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Abstract
Given the role that pipelines play in transporting crude oil, which is considered the basis of the global economy and across
different environments, hundreds of studies revolve around providing the necessary protection for it. Various technologies
have been employed in this pursuit, differing in terms of cost, reliability, and efficiency, among other factors. Computer
vision has emerged as a prominent technique in this field, albeit requiring a robust image-processing algorithm for spill
detection. This study employs image segmentation techniques to enable the computer to interpret visual information and
images effectively. The research focuses on detecting spills in oil pipes caused by leakage, utilizing images captured by a
drone equipped with a Raspberry Pi and Pi camera. These images, along with their global positioning system (GPS)
location, are transmitted to the base station using the message queuing telemetry transport Internet of Things (MQTT
IoT) protocol. At the base station, deep learning techniques, specifically Holistically-Nested Edge Detection (HED) and
extreme inception (Xception) networks, are employed for image processing to identify contours. The proposed algorithm
can detect multiple contours in the images. To pinpoint a contour with a black color, representative of an oil spill, the
CIELAB color space (LAB) algorithm effectively removes shadow effects. If a contour is detected, its area and perimeter
are calculated to determine whether it exceeds a certain threshold. The effectiveness of the proposed system was tested
on Iraqi oil pipeline systems, demonstrating its capability to detect spills of different sizes.
Keywords
Dense Extreme Inception Network for Edge Detection(DexiNed), oil spill, MQTT Protocol, Xception networks,
Holistically-Nested Edge Detection, LAB color space, and Drone.

I. INTRODUCTION

Pipeline monitoring plays a crucial role in early leak detection
or prediction, which is vital for minimizing oil spill damage.
Detecting a leak at an early stage facilitates timely repairs and
ensures the proper functioning of the pipeline. In the past few
decades, numerous methods have been introduced for leak
detection in pipelines, each employing its own distinct operat-
ing principle and approach. These techniques can be broadly
classified into three categories: external methods, visual or bi-
ological methods, and internal or computational methods [1].

The external technique involves the utilization of artificial
sensing devices placed in close proximity to the monitored
infrastructure for leak detection. Examples of such equipment
include acoustic sensors, fiber optic sensing systems, vapor
sampling devices, infrared thermography tools, and ground
penetration radar systems. This approach offers several advan-
tages and disadvantages. On the positive side, it is generally
user-friendly and provides a rapid response time. However, it
requires a highly skilled operator, involves direct contact with
the leaking medium, incurs high execution costs, and may
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suffer from a high false alarm rate [2]. The interior approach
to leak detection makes use of internal fluid measurement
instruments to monitor parameters such as flow rate, pressure,
temperature, volume, density, and other factors that quantify
the characteristics of the released products. These parame-
ters are directly related to fluid flow in the pipelines and are
monitored using software-based solutions that employ intelli-
gent computational algorithms. Techniques like mass-volume
balancing, digital signal processing, and pressure point anal-
ysis are examples of dynamic modeling methods. However,
this approach has certain drawbacks, including sensitivity to
leak size, potential false alarms, susceptibility to noise in-
terference, high computational complexity, time-consuming
implementation, and significant costs [3]. Leakage can also
be detected through the biological method, which involves
utilizing the sensory capabilities of trained dogs or human
experts [4]. Leak detection is carried out using different artifi-
cial sensing devices located outside the pipelines, as part of
the external method. Alternatively, leakage can be detected
through the biological method, utilizing the sensory abilities
of trained dogs or human experts. The interior approach for
leak detection involves software-based solutions supported by
sensors that monitor the internal environment of the pipeline,
employing intelligent computational algorithms [5].

Drones are now a strong and trustworthy tool for profes-
sional data collecting. Uncrewed aerial vehicles (UAV) are
now widely used in the private and public sectors, and their
applications have spread to almost every industry, including
the oil and gas sector. Drones provide a quicker, safer, and
more cost-effective means of collecting massive amounts of
data, which has the potential to completely alter the status
quo of the petroleum industry’s mapping, monitoring, inspec-
tion, and surveillance processes [6]. Computer vision plays a
crucial role in the application of drones across various fields.
It is utilized in controlling self-driving vehicles, performing
tasks, navigation, and monitoring oil pipelines. Artificial
intelligence algorithms, such as machine learning and deep
learning, are employed to process images captured by drones
and extract important features. These features are then utilized
to make informed decisions regarding pipeline leakage [7].
Image segmentation is an essential step in computer vision
projects, where different techniques are used to divide im-
ages into meaningful regions. This segmented output serves
as a foundation for further image analysis and processing.
While various segmentation methods exist, some requiring
human interaction, it becomes impractical when dealing with
a large number of images. In such cases, the LAB color
space is commonly employed as it closely aligns with hu-
man vision, enabling automated image segmentation. This
approach proves to be effective in achieving accurate and ef-
ficient segmentation results [8]. This work aims to monitor

pipelines using a drone equipped with a Raspberry Pi, Pi cam-
era, and GPS positioning system. The drone captures images
and GPS information, which are transmitted to a base station
via the MQTT IoT protocol through the cloud. The base sta-
tion utilizes computer vision with a deep learning algorithm,
specifically the DexiNed algorithm, to create thin edge maps
of spills of varying sizes detected in the images, even in small
areas. The LAB algorithm is employed to remove the effect of
shadows and focus solely on the black color, which represents
the natural color of spills. The circumference of the black spot
is calculated using an algorithm that determines if it indicates
a leak. In the event of a leak, the relevant information includ-
ing the original image, spot size, and geographical location
is sent in real-time via a web application to the competent
authority. The remaining sections of the paper are laid out as
follows. Firstly, the latest in related work is presented in the
second section. Next, the theoretical foundations of the deep
learning method used in this work are presented in the third
section. Finally, the fourth section shows the design of the
proposed system and the result obtained, while the working
conclusions are presented in the fifth section.

II. RELATED WORK

Researchers have dedicated their efforts to developing effi-
cient methods for detecting leaks. Ibitoye et al. [9] introduced
an innovative approach for detecting pipeline oil leaks by uti-
lizing a convolutional neural network model to analyze real-
time footage from Internet of Things (IoT) cameras installed
along the pipelines. Li et al. [10] employed RGB images
captured by optical cameras, which operate based on the red,
green, and blue color systems, for decision-making in crude
oil pipeline leakage detection. They utilized a convolutional
neural network (CNN) to accurately classify different leakage
rates by combining thermal and RGB images. Jiao et al. [11]
suggested a combination of machine learning, drones, and
traditional techniques for oil damage detection. They utilized
deep convolutional neural network modeling to analyze oil
spills and employed an updated Otsu approach to minimize
false positive detection results. Krestenitis et al. [12] pro-
posed the utilization of three deep-learning models, namely
VGG16 (Visual Geometry Group 16), YOLOv3 (You Only
Look Once, version 3), and Mask R-CNN (Region-based Con-
volutional Neural Networks), for the detection of oil spills
in RGB photos. Alharam et al. [13] suggested the use of an
unmanned device equipped with an onboard artificial intelli-
gence processing system and a thermal camera to monitor oil
spills. The system also incorporates an accurate classifier for
efficient detection. Ravishankar et al. [14] identified issues in
oil pipelines and proposed a solution called DARTS (Drone
and Artificial Intelligence Reconsolidated Technological So-
lution), which combines drone technology with deep learning
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techniques to monitor and predict the progression of these
issues. Sharafutdinov et al. [15] proposed a comprehensive
oil spill-detecting equipment for UAVs, including microwave
radiometer sensor, radar, laser radar, infrared and ultravio-
let spectrometers, which enable them to detect emergencies,
analyze the extent and depth of an oil spill, and provide valu-
able images of geological strata composition. Mahdianpari et
al. [16] developed a hierarchical object-based random forest
(RF) technique to map soil contamination caused by pipeline
breaches using high-resolution UAV images and electromag-
netic induction (EM) surveying data, with salinity indexes
used to identify soil pollution. Korlapati et al. [17] developed
UAVs equipped with thermal infrared (IR) cameras for the
detection of oil spills in ports, utilizing convolutional neural
networks (CNN) and a low-power interference device. Shukla
et al. [18] employed drones with non-contact sensors for ex-
ternal pipeline inspection, enabling automated inspection and
tracking while flying low over the pipeline structure. The
system uses onboard cameras for identification and tracking,
eliminating the need for GPS data. Zhou et al. [19] developed
vertical take-off and landing (VTOL) UAVs, which take off
and land vertically, were deployed and communicated with to
monitor pipelines. Low-power UAVs with directional anten-
nas and long-range zoom cameras monitor pipeline sections
in real-time when the pressure drops or third parties are active.

III. EDGE DETECTION-BASED DEEP
LEARNING

Among the many methods of image processing, edge detec-
tion is crucial. Data from the stunning accessory picture
functions on edge as a set of grayscale pixels with a sharp
transition. The field of edge detection has seen widespread
implementation across a wide range of practical needs, from
the medical to the industrial. It is possible to classify edge
detection methods as either traditional edge detection or those
based on deep learning [20]. DexiNed, an Extreme Inception
Network for Edge Detection, is a cutting-edge technique for
identifying edges with pinpoint precision. Holistically-Nested
Edge Detection (HED) and Xception networks serve as in-
spirations. In addition to applying to every edge detection
task without the requirement for training or fine-tuning, the
method automatically generates narrow edge maps convincing
to humans [21].

A. Dense extreme Inception network for edge detection
DexiNed is one of the CNN algorithms used for edge detection.
It merges a reduction network (up-sampling block (UB)) with
a dense Inception network (Dexi) to create DexiNed. Dexi
creates feature maps from the input image and sends them to
UB for training. While other deep learning (DL)-based edge
detectors need to initialize the weight using pre-trained object

recognition models, DexiNed is taught from scratch [22]. Fig.
1 shows the DexiNed architecture.

1) Dexi architecture
Dexi, which is based on the VGG16 architecture, comprises
six major blocks inspired by the Xception network. The net-
work utilizes an upsampling block to generate feature maps as
outputs from its main blocks, and these feature maps are then
used to produce intermediate edge maps. When all edge maps
generated by the upsampling blocks are fed into the stack of
learned filters at the end of the network, a merged edge map is
created. Each of the six upsampling blocks has its own unique
weights, and the blue blocks consist of a stack of two 3x3
kernel-size convolutional layers, batch normalization, and a
rectified linear unit (ReLU) activation function. Fig. 1 illus-
trates how the max-pool is determined using the 3x3 kernels
and stride 2. Similar to the multi-scale learning approach of
HED, this design employs upsampling (indicated by the grey
blocks in the diagram). Although DexiNed draws inspiration
from Xception, the similarities end at the level of the frame-
work’s primary building blocks and interconnections [23].

2) Upsampling architecture
The proposed design implemented by DexiNed aims to en-
hance the quality of expected edge maps generated from cap-
tured images, particularly for oil slicks. The upsampling block
plays a crucial role in thinning the edges. Fig. 2 illustrates
the architecture, where the outputs from all DexiNed blocks
are fed into the upsampling block, which consists of stacked
conditional sub-blocks. Each building block consists of two
layers: a convolutional layer and a deconvolutional layer. The
first sub-block type is the simplest, while the second is the
most complex. The Dexi outputs of the second sub-block
serve as inputs to the first sub-block and are used when the
discrepancy between the feature maps’ scales and the ground
truth (GT) is two. In the DexiNed architecture, when the
variance exceeds two, the next sub-block is used, and this
process continues until the GT feature map reaches a size of
two. The GT feature map’s scale is achieved by repeating
this sub-block. The subsequent sub-block consists of a 1x1
kernel in the switching layer, followed by the ReLU activa-
tion function. The kernel size for deconvolution layers or
convolutional switches is s × s, where s represents the level
scale of the input feature map. Each layer returns one filter,
resulting in map features at the same scale as the GT size.
The activation function is absent in the last transformation
layer. Subblock 2 is similar to subblock 1, except that it has
16 filters instead of 1. Downsampling from subblocks can be
performed using sub-pixel warping, warp transfer, and binary
linear interpolation [24].
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Fig. 1. DexiNed architecture [23]

Fig. 2. Architecture upsampling network [24]

3) Loss functions
It is possible to express DexiNed in terms of a regression
function ζ that is, Ŷ = ζ (X ,Y ), where X is an input image,
Y is the corresponding ground truth, and Ŷ It is a collection
of predicted edge mappings. Ŷ = [Ŷ1,Ŷ2, ...,ŶN ], where Ŷi has
the same size as Y and is the number of outputs from each
upsampling block (grey horizontal rectangles, Fig. 1); ŶN is
the result from the final fusion layer f (ŶN = Ŷf ). Therefore,
as this is a model, the same loss as (weighted cross-entropy)
is used; hence, this problem is thoroughly supervised and
addressed similarly.

in (W ·wn) =−β ∑
j∈Y+

logσ
(
yj1 | X;W ·wn)

− (1−β ) ∑
j∈Y−

logσ
(
yj = 0 | X;W ·wn) . (1)

L (W ·w) =
N

∑
n=1

δ
n ∗ ln (W ·wn) (2)

Each scale has its weight, denoted as W is the set of all
network parameters, and w is the parameter with index, δ

is a weight for each scale level. β = |Y−|/|Y+ +Y−| and
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(1−β ) = |Y+|/|Y++Y−|(|Y−|, |Y+| represent the edge and
non-edge in the underlying truth, respectively) [25].

B. Extreme Inception networks(Xception)
The foundation of a convolutional neural network is a series
of convolution layers that may be independently explored
in detail [26]. The network has three different flows: the
entrance flow, the middle flow (repeated four times with in-
creasing filters at each iteration), and the exit flow. Fig. 3
illustrates Xception’s network architecture. The entrance flow
extracts coarse features through four convolutional layers,
batch normalization, and the ReLU activation function. It is
noteworthy that the number of filters doubles from the pre-
vious convolutional layers. In the intermediate flow, eight
distinct convolutional layers extract more complex features,
with each set of two layers doubling the filter count. The out-
put flow extracts the most fine-grained characteristics using
two independent convolutional layers. Subsequently, global
average pooling is applied to reduce the 3x3 mapping to a 1x1
size. The softmax activation function is used for classifying
oil spills [27].

C. Holistically-nested edge detection
The HED strategy is neural network based, with VGG16 as
the main network node. It is a deep neural network-based
edge detector for images. The algorithm takes a color picture
as Input. It outputs a map of edges with confidence scores
ranging from 0 to 1 (or, equivalently, 0 to 255) for the exis-
tence of edges in each pixel. The HED strategy bases itself
on the VGG16 network’s convolutional layer (encircled by a
dotted box in Fig. 4). This section comprises 13 convolutional
layers with 3×3 kernels and ReLU activation functions after
each layer. The network consists of five subnetworks, each of
which processes images at a different scale: the first subnet
processes images at the full resolution of the input picture,
while the others process images at half, quarter, eighth, and
sixteenth that size. A max-pool operation with a 2×2 kernel
and a 2×2 stride decreases the resolution while moving from
one set to the next. The final result of HED combines the
outputs of five VGG16 groups trained to represent edge maps
at five distinct scales [28].
Two basic HED components are often used: multi-level fea-
ture learning, multi-scale prediction, and whole-image-based
training. First, the HED network is a fully convolutional neu-
ral network that accepts the whole picture as input and outputs
just the edge information. Regarding the second part, HED
adjusts VGG16 by removing the last convolutional and fully
connected layers and replacing them with intensive super-
vision. Then, they follow the convolutional layers with the
lateral output layers. The greater the convolution kernel and
the lower the side output, the deeper the network layer. The

Fig. 3. Xception CNN architecture [27]

ultimate result is a fusion of many characteristics from the
output’s side branches [29].

1) Formulation
During training, the input training data set is represented as
S=(Xn,Yn)n = 1, ...,N where sample Xn = x(n)j , j = 1, ..., |Xn|
represents the raw input image and Yn = y(n)j , j, ...|Xn|y(n)j ∈
0,1 represents the matching ground truth binary edge map for
the image Xn. Weights are represented as w = w(1), ...,w(M) ,
and the network comprises M side-output layers. Computes
the loss function at the picture level for auxiliary outputs. In
the field of image-to-image training, as in shown Fig. 4 [30]:
Can determine fusion layer loss function L By:

L (W,w,h) = Dist
(

Y,Ŷf use

)
(3)

To optimize for the minimum value of the following objec-
tive function using (backpropagation) accidental fall down a
gradient by:

(W,w,h)∗ = argminL (W,w)+L (W,w,h) (4)

Both the side output layers and the weighted-fusion layer’s
predictions on the edge map may be used in the testing step
with imageX by:

Ŷf use,Ŷ
(1)
side, ...,Ŷ

(M)
side =CNN

(
X (W,w,h)∗

)
(5)

These created edge maps may be aggregated further to provide
a single result by:

ŶHED = Average
(

Ŷf use,Ŷ
(1)
side, ...,Ŷ

(M)
side

)
(6)

IV. LAB COLOR SPACE

Shadows are a major challenge for many computer vision
tasks, including segmentation, object identification, and count-
ing. Therefore, many picture apps need users to identify and
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Fig. 4. Network architecture for HED [30].

eliminate shadows first. When an item blocks a light source’s
rays from penetrating a certain space, that space appears like
a shadow. Even though shadows may provide important de-
tails about the things they cast onto. There are two sorts of
shadows, hard and soft, and they differ in intensity. While the
surface texture is still visible in soft shadows, harsh shadows
are black and lack texture. Since other dark things may be
viewed in place of shadows, accurate shadow detection is
much more challenging. Also, many photos are required for
camera calibration in many approaches. [31]. A luminance
(lightness) channel, and two additional channels, A and B rep-
resent different chromaticity layers in this color space. Where
a color lies on the red-green axis can be determined from the
A* layer, and where it lies on the blue-yellow axis may be
determined from the B* layer. The fact that this color space
may be used to convey color information across multiple plat-
forms and devices is its most notable characteristic. In Fig. 5 ,
the coordinates in the LAB* color space are clearly displayed.
The brightness (L*) is represented along the middle vertical
axis, with a range of values from 0 (complete darkness) to
100 (complete lightness). It is worth noting that A* cannot
represent blue, yellow, green, or red since these colors are
opposites on the coordinate axes. All axes in the color space
have values ranging from positive to negative. Positive A*
values indicate quantities of red, while negative values indi-
cate green. Similarly, colors with positive B* values are more
yellow, and those with negative B* values are bluer. The zero
point on both axes represents grayscale neutrality. Only the
brightness (L*) and color (R*, G*, B*) axes require values
in this color mode, allowing users to independently adjust
the image’s luminance and hue. This unique feature enables
the distinction between oil and non-oil spots in comparable
photos. Fig. 6 shows the dimensions of a single RGB picture

that may be processed by LAB, making it one of the essential
technologies for identifying and eliminating shadows. Equa-
tion (8) is the result of linearly mapping the components of
RGB space to the coordinate system. X

Y
Z

=

 0.412453 0.357580 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

 R
G
B


(7)

In the CIE-LAB color space, the X component represents
the illumination, the Y component specifies the color, and
the Z component is a normalized spectral ponderation curve
based on statistical studies with human viewers. The color
coordinates for each pixel in CIE-LAB are calculated through
a non-linear modification of its X, Y, and Z values, using
equations (9), (10), (11), and (12).

L∗ = 116
[

f
(

Y
Yw

)]
−16 (8)

a = 500
[

f
(

X
Xw

)
− f

(
Y
Yw

)]
(9)

b = 200
[

f
(

Y
Yw

)
− f

(
Z
Zw

)]
(10)

f (x) =

{
t

1
3 if t >

( 6
29

)3

1
3

( 29
6

)2
t + 4

29 if t ≤
( 6

29

)3 (11)

The Tristimulus of CIE-XYZ values around the ”white spot”
is denoted as Xw, Yw, and Zw. Xw

Yw
Zw

=

 0.9504
1.0000
1.0887

 (12)

The initial mask of the color segmentation is obtained by
computing the Euclidean distance using equation (14), with
the help of the chromatic components a,b, andL, to determine
the delta values [32].

∆Eab =
√

∆L∗2 +∆a2 +∆b2 (13)

V. MQTT PROTOCOL

In the contemporary era, billions of interconnected smart gad-
gets and objects form a rapidly expanding network of linked
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Fig. 5. RGB representation of the CIE-LAB color space [32].

Fig. 6. Coordinate the system of a robot with six degrees of
freedom [32] .

devices. These interconnected gadgets efficiently exchange
information and services through sensor and event data trans-
port protocols. Applications built upon these protocols en-
able seamless data collection, storage, processing, description,
and analysis. Additionally, a key objective of the Internet of
Things is to establish secure two-way communication among
these connected devices [33] . The MQTT protocol is a free
and open implementation of the Transmission Control Proto-
col (TCP) transport layer’s publish-subscribe model. In the
publish/subscribe model, clients can either subscribe to or

publish on relevant subjects using a broker. When a client
”publishes” a subject, any client nodes that have subscribed
to it will receive the message. A node in the MQTT proto-
col can assume one of two roles: a publisher or a subscriber.
The protocol was designed to maximize dependability and
provide delivery assurance while minimizing the burden on
networks and devices. Moreover, the protocol is well-suited
for Machine-to-Machine (M2M) communications among IoT
gadgets due to its consideration for limited resources like
bandwidth and battery life [34].

VI. PROPOSED SYSTEM

This work utilizes a drone to inspect pipelines while reducing
human intervention by providing the drone with the coordi-
nates of the pipeline paths. The drone is equipped with an
embedded system, including a Raspberry Pi 4, Pi camera, and
neo-6m GPS module. The drone is sent along the pipeline’s
path, which is 3m underground, in multiple rounds. The ex-
periment was conducted on a 30 km segment of the Iraqi
oil pipeline system. The embedded system captures images
along the path at intervals of 1-2 meters. Table 1 illustrates
the ground where the pipes extend, both before and after the
spill, and demonstrates the implementation of the DexiNed
algorithm on the images to compute the detected spill and
its contour. Fig. 7 presents the schematic diagram of the
proposed system. The image is then sent to the base station
via the MQTT IoT protocol, along with its location provided
by the GPS module. In the base station, the image is pro-
cessed by the DexiNed algorithm to find different contours.
Although there may be multiple contours in each image, only
the ones with a significant area are considered potential spills.
The LAB algorithm is then applied to identify contours in the
image that have a black spot, which is indicative of a potential
spill. Finally, another algorithm (Algorithm 1) calculates the
area and perimeter of the detected spills. Fig. 8 illustrates
the practical implementation of the proposed algorithm, and
Table 2 presents a statistical analysis of the computed spill
area in pixels and the spill diameter for the applied images.
Additionally, Fig. 9 and 10 display the comparison results
between the pixel area and perimeter of three spills at three
different heights. During the first round of drone inspection,
if the contour area of the spot is less than the threshold limit
of 1m2, it is not considered a leak, and the image, along with
its location, is kept in the database. In the second round of
investigation, if the leakage oil area at the same location ex-
pands beyond the threshold limit as it is compared with the
previous information stored in the database, it is considered a
leak, and the information is transmitted. As shown in Fig. 11,
the web applications page includes the old and new pictures of
the leak and their location and size. But if the perimeter area
of the spot since the first round of the drone is greater than the



144 | Obaid & Hamad

Fig. 7. Proposed system design and implementation.

Fig. 8. Drone taking pictures of the oil leakage.

minimum, it is considered a direct leak, as shown in Fig. 12.
By designing the proposed system and testing it on the Iraqi
oil pipeline system, it has shown good results in detecting
different sizes of spills and locating them in real-time. This
has led to a reduction in costs and the devices and equipment
used in this project.

TABLE I.
3M2 SPILL WITH 10 M HEIGHT BEFORE AND AFTER THE
OIL SPILL

Original RGB image The original RGB image
before the oil spill after the oil spill

Apply of algorithm DexiNed Apply of algorithm DexiNed
before the oil spill after the oil spill

Area in pixel for all detected Area in pixel for all detected
contours before the oil spill contours after the oil spill

Applied the LAB algorithm Applied the LAB algorithm
before the oil spill and find and find the real area of the
the real area of the spill spill after the oil spill
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TABLE II.
STATISTICAL ANALYSIS OF A GROUP OF IMAGES
CAPTURED IN PIXELS

Height=5 and The spill is (1m2)
image pixel area perimeter area

1 101204.5 2478.83
2 97713.5 1816.19
3 96422.0 1568.59
4 87357.0 1384.76
5 91652.0 1373.94
Height=10 and the spill is (1m2)
1 23219.0 725.41
2 23019.5 797.25
3 23103.5 814.28
4 23099.0 762.38
5 23122.0 792.52
Height=15 and the spill is (1m2)

1 8078.0 457.1
2 7610.5 363.12
3 8760.0 499.16
4 8342.0 431.91
5 8041.0 393.42
Height=5 and the spill is (2m2)

image pixel area perimeter area
1 158437.0 2032.64
2 153535.0 2030.09
3 158332.5 2015.99
4 184341.0 2309.71
5 162207.5 2083.99
Height=10 and the spill is (2m2)
1 61926.0 1170.63
2 63696.0 1396.94
3 64244.5 1311.79
4 60996.5 1245.02
5 59781.5 1230.73
Height=15 and the spill is (2m2)

1 27382.5 767.71
2 27901.0 753.47
3 27481.0 711.04
4 27127.0 703.39
5 25840.0 864.1
Height=5 and the spill is (3m2)

image pixel area perimeter area
1 259915.0 2758.26
2 254728.0 2932.97
3 254765.0 3213.02
4 251951.0 3627.29
5 261107.5 3273.14
Height=10 and the spill is( 3m2)
1 143821.0 2523.32
2 138306.5 1932.6
3 135590.5 2400.83
4 138213.0 2475.24
5 138131.5 2364.26

Height=15 and the spill is (3m2)
image pixel area perimeter area

1 68020.5 1916.86
2 62248.0 1232.75
3 61547.5 1240.65
4 62929.5 1296.65
5 63246.5 1229.6

Fig. 9. Average pixel area of a set of leakage images.

Fig. 10. Average perimeter of a set of leakage images.

VII. CONCLUSIONS

This work proposed designing and testing Iraq’s crude oil
pipelining system’s monitoring system using a drone image
processing and deep learning technique. The proposed system
can enrich this type of research through a fully automated sys-
tem. Extensive testing experiments were applied for different
emulated spills in different locations. The proposed system is
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Fig. 11. Main program interface for oil spill expansion.

Fig. 12. Main interface of the program for the presence of an
oil spill is greater than the threshold limit.

more accurate than traditional methods used in this field, such
as differential pressure, where it cannot provide the position of
the spill and provide only a leakage or not. The main difficulty
of the proposed system is the period when the drone can fly
to the monitor’s longest path since some pipe segments reach
600km in Iraq. This case was considered a future work such
that a drone swarm could be used to accomplish the work.
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