the other hand, Random Forests are an ensemble
learning technique primarily used for classification and regres-
sion tasks. They operate by constructing many decision trees
during training and outputting the mode of the classes for clas-
sification or mean prediction for regression. Their strength
lies in their ability to handle large amounts of data with higher
dimensions, providing insights into features of paramount
importance and reducing the risks of overfitting. Fuzzy Logic
systems introduce a different perspective by dealing with un-
certainties inherent in many real-world applications. Unlike
traditional binary logic systems, fuzzy logic operates on the
principle that truth values can exist between absolute truths
and absolute falsehoods, thus offering a nuanced approach to
fault detection. By embracing the vagueness of real-world
systems, fuzzy logic provides a complex system of s with an
inherent degree of uncertainty. Lastly, the Adaptive-Neuro
Fuzzy systems combine the strengths of neural networks and
fuzzy logic. These hybrid systems encapsulate the learning
capability of neural networks and the reasoning capability of
fuzzy logic. Their synergy allows for an adaptable system that
can learn from data while incorporating human-like reason-
ing, making them particularly potent in scenarios where both
pattern recognition and nuanced judgment are required. In
this context, ANN-based fault detection and Location could
improve power system distribution lines with overhead or un-
derground power cables by introducing optimal fault detection
or location [4,9, 10]. Optimization; tracing algorithms can
improve the ANN’s prediction performance by searching for
ideal ANN parameters [11, 12]. Numerous optimization algo-
rithms have been introduced, each with unique characteristics
inspired by diverse natural phenomena. Genetic algorithms
(GA) are based on Darwinian Theory [13], particle swarm
optimization (PSO) mimics the social behavior of birds or
fish during searching for food [14], and differential evolution
(DE) is based on possibly nonlinear and non-differentiable
continuous space functions [15]. The electromagnetism-like
mechanism (EM) is inspired by the attraction-repulsion mech-
anism [16], while cat swarm optimization (CSO) is created
by observing cat activities; tracking and tracing seeking mode
are the two sub-models that are included in this model. Both
of these modes are used to replicate cat behavior [17]. On the

other hand, the problem of the solution getting stuck in local
minima is a significant limitation of these algorithms [18]. To
alleviate this issue, numerous different algorithms have been
devised, including firefly optimization algorithm (FA) [19],
charged system search (CSS) [19], dolphin echolocation algo-
rithm (DEA) [20], lightning search algorithm (LSA) [21,22],
and future search algorithm (FSA) [23]. The FFA is inspired
by the lifestyle of the firefly insect when attracting mating
partners and searching for potential prey. The CSS utilizes
two laws of physics and mechanics, the Newtonian rules
of mechanics and the fundamental law of electrostatics, the
Coulomb law. The DEA is based on echolocation, the bio-
logical sonar used by dolphins. The LSA is inspired by the
movement of lightning toward the ground. The FSA mimics
a person’s life when searching for the best life and trying
to change the lifestyle by imitating successful individuals.
However, not all optimization algorithms provide satisfactory
solutions, leading to the need for introducing new algorithms
and improving existing ones. However, s this paper proposes
a quantum-inspired use search algorithm (QFSA) combined
with an ANN for detecting and locating faults in underground
power cables. The QFSA is inspired by the classical FSA and
quantum mechanics theories [18], improving the exploration
and exploitation capabilities of the FSA to find the optimum
solution. The ANN is used to discover and locate faults in the
power cables, allowing for rapid and accurate identification.
This approach aims to address the limitations of traditional
methods and provide a more advanced technique for fault
analysis in power distribution systems. The research focuses
on developing an accurate and efficient fault locator for power
using Artificial Neural Networks for power distribution and
transmission systems to analyze 3-phase voltages and cur-
rents, zero sequence components, and voltage angles during
negative sequence during different fault conditions to quickly
and accurately identify and isolate faults. ANN-based fault lo-
cators are more effective than other methods like expert fuzzy
systems and can be used by individuals without extensive
power system experience. This user-friendly approach aims
to improve the reliability and efficiency of power systems,
ensuring a continuous electricity supply. However, many re-
searchers are developed quantum-like algorithms. Malossini,
Blanzieri, and Calarco 2008 have developed a quantum ver-
sion of GA called QGA, which utilizes quantum parallelism to
evaluate multiple solutions at once and quantum mutation to
explore new solutions efficiently [24]. Abbas and Aftan 2014
have developed a quantum version of ABC called QABC,
which leverages quantum principles to search the solution
space more efficiently and effectively [25]. Li et al. 2014
have developed a quantum version of BFO called QBFO,
which leverages quantum principles to search the solution
space more efficiently and effectively [26]. Soleimanpour-
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Moghadam, Nezamabadi-Pour, and Farsangi 2014 to enhance
its performance and prevent premature convergence to local
optima. The proposed algorithm combines classical GSA with
the principles of quantum mechanics, providing a powerful
strategy to diversify the population and improve the algo-
rithm’s performance. QIGSA has shown promising results
in various optimization problems, including feature selection,
image processing, and classification [27]. Abd Ali, Hannan,
and Mohamed 2015 developed the (QLSA) by utilizing the-
ories from quantum mechanics to produce it. The QLSA
makes it easier for each step leader to find the optimal po-
sition for a projectile by improving the searcher searching
dictionary learning method through trial and error is unneces-
sary, thanks to the QLSA, which produces adaptive input and
output membership functions instead [18]. in the field fault
detecting and locating faults, this brief literature review can
focus light on some previous work Garima Tiwari 2019 [28]:
Tiwari proposed using a hybrid of ANN, fuzzy systems, and
DWT for improved fault detection in underground cables. The
method utilized DWT for feature extraction and an ANFIS
training system. Klomjit and Ngaopitakkul 2020 [29]: Au-
thors evaluated PNN, BPNN, and SVM for fault classification
in hybrid transmission lines. SVM was found to be the most
accurate. Naidu, Ali, et al. 2020 [30]: paper introduced a
PSO-optimized ANN for fault impedance estimation in distri-
bution networks, using DWT and cross-product analysis for
feature extraction. Ahmad and Hanafi 2021 [31]: Authors de-
veloped a fault detection system for underground cables using
wavelet analysis and ANN, which was tested on an IEEE bus
system. Samet, Khaleghian, et al. 2021 [32]: paper proposed
a new algorithm for incipient fault detection in underground
cables, emphasizing the unique characteristics of electric arcs.
Swaminathan, Mishra, et al. 2021 [33]: Authors advocated
a deep learning approach, specifically a CNN-LSTM model,
for fault classification in underground cables. Tiwari and
Saini 2022 [34]: paper used an ANN model, trained on MAT-
LAB Simulink data, to detect faults in underground cables.
Agamohammadi et al. 2023 [35]: Authors introduced a Fault
Detection Method for microgrids, showcasing high comput-
ing efficiency and accuracy. Wan et al. 2023 [36]: paper
proposed a deep learning method using deep belief networks
for cable fault identification in smart grid systems. Alabbawi
et al. 2023 [37]: Authors designed an intelligent protection
relay using ANN for securing power infrastructure, empha-
sizing the effectiveness of the Levenberg-Marquardt training
technique.

II. PROPOSED QFSA

A. Classical FSA
The Future Search Algorithm (FSA) is a computational model
simulating human behavior in the quest for improved life

conditions. It uses both local and global search methods,
representing individual efforts and learning from successful
individuals, respectively. The FSA’s key features include no
requirement for parameter tuning, low computational com-
plexity, rapid convergence, and resistance to local optima.
Benchmark tests and comparative studies indicate that the
FSA outperforms other established methods in finding opti-
mal solutions efficiently and quickly [23].

B. Quantum-Behaved Future Search Algorithm

QFSA design for optimal ANN fault detection and location
of faults Recent work in the field of research has resulted in
the development of novel optimization strategies, which will
play an important part in future research. FSA is one such
strategy, and it was suggested by Elsisi 2019 as an alternative,
as was discussed in [23]. The FSA is a heuristic optimization
algorithm that mimics human behavior in searching for the
best life around the world. The algorithm’s solutions space is
represented by individuals, where each individual represents
a potential solution to the optimization problem. The FSA
algorithm begins with a randomly generated population rep-
resenting possible solutions. These individuals move around
the search space in each iteration, where they are attracted to
the best individuals in their local neighborhoods. The best
individual in each neighborhood represents the optimal local
solution. In addition to local search, the FSA algorithm also
incorporates a global search strategy. The algorithm maintains
a record of the best individuals encountered, representing the
global optimal solutions. The algorithm then uses this global
information to guide the search toward the better areas of
the search space. The FSA algorithm updates the local solu-
tions in each iteration and selects the best overall iterations,
representing the global solution. This allows the algorithm
to converge the optimal solution faster than other heuristic
optimization algorithms, such as GA and particle swarm opti-
mization. This study is performed using an enhanced QFSA
based on quantum mechanics. However, QFSA is an exten-
sion of the FSA, in which a new position is searched to obtain
the best position for the step population. QFSA is developed
to increase the searching capacity by utilizing the mean of
the best positions of the global step population. denotes the
best step population that can obtain the minimal value of.
QFSA determines the attraction and convergence of each step
population with a global minimal and searches for the best
position of the step population Where Mbest t; is the mean
best position for the step leaders and is calculated as follows:

1 N
Mbest t;- = N Z{P,’]
i=

1 ¥ 1 ¥ 1 ¥ 1 ¥ M
=(=YP. =-YP —VYP . . ... -y r
Nl; ’I’NI; ’Z’N; i3 ’NZ i
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To optimize the convergence speed, the tuned contraction
expansion coefficient (3) is computed as follows

p=po+(r—n) PP

where [ is the initial value of 8, B is the final value of 3,
t is the present iteration, and 7 is the maximum number of
iterations—the detailed settings of By and f3; for generating
an acceptable algorithmic performance. The position of the
step population is updated based on the best position of each
Pt of the step population.

The Monte Carlo method is a stochastic optimization tech-
nique used to improve the efficiency of search algorithms. It
involves generating random samples from a problem space
and evaluating each solution using an objective function. This
approach allows for a probabilistic exploration of the search
space, reducing the risk of getting stuck in local optima. Adap-
tive sampling and importance sampling strategies can be used
to enhance the convergence and efficiency of the search al-
gorithm. Adaptive sampling adjusts the sampling distribu-
tion based on previously obtained results, while importance
sampling focuses on areas of the search space with higher
probabilities of yielding optimal solutions.

2

* Using the Monte Carlo method, we can obtain the j’ h
component of position Pi at iteration (z + 1) as follows:

pi-jH = pi;j £ B | MeanBest; — P}; | In(1/u") 3)

t+1 is

ij

Where p} ; s the best position of the step leader and u
the uniformly distributed number between (0,1)

C. Work of QFSA
Now combine the two methods to get the following:

1. Population initialization:
S(i,:)L = (LS(i,:) — S(i,:)) x rand 4)

2. Updating beta value:
(T—=1)(B1 = Bo)

B =pBo+ T &)
3. Computing average D-point (C):
n
i— Si.nn
Cl,nn ===l (6)
n

4. Updating the position () using the best global solution,
best local solution, and beta value:

S; = S;+ (—S; +best) - rand

1
+ (=S;+ Lbe;) -rand + B - |Cy — Si] - <log p—) )
@)

5. Updating the solution positions (S;) based on the best
global solution and the best local solution:

(rand - Lbe; + rand - best)

(10-rand) ®

i =

where S: Solution,
d: Dimensions of problem.
Ub: Upper limit bounds,
i: Current solution of population size,
Lb: Lower limit bounds,
rand: Uniformly distributed pseudo-random numbers.
Here are the steps for the QFSA represented as a table in
Table I:

TABLE 1.
CODE STEPS METHODOLOGY, FOR THE QFSA
Step | Description
1 Start
2 Initialize Parameters

2.1 Population size (n)
2.2 | Maximum number of iterations
2.3 | Number of runtimes (r_time)
2.4 | Number of dimensions (d)
2.5 | Lower bounds (Lb)
2.6 | Upper bounds (Ub)
3 For each runtime (r):
3.1 | Initialize the population/solutions (S)
3.2 | Evaluate the fitness of each solution (Fitness)
33 Find the initial best
’ global solution and best local solutions.
4 Main global loop: For each iteration (t)
4.1 | Update the beta value.
4.2 | Compute the average D-point (C)
4.3 | Main local loop: For each solution (i)

4.3.1 | Update the position (S)
4.3.2 | Evaluate the fitness of the new solution (Fnew)
4.3.3 | Update the local best solution.

Update the current global
best solution if necessary.
4.4 | Initial update loop: For each solution, (i)
4.4.1 | Update the solution positions (Si)
4.4.2 | Evaluate the fitness of the new solutions (Fitness)

434

4.4.3 | Update the local best solution if necessary.
Update the global best
4.5 . .
solution and fitness value if necessary.
46 Store the best
’ fitness value for each iteration (fgbest)
5 Display the best solution and minimum

fitness value for each runtime.




230 |

Naji, Fayadh & Mutlag

TABLE L.
CODE STEPS METHODOLOGY, FOR THE QFSA
(Continued)

Store the best solution and minimum
fitness value for further analysis.
Identify the overall best solution

7 | and minimum fitness value across

all runtimes.

Display the overall

best solution and minimum fitness value.
Plot the semilogarithmic plot of the best
9 | fitness value for each iteration

in the best runtime.

10 | End

6

—
[ START ‘

\ Input data collection

Find a Recent Y
algorithm Simulated system design by

MATLAB

v
The combination of the new
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! !

Proving the effectiveness of the
new algorithm by seven
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[
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l

Find the best ANN parameters
that give the best MSE

END

Fig. 1. The general research path ﬂowchartr

The overall trajectory of this research follows a structured
and comprehensive path, encompassing several key stages
aimed at reaching the study’s objectives. as shown in as a
flowchart step.

Fig. 2 illustrates the behavior of individuals in the search
process using the (FSA). The algorithm starts with a popula-
tion of randomly generated individuals, and each individual
represents a potential solution to the optimization problem.
The ball in the center represents the global position, and the
other balls denote the other individuals. The arrows around
the other ball’s circles indicate the individuals’ possible move-
ment directions. In the original FSA algorithm, each moves
directly toward the best individual in their local neighbor-
hood and does not search or wait to obtain a new global best
position.

(a) (FSA) behavior
Fig. 2. The behavior of individuals in the search process

(b) (QFSA) behavior

This behavior is shown in Fig. 2a. However, in the
(QFSA), individuals around the global best position are al-
lowed to move in any direction to obtain the best new po-
sition, as illustrated in Fig. 2b. This approach enables a
more thorough search space exploration and potentially better
optimization results. Therefore, using the QFSA algorithm
with Quantum-Inspired techniques, we can enhance the search
process by enabling individuals to explore the search space
more thoroughly and potentially find better solutions to the
optimization problem.

D. Verification of the Proposed QF SA Method

To evaluate the performance of the proposed QFSA, we used
seven benchmark functions with varying complexities. The
QFSA was compared with five well-known algorithms to
assess its reliability and efficiency. The results showed that the
proposed QFSA outperformed the other algorithms in terms
of solution quality and convergence speed, demonstrating its
potential for solving complex optimization problems. And all
details in Table II

1(; )2 ©)

Mm

i

d—1 22 ,
Fo() = ¥ (10001 —23) + (= 1)’] (10)
i=1
d
F(x) = Zix?—i—random(O, 1) (11)
i=1
11
e xi( b +b;x) (12)

= b2+b X3+ x4



231

Naji, Fayadh & Mutlag

TABLE II.
BENCHMARK FUNCTION DETAILS
Function | d S Fonin Type
F1 100 [-100, 100] 0 Unimodal
F2 30 [-30,30] 0 Unimodal
F3 30 [-1.28,1.28] 0 Unimodal
F4 4 [-5,5] 0.0003075 | Multimodal
F5 2 | [-5,10] x [0, 15] | 0.398 | Multimodal
F6 3 [0, 1] -3.86 Multimodal
F7 6 [0, 1] -3.32 Multimodal

5.1 5 2
F5 ()C) = <X2 an 2X1 + x1 6)
(13)

= pij) ) (14)

4
—ZCiCXP< Zau Pl] >
i=1

1
+10 (1 — ) cosx; + 10
8
4 3
_Zci exp Z
i=1 j=1

15)

Where (s) refer to the ranges of their search space, (d)
refers to the dimension of each function, and (F,,;,) refers to
the minimum value of each function.

ITI. ARTIFICIAL NEURAL NETWORKS (ANN)
FOR FAULT DETECTION AND LOCATION

A. Fundamentals of ANN

ANN are computer models that take their inspiration from the
biological neural networks found in the human brain. They
are made up of a network of interconnected artificial neurons
or nodes. which process and transmit information. ANNs
have been widely used for various applications, including
pattern recognition, data classification, and prediction, due
to their ability to learn from data and adapt to changes in the
environment [38,39].

B. Structure and Components

This study employed a feedforward ANN with two hidden
layers for fault detection and Location. The ANN has nine
input nodes, representing the currents and voltages taken from
each phase and the current and voltages in zero sequences.
The output layer consists of one node corresponding to each
block task’s fault detection or location.

C. Problem Formulation

This research aims to build an ideal network of artificial neural
cells (ANN) capable of fault detection and location in sub-
terranean power cables that is accurate and effective. The
optimization problem involves choosing the number of neu-
rons placed in the first and second hidden layers and figuring
out the ANN’s learning rate.

IV. IMPLEMENTATION OF THE QFSA-ANN

A. Fault Location Methodology

This part of the study aimed to evaluate the effectiveness of
using ANN in MATLAB for fault detection and location in a
buried underground power line with a voltage of 11 kilovolts.
To accomplish this task, we used the following methodology
were used: Data collection: to collect data from the power
distribution line, a long 21 km line with three bus bars and two
sources. This data included measurements of various electrical
parameters, such as the voltage and current of 3 phases, the
voltage and current of zero sequences, and the angle of the
negative sequence. They started with Data preprocessing.
Before using the data to train the ANN model, preprocessed it
by normalizing the values to a standard range and dividing it
into training, validation, and testing sets in a ratio of 70:15:15,
respectively, the total number of data used to train ANN in
this part was 4650 cases. This step ensures the model can
generalize well to new data. Model design and configuration:
MATLAB Simulink was used to design and configure the
ANN model. This involved selecting the number and size
of hidden layers and neurons and the optimization algorithm
for training. In this case, the Levenberg-Marquardt algorithm
is used for training. After that, start Model training: use
the training data to train the ANN model using the selected
optimization algorithm. This involved iteratively adjusting
the weights and biases of the model to minimize the error
between the predicted and actual values. Mean Squared Error
(MSE) was used as the performance indicator to evaluate the
training procedure.
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B. ANN Structure Optimization

The proposed QFSA optimized the ANN structure, searching
for the optimal number of neurons in the hidden layers and the
appropriate learning rate. The QFSA-ANN was then trained
using the collected data to obtain the best-performing model.

C. Simulink and Modeling System

The model comprises a source feeder (11 KV, 30 MVA, 50
Hz, 3-phase) and three buses (BUS-BAR), where voltage and
current measures are obtained with other input parameters,
and a fault block that is applied to the distribution line. It
uses a step-down transformer rated at 11 KV/ 0.4 KV and a
connected load. After the model has been used to generate
the fault data and account for the simulation of the ANN that
has been trained, the selection to employ the distribution line

Simulink model is made based on the model’s specification.

This study used the scheme shown in Fig. 3 and Fig. 4 .

D. Mean Squared Error
MSE was used as the performance indicator to evaluate the
training procedure. The equation for MSE can be written as
follows:
1 & 2
MSE = — Y i)
i=1

(16)

The equation is the formula for MSE used in statistics and
machine learning. It is a standard metric used to evaluate
the performance of regression models. Here’s what each
component in the equation represents:

* n: the total number of data points in the dataset.
* yi: is the true (observed) value of the i-th data point.

 i: is the predicted (estimated) value of the i-th data
point, as output by the regression model.

* (yi —$i): is the difference (or error) between the true
and predicted values of the i-th data point.

Transformer hus3

ey busl
I distribution line
— 2

11kV- 3 phase
Source Feeder

fault

bus2 =

load

11kV- 3 phase
Source Feeder

Fig. 3. Simplified schematic of the utilized power system design

11KV30MVA
Source Feeder2

Ak

c

11KV30MVA
Source Feeder 1

1IMVA

11kV/0.4kV

‘under ground power cable

11kV
Bus2

Fig. 4. MATLAB- simple Simulink model of a 3phase system with underground power cable line
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* (yi—$i)%: is the squared error (or loss) for the i-th data
point.

e ¥': denotes the summation operator, meaning we add
the squared errors for all n data points.

¢ Finally, the sum of squared errors is divided by (n) to
obtain the MSE

The lower the value of MSE, the better the performance of the
regression model, as it indicates that the model’s predictions
are closer to the actual values.

V. RESULTS AND DISCUSSION

During the training process of the ANN for fault detection in
cables, the output was consistently one of two results: either a
fault was detected, or no faults were found, as shown in Table
III. The Levenberg-Marquardt algorithm was used to train the
ANN using 720 samples to automate the training process and
4650 models for fault location.

A. Quantum-Behaved Future Search Algorithm Results
In the context of benchmark functions and optimization algo-
rithms, the fitness with iterations Fig’s is a line graph showing
how the optimization algorithm’s fitness changes over time
as the algorithm runs for a certain number of iterations. The
fitness value, which indicates the level of quality of the so-
lution discovered by the algorithm, is often defined by the
benchmark function being applied. The number of iterations
is represented along the x-axis of the graph, while the fitness
value is shown along the y-axis. As the algorithm runs, the
fitness value is updated at each iteration, and the chart shows
how the fitness value changes over time. The fitness with
iterations Figure is a helpful tool for comparing the perfor-
mance of different algorithms on a given benchmark function.
The fitness with iterations Figures typically includes a line for
each compared algorithm. The line for each algorithm will
show how the fitness value changes over time as the algorithm
runs. By comparing the lines, it is possible to see which algo-
rithm performs better in finding the optimal solution for the
benchmark function.

Fig. 5 shows a comparative analysis between two algo-
rithms, FSA, represented by the red line, and QFS, A, depicted
by the blue line, in the benchmark function F1.

TABLE III.
DIGITAL OUTPUT OF THE FAULT DETECTION
No Type Output
1 Faults 1
No fault 0

10 ‘ ‘ [ —QFsA

—FSA

Fitness

10-200 L

0 50 100 137.5 200
Iteration
Fig. 5. Convergence characteristics in F1

The study was conducted by performing 10,000 itera-
tions, and the results highlight the superior performance of the
QFSA algorithm in achieving the minimum fitness value with
the lowest number of iterations. On the other hand, the FSA al-
gorithm exhibits a consistent level of performance regardless
of the increase in the number of iterations.

Fig. 6 presents a comparative analysis of the performance
between two algorithms: FSA and QFSA, specifically on the
Benchmark function F2. The experiment was limited to 50
iterations. Results indicate that within this constraint, QFSA
exhibited a more pronounced ability to achieve a minimal
fitness value. Conversely, the FSA algorithm demonstrated
an fitness level in just 26 iterations and stopped at that point.
The analysis was capped at 50 iterations due to the observed
stability and lack of significant changes in the results beyond
this point.

Fig. 7 shows the comparison between FSA-taking the red
line and QFSA-taking the blue line, in the 3rd benchmark
function (F3), by taking 10,000 iterations. It shows the QFSA
algorithm’s superiority in reaching the min fitness with the
least number of iterations.

1010I

100_

10

10°

Fitness

10—20 L

10-30 L . s L . 3
0 10 20 30 40 50

Iteration

Fig. 6. Convergence characteristics in F2
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ol —QFSA
10 —FSA

8 L:b\
172]
(5]
=)
=
S 9]

105 ¢
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10°

4000 6000 8000 10000

Iteration
Fig. 7. Convergence characteristics in F3

0 2000

In the context of analyzing the FSA and QFSA algorithms,
it’s worth noting that both methods achieved results that seem
close, as shown in Fig. 8. The QFSA algorithm slightly outper-
formed the FSA algorithm when applied to the 4th benchmark
function F4. This result suggests that the QFSA algorithm
is more efficient than the FSA algorithm for functions with
certain characteristics and complexities.

Fig. 9 depicts two lines, one in blue and the other in
dashed red, which may be perceived as a single line. How-
ever, the results obtained from the QFSA outperform those
obtained from the FSA. The QFSA algorithm yields a result
of 0.3979, which is closer to the optimal value for the F5
equation compared to the FSA algorithm’s result of 0.3978,
depicted in dashed red.
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Fig. 8. Convergence characteristics in F4
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Fig. 9. Convergence characteristics in F5

QFSA and FSA are two optimization algorithms that use
different approaches to find the minimum of a function. Based
on the results provided, QFSA appears to have performed
slightly better than FSA in this particular instance, as shown
in Fig. 10. By analyzing the results of the two algorithms.
The QFSA result is -3.86002, while the FSA result is -3.862.
When applying F6. However, based solely on the results,
it appears that QFSA performed slightly better than FSA,
obtaining a slightly better objective function value.

In Fig. 11 Convergence characteristics in F7, we observe
the convergence characteristics of the seventh benchmark func-
tion, showcasing a smooth and superior performance in reach-
ing the optimal value. The Figure effectively demonstrates the
applied algorithm’s robustness and efficiency in navigating
the problem’s complex search space.

-3.82

—QFSA
—FSA

-3.83

-3.84

Fitness

-3.85F

-3.86 1 e

-3.87 ‘ : : :
0 10 20 30 40 50
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Fig. 10. Convergence characteristics in F6
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Fig. 11. Convergence characteristics in F7

The rapid convergence towards the optimal value indicates
that the algorithm can mitigate the effects of local minima
and effectively exploit the available information to guide the
search process.

It is worth noting that the smoothness of the convergence
curve suggests a balanced trade-off between exploration and
exploitation, which is a key aspect of successful optimiza-
tion algorithms. This balance enables the algorithm to effi-
ciently locate promising regions within the search space while
still maintaining a sufficient degree of diversity among the
candidate solutions. Consequently, the algorithm’s superior
performance on the seventh benchmark function highlights
its potential applicability to a broad range of optimization
problems, both in academia and industry.

According to a comparative analysis of optimization algo-
rithms on seven benchmark functions, the QFSA algorithm
has demonstrated superior performance over other optimiza-
tion algorithms such as FSA, LSA, GA, PSO, and Firefly Op-
timization Algorithm. The algorithms were compared based
on the optimization metrics for the benchmark functions. The
comparison results revealed that the QFSA algorithm had
outperformed the FSA algorithm on all benchmark functions.
Notably, the FSA algorithm outperformed the GSA, which
indicates that the QFSA algorithm has surpassed all other
algorithms in terms of performance. Therefore, the QFSA
algorithm can be considered the leading optimization algo-
rithm for the given benchmark functions. The comparative
results of the optimization algorithms are presented in Table
IV Below. The Quantum-Behaved Future Search Algorithm
(QFSA) has emerged as a remarkable contender in the arena of
optimization algorithms, especially in the context of the given
benchmark functions. This conclusion is not made random but
is the result of meticulous testing, performance assessment,
and comparison with other optimization techniques. The com-

parative results of the optimization algorithms are presented
in the Table IV while most other algorithms results taking
from [23].

B. Performance Evaluation of the QF SA-ANN

The QFSA-ANN demonstrated high accuracy in detecting,
locating, and classifying faults in underground power cables.
The model’s performance was found to be robust and stable
under various fault conditions, indicating its suitability for
practical applications. The study explores the use of QFSA
for optimizing the structure of ANN in terms of hidden layer
neurons (N1, N2) and learning rate (LR), as shown in Table
V. QFSA initializes a quantum state, applies quantum opera-
tions, and adjusts based on fitness evaluations for a predefined
number of iterations. The approach was tested for 100 itera-
tions and outperformed manual selection in terms of accuracy
and lower MSE in fault detection and Location. The graphs
demonstrate the application of QFSA for determining the op-
timal ANN structure through 100 iterations and other details
in Table VL.

This research determined that the search for optimal pa-
rameters would be conducted within predetermined ranges.
The number of neurons in the neural network architecture was
incremented or decremented by a value of one at each step, as
it must be an integer.

The first parameter, "MSE goal,” indicates the target MSE
the ANN-QFSA model aims to achieve. In this case, the goal
is set to 0, implying that the model aims to achieve perfect
accuracy. “ANN iterations” specifies the number of iterations
for the training of the ANN.

TABLE V.
LOWER AND UPPER LIMIT OF SEARCH
Upper | Lower | Upper | Lower
NI,N2 | NI,N2 | L.R L.R
Detection
and Location 15 > 0.98 0.02
TABLE VI.
PERFORMANCE METRICS FOR AN ANN-QFSA MODEL
MSE goal 0
ANN iterations 300
QFSA iterations 100
number of populations | 20
Run time 3
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TABLEIV.

THE COMPARATIVE OUTCOMES OF THE VARIOUS OPTIMIZATION ALGORITHMS

Function

QFSA

FSA

LSA

FA

PSO

GA

F1

9.881e-324

1.14e-18

9.201365586

716.4716944

0.59714

0.717

F2

4.94e-30

6.95e-27

0.560036507

27.85966457

7.2414

0.5024

F3

1.25e-10

9.12e-06

0.016268885

0.008299594

0.0042529

0.9137

F4

0.000307501

0.000308226

0.000307486

0.000443132

0.00030749

3.1625e-04

F5

0.3979

0.3978

0.3978

0.3978

0.3978

0.3978

F6

-3.86002

-3.862

- 3.862

- 3.862

- 3.862

- 3.862

F7

-3.32

-3.273

-3.322

-3.322

-3.322

-3.3219

In this case, the model is trained for a total of 300 itera-
tions. "QFSA iterations” denotes the number of iterations for
the optimization process conducted by the QFSA algorithm.
The model is optimized for 100 iterations using the QFSA
algorithm. “a number of populations” refers to the size of
the population of particles used in the QFSA algorithm. The
model employs a population size of 20 particles.

Fig. 12 shows Quantum-behaved Future search algorithm
(QFSA) results to find the optimal structure for the fault detec-
tion task; it requires 13 neurons in the first hidden layer and
13 neurons in the second hidden layer, with a learning rate of
0.776825, achieving an extremely low MSE of 1.19061e-15 as
fm. However, fault detection is not considered the major im-
portance of this research, as much as determining the location
of the fault is the essential thing that fd on in this research.

Through the (QFSA), the optimal structure for fault lo-
cation has been discovered to consist of 15 neurons in each
hidden layer, with a learning rate of 0.908593This optimized
structure exhibits exceptional performance, achieving a re-
markably low MSE of 5.65994e-05, as illustrated in Fig. 13.
Such an achievement serves as a testament to the efficiency
and efficacy of the QFSA algorithm in the task of fault detec-
tion and location in underground power cables. The optimized
ANN structure provides a powerful tool for accurately iden-
tifying and locating faults in an efficient manner, enabling
prompt and effective intervention to prevent potential power
outages.

The results presented in Fig. 13 are a remarkable feat
in the domain of fault location detection, and they provide
a solid foundation for further exploration and refinement of
the ANN-QFSA model. With continued development, this
model has the potential to revolutionize the field of power ca-
ble maintenance and contribute to enhancing energy delivery
systems worldwide.

MSE

MSE

25 107 MSE with Iterations

0.5
X 28
Y 1.19061e-15

0 20 40 60 80 100
Iterations

Fig. 12. QFSA-ANN of fault detection

24 %10 MSE with Iterations
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Fig. 13. QFSA-ANN of fault location
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Fig. 14 presents a scatter plot representing the interplay
between LR, N1, and N2. This Figure illustrates the explo-
ration of the algorithm across the search space, represented
in three dimensions. From a visual analysis, the algorithm
appears to have comprehensively covered most of the search
area.

The scatter plot suggests an effective distribution of data
points, indicating that the algorithm has successfully navi-
gated through the complexities of the multi-dimensional space.
The dense coverage of points may suggest a balance between
exploitation and exploration, a key feature in ensuring the
robustness of an algorithm.

Fig. 15 is a two-dimensional scatter plot illustrating the
relationship between N1 and N2, with data points colored
according to their corresponding MSE values.

Scatter Plot of LR, N1, and N2
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Fig. 14. Scatter plot of LR, N1, and N2
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Fig. 15. Scatter plot of N1 and N2, colored by MSE

Fig. 16 presents a scatter plot depicting the variation of
MSE with respect to the iteration number. This plot offers
insights into the convergence behavior and performance of
the algorithm over iterative cycles.

The use of color provides an additional dimension of in-
formation on this 2D plot, allowing us to visualize the effect
of N1 and N2 on the MSE.

The findings can serve as a valuable reference for re-
searchers and practitioners interested in developing more ac-
curate and efficient solutions for fault detection and other
related applications. With continued development and refine-
ment, the ANN-QFSA model has the potential to revolutionize
the field of power cable maintenance, resulting in significant
improvements in energy delivery and reliability worldwide.

Table VII observes the optimal ANN structure obtained
using QFSA. The table meticulously presents the various
components of the ANN architecture, including the number
of hidden layers, the number of neurons in each layer, and the
learning rate. In ANN structure of 2 hidden layers is used for
detection, location, and classification, according to the data
collected.

4% 10"Scatter Plot of MSE with Respect to Iteration Number

35

0 20 40 60 80 100
Iteration

Fig. 16. Scatter plot of MSE with respect to iteration number

TABLE VII.
QFSA OpTIMAL ANN STRUCTURE
N1 | N2 LR MSE Iterations
. fmin=
Detection | 15 | 15 | 0.908593 5.6599¢-05 100
. fmin=
Location | 13 | 13 | 0.776825 1.19061c-15 100
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C. Comparative Analysis with Other Solutions

The performance of the QFSA-ANN was compared with other
solutions reported. The results showed that the proposed
QFSA-ANN outperformed existing methods, highlighting the
effectiveness of the quantum-inspired optimization approach
in enhancing the ANN’s performance.

(PSO) and Quantum-behaved Particle Swarm Optimiza-
tion (QPSO) [40] are swarm intelligence-based algorithms
used in complex optimization problems. For instance, both
algorithms are applied in the optimization of multi-modal
functions, with PSO often demonstrating faster convergence.
Ant Colony Optimization (ACO) [41] is another instance of a
bio-inspired algorithm, often used in path-finding problems
such as the traveling salesman problem. (FA) mimics the
behavior of fireflies and is used in various optimization tasks
like function optimization and clustering.

The Cuckoo Search (CS) algorithm, which gets its name
from the brood parasitism used by some species of cuck-
oos [41], has been implemented in diverse fields, such as
structural design optimization. FSA is a recently developed
algorithm that considers the future state of the search space for
optimization, showing potential in dynamic optimization prob-
lems. The Grey Wolf Optimizer (GWO), inspired by the hier-
archical leadership and hunting behavior of grey wolves [42],
has demonstrated efficient performance in various optimiza-
tion tasks, such as feature selection and neural network train-
ing.

Finally, Quantum Future Search Algorithm (QFSA) is an
advanced version of FSA that incorporates quantum mecha-
nism principles. QFSA demonstrated the best MSE among the
tested algorithms, as shown in Table VIII. This was primarily
due to its enhanced exploration and exploitation capabilities,
which were derived from the superposition and entanglement
properties of quantum mechanics. As shown in Fig. 17,
the convergence characteristic curves for multiple algorithms
in finding the optimal structure of Artificial Neural Network
(ANN) for fault location can provide a comprehensive perspec-
tive on the effectiveness and efficiency of these algorithms.
Fig. 18, the box and whisker plot for each algorithm, provides
a visual representation of the distribution of results for each
algorithm.
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Fig. 17. Convergence characteristic curves for

multi-algorithm in finding the optimal structure of ANN fault
location
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Fig. 18. Box and whisker plot for each algorithm
TABLE VIIL

MULTI-ALGORITHM OPTIMAL RESULT OF ANN
STRUCTURE IN FAULT LOCATION

PSO | 0.00011973
QPSO 8.67e-05
ACO 8.56e-05

FA 7.98e-05
CS 7.44e-05

FSA | 6.09¢-05
GWO | 5.76e-05
QFSA | 5.66e-05
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However, that algorithm performance can vary signifi-
cantly depending on the specific nature and requirements of
the problem at hand. Therefore, despite QFSA’s impressive
performance, other algorithms may be more suitable for dif-
ferent types of problems or constraints.

The convergence characteristic curves in Fig. 17 depict
the rate at which each algorithm approaches its optimal so-
lution over iterations. These curves provide insights into the
speed, stability, and reliability of each algorithm in finding
the optimal structure:

* Stability: An algorithm that shows minimal fluctuation
in its curve is more stable.

e Speed: Algorithms that reach their optimal or near-
optimal values in fewer iterations are faster.

* Reliability: If an algorithm consistently reaches the
same (or very close) values upon multiple runs, it’s
considered reliable.

From the provided data, QFSA appears to perform impres-
sively, but a detailed examination of Fig. 17 would elucidate
the comparative performance further.

D. Fault Location Training Results

Fig. 19 provides an overview of the neural network and
includes a screenshot of the training window generated using
the ANN Toolbox in Simulink.

It is noteworthy that the training process performance in
terms of MSE was deemed satisfactory upon completion of
the training. The result has gotten after the optimal structures
were known and tested after a few tries.

Training Results

Training finished: Reached maximum number of epochs &4

Training Progress

Unit Initial Value Stopped Value | Target Value
Epoch 0 300 300 -
Elapsed Time 00:00:07

Performance 5.26e-05 2.72e-05 0

Gradient 0.0502 0.00916 1e-07

Mu 0.001 0.0001 1e+10
Validation Checks 0 0 6

Training Algorithms

Data Division: Random dividerand
Training: Levenberg-Marquardt trainim
Performance: Mean Squared Error mse

Calculations: MEX

Fig. 19. Neural network training result of the location block

The neural network’s training performance plot is dis-
played in Fig. 20. As can be observed, 5.26e-05represents
the best validation result in this case in terms of MSE at the
conclusion of the training phase. It is evident that there is
a significant correlation between the two. This shows that
the ANN’s performance in terms of accurate fault location
system is satisfactory. Fig. 21 shows the Error Histogram and
exhibits a good degree of performance, further proving this.

Fig. 22 depicts a neural network with the best linear
regression fit between its outputs and targets. This network
has one neuron in its output layer, nine neurons in its input
layer, and 15 neurons in each of its hidden layers. (9-15-15-1).
In this particular instance, the correlation coefficient R-value
was determined to be 1, which is the optimal value.

Best Validation Performance is 3.5428e-05 at epoch 300
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Fig. 20. Training ANN performance for the location with
MSE
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Fig. 22. ANN regression chart of location training

E. Faults Location Estimated by ANN

The following tables present the actual and estimated loca-
tions of faults determined through the ANN. These faults are
classified based on the lines where they were detected, per

the nomenclature used in power system analysis. The tables
’A’, ’B’, and *C’ refer to the three phases of a three-phase
system. AND ’G’ represents the ground or the neutral line.
’AG’ means a fault in the connection between phase A and
the ground, *B-G’ refers to a fault in the connection between
phase B and the ground, and so on.

Table IX displays the actual locations of these faults in
kilometers and the corresponding fault locations estimated by
the ANN. By comparing the actual and estimated values, the
effectiveness of the ANN in detecting and locating the faults
can be evaluated. In analyzing

Table IX, which illustrates the disparities between the ac-
tual fault locations and those estimated by an ANN, several
factors merit consideration. Firstly, the quality and volume
of training data play a pivotal role. An inadequacy in either
dimension could compromise the ANN’s ability to generalize,
particularly for certain fault types. The architecture of the
neural network itself might also be a contributing factor. If not
adequately designed to encapsulate the intricacies of various
fault manifestations, the ANN might not offer precise location
estimates. External influences, such as data noise or temporal
and environmental conditions under which faults occur, might
also skew predictions if the ANN hasn’t been primed to ac-
count for them. It’s also plausible that there exists a mismatch
between the distributions of training and testing datasets for
specific fault types, leading to suboptimal predictions.

Fig. 23 of the scatter plot and marker graph obtained from

TABLE IX.

FAULTS LOCATION ESTIMATED BY ANN

Actual faults location Faults location estimated by ANN

(km) AG B-G C-G A-B A-C B-C ABG | ACG BCG ABC | ABCG

0.5 0.427 | 0.657 | 0.593 | 0.801 | 0.757 | 0.204 | 0.462 | 0.492 | 0.409 0.56 0.56
1 0937 | 1.165 | 1.095 | 1.278 | 1.237 | 0.689 | 0968 | 0.982 | 0.945 | 0.969 | 0.969

2 1.955 | 2.143 | 2.087 2.24 2206 | 1.665 | 1.943 | 1.965 | 1.923 1.93 1.93

3 2968 | 3.142 | 3.082 | 3.213 | 3.183 | 2.648 | 2939 | 2951 | 2943 | 3.005 | 3.005

4 3.978 4.14 4.076 | 4.196 | 4.168 | 3.636 | 3.935 3.94 3.958 | 3.995 | 3.993
5.5 5485 | 5.637 | 5.564 | 5.686 | 5.659 | 5.128 | 5429 | 5428 | 5474 | 5486 | 5.484
6.25 6.236 | 6.385 | 6.308 | 6.438 | 6.409 | 5.877 | 6.176 | 6.173 | 6231 | 6.234 | 6.234
7.75 7.735 | 7.881 | 7.796 7.95 7917 | 7.381 | 7.671 | 7.668 7.74 7.735 | 7.735
8 7.985 8.13 8.044 | 8202 | 8.169 | 7.633 | 7.921 | 7917 | 7.991 | 7.984 | 7.986
9.25 9.23 9.374 | 9.284 9.47 9.432 | 8.891 | 9.167 | 9.166 | 9.246 9.24 9.241
10.5 10.474 | 10.616 | 10.525 | 10.739 | 10.697 | 10.15 | 10.414 | 10.417 | 10.501 | 10.497 | 10.497
11.75 11.717 | 11.857 | 11.767 | 12.008 | 11.962 | 11.41 | 11.661 | 11.669 | 11.757 | 11.754 | 11.753
12 11.966 | 12.105 | 12.015 | 12.262 | 12.215 | 11.662 | 11.911 | 11.92 | 12.008 | 12.004 | 12.005
13 1296 | 13.096 | 13.01 | 13.273 | 13.224 | 12.668 | 12.909 | 12.922 | 13.014 | 13.009 | 13.008
14.25 14.203 | 14.333 | 14.255 | 14.532 | 14.482 | 13.923 | 14.158 | 14.175 | 14.274 | 14.264 | 14.263
15.5 15.447 | 15.567 | 15.501 | 15.781 | 15.734 | 15.174 | 15.408 | 15.427 | 15.537 | 15.515 | 15.514
16.75 16.693 | 16.801 | 16.748 | 17.016 | 16.977 | 16.419 | 16.659 | 16.676 | 16.803 | 16.762 | 16.762
17 16.943 | 17.047 | 16.997 | 17.262 | 17.224 | 16.667 | 1691 | 16.926 | 17.057 | 17.011 | 17.011
18.5 18.442 | 18.524 | 18.495 | 18.72 | 18.698 | 18.149 | 18.415 | 18.42 | 18.582 | 18.501 | 18.502
19.75 19.695 | 19.752 | 19.744 | 19913 | 19.912 | 19.374 | 19.673 | 19.659 | 19.858 | 19.733 | 19.733
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Fig. 23. Scatter with a straight line and marker graph of a fault location result

the fault location analysis illustrate the proposed methodol-
ogy’s effectiveness. The plot features several different lines,
each representing another type of fault. Despite the fault types’
variations, all plotted lines align closely as if they were one
line. This alignment with the actual fault locations signifi-
cantly indicates the results’ accuracy. Furthermore, the con-
vergence of the plotted lines is an important observation. The
12 distinct lines planned initially demonstrate a high degree
of alignment, which suggests that the proposed methodology
can precisely identify the fault location. This proposed con-
vergence strongly indicates the effectiveness of the approach
and its ability to deliver precise and accurate results. It is im-
portant to note that the accuracy of the results is not only due
to the proposed methodology but also due to the integration
of the (ANN) into the process. As described earlier, selecting
the optimal ANN structure allows for precise identification of
the fault location and its type. Integrating the ANN with the
proposed methodology was a crucial factor in achieving the
high degree of accuracy observed in the results.

VI. DISCUSSION

A. Potential Challenges
1. Complexity: The integration of quantum mechanics
theories into classical algorithms might introduce com-
plexities that can be computationally demanding or

challenging to debug.

Data Sensitivity: For the QFSA-ANN model to accu-
rately detect faults, it relies heavily on the quality of the
input data. Faulty or noisy data can lead to inaccurate
results.

Resources or specific hardware capabilities that aren’t
always readily available.

. Future Directions/Recommendations
1.

Hybrid Models: Integrate QFSA with other machine
learning and optimization algorithms to create hybrid
models that can leverage the strengths of multiple ap-
proaches.

Real-world Testing: Transition from MATLAB simula-
tions to real-world testing for fault detection in under-
ground power cables to understand practical challenges
and constraints.

Expand Applications: Explore the utility of QFSA in
other fields beyond power systems, such as finance,
healthcare, or logistics.

Enhance Quantum Theories Integration: Delve deeper
into quantum mechanics theories to explore other prin-
ciples that can be fused into classical algorithms for
more efficient problem-solving.
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C. Importance of These Studies
1. Innovation: Studies like these push the boundaries of
what’s possible, merging disparate fields like quan-
tum mechanics and optimization algorithms to create
groundbreaking solutions.

2. Efficiency: As systems grow in complexity, traditional
algorithms may falter or take exceedingly long to pro-
duce results. Quantum-inspired algorithms like QFSA
offer a pathway to faster, more efficient solutions.

3. Safety & Reliability: In the context of power distri-
bution systems, early and accurate fault detection is
crucial. It can prevent potential hazards, reduce down-
times, and ensure the reliability of power supply.

4. Economic Benefits: Reducing faults and downtimes can
lead to significant economic savings for power compa-
nies and consumers alike.

5. Foundational for Future Technologies: As we inch
closer to the era of quantum computing, understanding
and leveraging quantum principles in today’s algorithms
prepare us for the technologies of tomorrow.

VII. CONCLUSION

This article presented an innovative quantum-based future
search algorithm (QFSA) combined with an ANN for detect-
ing and locating faults in underground power cables. The
proposed QFSA-ANN demonstrated superior performance
compared to other algorithms and solutions, offering a promis-
ing approach for accurate and efficient fault management in
power distribution systems. Future work may explore fur-
ther improvements to the QFSA-ANN, such as incorporating
additional features or adapting the model for real-time fault
detection and location. The QFSA algorithm’s ability to find
the optimal global solution represents a significant advantage
over other optimization algorithms that may only find local
solutions.
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