
Received: 15 March 2023 | Revised: 6 May 2023 | Accepted: 12 May 2023
DOI: 10.37917/ijeee.20.1.7 Early View | June 2024

Open Access

Iraqi Journal for Electrical and Electronic Engineering
Original Article

Improving Performance of Searchable Symmetric
Encryption Through New Information Retrieval Scheme

Aya A. Alyousif*, Ali A. Yassin
Department of Computer science, Education College for Pure Sciences, University of Basrah, Basrah, 61004, Iraq

Correspondance
*Aya A. Alyousif
Department of Computer Science
Education College for Pure Sciences
University of Basrah, Basrah, 61004, Iraq
Email: pgs.aya.alyousif@uobasrah.edu.iq

Abstract
Searchable symmetric encryption (SSE) is a robust cryptographic method that allows users to store and retrieve encrypted
data on a remote server, such as a cloud server, while maintaining the privacy of the user’s data. The technique employs
symmetric encryption, which utilizes a single secret key for both data encryption and decryption. However, extensive
research in this field has revealed that SSE encounters performance issues when dealing with large databases. Upon
further investigation, it has become apparent that the issue is due to poor locality, necessitating that the cloud server
access multiple memory locations for a single query. Additionally, prior endeavors in this domain centered on locality
optimization have often led to expanded storage requirements (the stored encrypted index should not be substantially
larger than the original index) or diminished data retrieval efficiency (only required data should be retrieved).we present
a simple, secure, searchable, and cost-effective scheme, which addresses the aforementioned problems while achieving
a significant improvement in information retrieval performance through site optimization by changing the encrypted
inverted index storage mechanism. The proposed scheme has the optimal locality O(1) and the best read efficiency
O(1)with no significant negative impact on the storage space, which often increases due to the improvement of the
locality. Using real-world data, we demonstrate that our scheme is secure, practical, and highly accurate. Furthermore,
our proposed work can resist well-known attacks such as keyword guessing attacks and frequency analysis attacks.
Keywords
Information Retrieval, Inverted Index, Locality, Searchable Encryption.

I. INTRODUCTION

Cloud storage is a type of online storage that allows users
to store, access, and manage their data and files over the In-
ternet, without the need for physical storage devices such
as hard drives or USBs. This technology has gained a lot
of attention recently due to the many advantages which of-
fers to individuals and businesses alike [1], [2]. One of the
primary advantages of cloud storage is its accessibility and
availability. With cloud storage, users can access their files
from anywhere/anytime in the world, another advantage of
cloud storage is its scalability, with cloud storage, users can
easily increase or decrease their storage capacity as needed,

without the need to purchase additional hardware. Cloud stor-
age providers typically implement strict security measures to
safeguard customer data, such as encryption, secure data cen-
ters, and access controls. However, the data owner (DW) or
company is ultimately responsible for ensuring the protection
of sensitive data and compliance with relevant regulations or
industry standards.
One important operation that can be applied to sensitive data
in the cloud that is searchable symmetric encryption (SSE) [3].
It is a cryptographic method that enables encrypted data to
be searched in a secure and efficient manner. It allows data
to be encrypted before storage on the cloud server, while still
allowing authorized users to search, retrieve and use the data

This is an open-access article under the terms of the Creative Commons Attribution License,
which permits use, distribution, and reproduction in any medium, provided the original work is properly cited.
©2023 The Authors.
Published by Iraqi Journal for Electrical and Electronic Engineering | College of Engineering, University of Basrah.

https://doi.org/10.37917/ijeee.20.1.7 https://www.ijeee.edu.iq | 68

https://doi.org/10.37917/ijeee.20.1.7
https://www.ijeee.edu.iq

69 | Alyousif & Yassin

without compromising its security. In contrast to traditional
encryption schemes, where data is encrypted and remains
inaccessible until decrypted with a secret key, SSE encrypts
data using a symmetric key and creates an additional index
for efficient searching. This index is also encrypted, ensuring
that the underlying data remains secure. SSE is particularly
useful in situations where data privacy is crucial, such as in
healthcare, finance, and other industries where sensitive data
is stored and accessed. By utilizing SSE, users can store and
search their data securely, without the need to expose their
sensitive information to unauthorized parties or third-party
service providers.
In more detail, SSE involves the DW encrypting the data using
a secret key as the initial step, followed by transmitting it to
the remote server. Subsequently, the DW creates a secure
index from its own database. The encrypted data and secure
index are then transmitted to the cloud storage server, which
may be either the same untrusted server or a third-party server
chosen by the DW. The DW generates a search token that
is utilized to retrieve information from a secure index file to
execute a secure search.
One of the challenges faced by SSE is efficiency and scal-
ability. The larger the size of the database, the greater the
size of the index, and thus the slower retrieval process. After
many researches in this field, it was found that this vulnera-
bility is not due to encryption operations, but rather because
of the nature of storing the encrypted index, which leads to
visiting the cloud server to multiple memory locations in the
search process to answer a single query, this is called poor
locality [3–7]. This situation results in a significant perfor-
mance weakness that deteriorates with an increase in database
size. Consequently, some researchers have redirected their
attention towards improving locality. Although enhancing
locality can improve system performance, it often negatively
impacts other key characteristics, such as reading efficiency
(The server should return only the encrypted data requested
from it and no additional data) or storage capacity (A very
large increase in the storage space of the encrypted index).
As a result, developing a scheme that balances optimal lo-
cality with efficient reading and storage poses a significant
challenge.
In this study, we present an optimal locality secure scheme
to address the challenge of searchable encryption in large
datasets and to increase the performance of information re-
trieval by improving the locality through a change in the en-
crypted inverted index storage mechanism. Our contributions
can be summarized as follows:

• The performance of information retrieval, for both large
and small databases, is significantly improved as a result
of the enhanced locality.

• Optimal locality O(1). The cloud server will only need
to visit one memory location, rather than multiple loca-
tions, to respond to the user’s query.

• Best read efficiency O(1). The cloud server responds
with only the requested data as a result of the user’s
query.

• The proposed scheme is highly secure as the server
searches for and sends the requested data to the data
owner without decrypting it.

• This enhances the resistance to various attacks that
searchable symmetric encryption is susceptible to.

The remaining sections of this paper are as follows: Section
II displays primitive tools, Section III covers previous related
works, Section IV presents the scheme, while Section V pro-
vides a detailed discussion of the scheme. Section VI contains
the security analysis of our scheme, Section VII presents the
experimental results, and finally, in the last section, Section
VIII, the paper concludes.

II. PRIMITIVE TOOLS
A. SSE algorithms
All algorithms are performed among three fundamental com-
ponents: data owner(DW), cloud server (CS), and users(Ui),
where i ∈ Nu and NU represents the total number of users in
the system.
SSE consists of the following algorithms[3], [5].

• k←− Gen(1λ): The data owner DW runs a key gener-
ation algorithm to generate a secret key k by providing
a security parameter 1λ as input.

• SI ←− Enc(k,DB): Is used by DW for create a secure
index file (SI) based on a secret key k and database DB.

• T ←− Trpdr(k,wi):Trpdr algorithm, Ui generates a
token T when it wish to search for specific Wi(to find
out their identifiers). The token is then sent to CS,
which conducts the search. The primary objective of
this algorithm is to prevent the unauthorized disclosure
of information stored on CS, in the form of an encrypted
list of keywords (SI). Consequently, CS responds to user
requests (T) in a secure manner.

• d ←− Search(SI,T): A deterministic algorithm is exe-
cuted by CS to search for data d (A set of identifiers)in
the secure index SI, using a trapdoor T. In the case
where d is encrypted, a resolve algorithm will be re-
quired.

70 | Alyousif & Yassin

• R←− Resolve(k,d): The DW executes this algorithm
to recover the identifiers of keyword. The algorithm
takes k and d as inputs and produces the final result R
as output

B. The Advanced Encryption Standard (AES)
AES is an extensively used symmetric-key encryption algo-
rithm that is designed for security and efficiency. Its purpose
is to protect sensitive data and information during transmis-
sion and storage. AES was developed to replace the outdated
and insecure Data Encryption Standard (DES). AES is a block
cipher algorithm that uses a combination of substitution and
permutation techniques to encrypt and decrypt data. It oper-
ates with a fixed plaintext block size of 128 bits (16 bytes),
represented as a 4x4 matrix. The number of rounds in AES
varies based on the size of the key, which can be either 128,
192, or 256 bits. The number of rounds for a 128-bit key is 10,
for a 192-bit key it is 12, and for a 256-bit key it is 14. AES
is widely recognized as one of the most secure encryption
standards and is commonly employed in various applications,
including securing online communications, financial transac-
tions, and government/military communications [8, 9].

III. RELATED WORKS
In 2000, Song et al., they introduced a novel definition for
SSE and presented various efficient techniques to implement
SSE [10]. These mechanisms enabled Data Owners to se-
curely store their data on an untrusted server, while ensuring
that the server cannot retrieve the client’s data. Since then, nu-
merous other studies have emerged in this field. While most
SSE studies have successfully adhered to the fundamental
principles of SSE, practical experiments on large databases
have revealed their poor performance, which degrades as the
database size increases. This is primarily due to the bottleneck
problem that they frequently encounter [11]. Studies in the
literature have found that the bottleneck in these schemes was
not due to encryption but rather to lower-level memory access
issues, particularly poor locality. The known constructions can
be broadly classified into two categories. The first approach is
characterized by linear space and constant read efficiency but
poor locality in [11,12]. Involves allocating an array of size N,
where N elements of the database are uniformly mapped into
the array. To retrieve a list of documents containing a specific
keyword, each document identifier is stored in the array along
with a pointer to the next document identifier in the list. Fur-
thermore, the server needs to access random locations in the
array with the number of identifiers that the word appears in.
However, this approach is inefficient due to poor performance
resulting from accessing a large number of different locations.
The second approach achieves optimal read efficiency and
locality but requires substantial space overhead [13–16]. The

strategy behind this approach involves allocating a sufficiently
large array and uniformly mapping the list of word identifiers
into a contiguous interval in the array based on the length of
word identifiers, without any overlaps among different lists.
To efficiently retrieve a list for a given keyword, the server
only needs to access a single random location and read all
consecutive identifier entries, resulting in optimal read effi-
ciency and locality. However, the locations of the lists in the
array expose information about the structure of the underlying
database. Therefore, padding is necessary to conceal informa-
tion about the lengths of the lists, which leads to a polynomial
space overhead. Therefore, developing a scheme with the best
possible locality, storage, and read efficiency is a challenging
task. In fact, David Cash and Stefano Tessaro demonstrated in
2014 [4] that it is impossible to achieve optimal performance
in all three criteria simultaneously. They also established a
lower bound on the tradeoff among these criteriaIn addition to
their improvement on the locality by creating a scheme with
logarithmic locality (log N), their scheme’s storage space of
O(N log N) was not optimal. In 2016, Gilad Asharov et al. [?]
presented their third scheme, which updated David Cash and
Stefano Tessaro’s scheme to achieve O(1) locality with the
same storage space. In 2017, Demertzis and Papamanthou [6]
developed two schemes, the first of which had optimal local-
ity and O(NSi) space, where Si is the number of levels used
to store data. However, this scheme had a minor impact on
read efficiency and still required a large amount of storage
space. The second scheme achieved a tunable locality, which
could be selected as a parameter by the DW during the setup
phase, while working within the same storage space as the
first scheme. In 2021, Asharov et al. [7] made significant
progress by developing two general frameworks - the pad-and-
split framework and the statistical-independence framework -
which strengthened the lower bound established by Cash and
Tessaro. Throughout the recent period spanning 2021 to 2023,
a multitude of research studies have surfaced across diverse
domains within SSE, presenting numerous benefits. Never-
theless, all of them continue to exhibit a notable deficiency in
terms of good locality such as [17–19].

IV. PROPOSED SCHEME
This section presents a proposed scheme that focuses on cre-
ating an inverted index of the database and modifying the
mechanism for storing it to increase search speed. This modi-
fication involves converting the identifiers corresponding to
each word (as stored in the traditional inverted index) into a
single value for accessing the identifiers later. The proposed
scheme is intended to be managed by three major components:
the DW, CS, and t Ui. It consists of five distinct phases:
1. Key generation phase: The owner of the data generates a
secret key.

71 | Alyousif & Yassin

2. Setup and Secure phase: The data owner creates a secure
index and uploads it to the cloud server.
3. Token generation phase: When a user wants to search for
a specific word, they create a token and send it to the cloud
server for the search.
4. Secure search phase: The cloud server receives the token,
searches for the required data in the secure index, and sends
the result to the user.
5. Resolve phase: The user performs final manipulations on
the result received from the cloud server to obtain the identi-
fiers associated with the word.

CONSTRUCTION 1. (String based scheme)
Let DB = {DB(w1), ...,DB(ww)}
M = {(wi), ...,(ww)};
For wi ∈M letDB(wi) = {(idi), ...,(idnw)} and ndb is
total of identifiers DB Key generation phase k&kv←
Gen(1λ) :
1. Input Security parameter 1λ

2. Output k and kv,wherek&kv ∈ Z
3. Compute both keys based on PRF

Setup and Secure phase SI← Enc(k,DB): 1. Input k
and DB
2.Output SI = HT
3.. Initialize empty HT
4.For every wi ∈M
compute la = PRFk(1 ∥ wi) and
ke = PRFk(2 ∥ wi)
Str = ””, i = 1
For from i to ndb
if i in DB(wi)
Add 1 to Str
Else
Add 0 to Str
i = i+1
S̆tr = Encke(Str) by AES256
Add (la, S̆tr) toHT
5.uploading HT to CS

Token generator phase T̆ ← Trqdr(kv,k,wi) :
1. Inputkv,kandwi
2.OutputT̆
3.Compute T = PRFk(1 ∥ wi) = la
4.T̆ = EncT
5.SendT̆ to CS

Secure Search phase E S̆tr← Search(kv, T̆ ,SI)
1.Input kv, T̆ ,SI
2. Output E S̆tr
3.T = Decv(T̆) = la
4.S̆tr = Get(la)
5.Send E S̆tr to Ui

Resolve phase L ids← Resolve(kv,k,E S̆tr)
1. Input kv,kandE S̆tr
2.Output L ids = identifiers 3.Restore
PRFk(2 ∥ wi) = ke
4.S̆tr = Get(la)
5.Initialize empty L ids and i=1
6. For from i to length Str
if Str[i]=1
Add i to L ids
i=i+1

V. THE PROPOSED SCHEME WITH
MORE DETAIL

A. Key generation phase
In this phase, DW generates a secret key k using a Pseudo-
Random Function (PRF), which can be defined as follows:
A PRF function F : {0,1}∗x{0,1}∗→ {0,1}∗ is used to cre-
ate the key. It takes two inputs k and an input and produces
an output that cannot be distinguished from a truly random
function, except with negligible probability in 1λ , denoted as
negl(1λ) [20, 21]
The key k is used in the setup and secure phase to encrypt the
data SI← Enc(k,DB), and it is sent to all trusted users. In the
subsequent phases, such as the token generator phase,T̆ ←
Trpdr(kv,k,wi), and the resolve phase, L ids←Resolve(kv,k,E S̆tr),
Ui must use k.
Furthermore, another key called kv is created using the same
method, and it is used to secure the trapdoor T and encrypted
string S̆tr exchanged between the major components CS andUi
.

72 | Alyousif & Yassin

B. Setup and secure phase
The current phase involves the DW configuring a secure index
called SI, which will be uploaded to CS upon completion. The
main inputs for this process are k and DB, and the output is
SI. The following steps provide an explanation of how this
mechanism works:
Create an empty hash table HT that will serve as a foundation
for storing secure parameters and subsequently used as SI for
retrieving user’s requests.
For each keyword wi extracted from M, where wiεM, per-
formed a series of consecutive steps outlined below:

1. Using PRF to derivation of two keys from wi. The
first one la is computed , which takes 1 and wi as its in-
puts as follows la = PRFK(1 ∥ wi) it is used as a label later
to store S̆tr in HT . The second keyke creates in the same
wayke = PRFk(2 ∥ wi)), it is used to encrypted Str.
2. Initialize the initial values as empty string Str and i=0
3. The advantage of Str is its usefulness in expressing the
presence the identifiers by which the word appears. This
string has a length equivalent to the database identifiers ndb
and comprises two values: 0 and 1. It is created by adding
1 to the rank corresponding to the identifier number in Str.
If not, then 0 is added. For example, if DB(wi) = 1,3,5,8
and ndb = 10, then the binary string representation would be
Str = ′′1010100100′′.
4. Encrypt Str by ke and S̆tr represents an encrypted string.
5. Add the

(
la, S̆tr

)
pair as a (key,value) into the HT

uploadingHT to the cloud server

C. Trapdoor phase
In the present phase, Ui conducts a search for a specific word
wi. Trpdr is responsible for processing wi, kv and k as input
parameters, resulting in the production of T̆ as output. Which
will compute T and subsequently secured usingkv, with the
following formula:T̆ =Enckv(T)), which enables more secure
transfer to CS.

D. Secure search phase
After receiving a user’s query T̆ ,and decryption T̆ , T =
Deckv(T̆) = la , CS responds by returning S̆tr stored in SI by
S̆tr = Get(la) It is encrypted and sent to Ui securely E S̆tr =
Enckv(S̆tr)

E. Resolve phase
At this phase, the user receives E S̆tr from CS and follows
the subsequent steps to obtain the identifiers.
1. Decrypt E S̆tr and then decrypt S̆tr to get Str
2. Initialize empty L ids it is a list used to store identifiers

after obtaining them and i=1. 3. For from i to length Str
If Str [i] = 1
Add i toLids
i = i+1

VI. SECURITY ANALYSIS
In the literature review, there are various syntaxes for SSE
schemes, which can be categorized into two types based on
how the cloud server and DW interact during each query for
data. The first type is a single-round interaction, where the
server decrypts the data and sends the result to the DW, thus
learning the output in the process. In contrast, the second type
utilizes multiple rounds of interaction, where the cloud server
does not learn any information about the output [?].
The proposed scheme prioritizes the security of data exchanged
over the communication channel between cloud server and
DW, and therefore, we have opted to use the second type of
SSE syntax that employs multiple rounds of interaction to
ensure that the cloud server does not gain access to any infor-
mation about the output.

A. Server information leakage
The concept of leakage functions L refers to the amount of
information that can be learned by the cloud server about
the stored data. These functions can be classified into three
types: Lmax and Lmin , which are associated with single-round
interaction SSE, and Lsize , which is used for multiple rounds
of interaction. All three types take M and DB as input param-
eters [4, 7].
Imax(M,DB) : the output is (N,{DB(wi)}wiεM ,W,ndb,nw
,Max(DB(wi))wiεM)This function represents the maximum
possible amount of leakage.
Imin(M,DB) : output (N,{DB(wi)}wiεM)This type of leakage
is considered somewhat acceptable. It is important to note
that the cloud server must know N in all cases. During a
single-round interaction, the server can view the query results
because it is capable of decrypting the output.
Isize(M,DB) : output of function is (N,{|DB(wi)|}wiεM)

In multi interaction rounds, the cloud server responds to
the user’s request without decrypting the results and will only
learn the size of the results. Our work falls into this type of
leakage because we employed multiple rounds of interaction.
However, it’s important to note that the encrypted values of the
Str parameter stored in the cloud server are of equal length,
but they do not represent the actual identifiers themselves.
Rather, they are strings that indicate the presence or absence
of a particular identifier. Consequently, the uniform output
size of the cloud server does not disclose any information

73 | Alyousif & Yassin

about nw.

B. Resisting attacks
In this section, we explored the robustness of our scheme and
the most well-known forms of attacks on SSE.

1) KGA (Known-Keyword Attack)
KGA attack is a form of attack that targets searchable symmet-
ric encryption (SSE) systems. In a KGA attack, the CS tries
to infer the keyword that a user is searching for, and leverages
this information to retrieve the encrypted data associated with
that keyword. This type of attack can undermine the privacy
and confidentiality of the stored data, and can potentially al-
low CS to launch additional attacks on the system. KGA
attacks are among the most prevalent types of attacks that are
launched against SSE schemes [22]. Our scheme employs
multiple precautionary measures to resist attack, including
encrypting the words and ensuring the key is kept secret and
secure. As a result, we are confident that our work can effec-
tively resist KGA attacks.

2) Frequency analysis attack
A frequency analysis attack is a type of cryptographic CS used
to break a cipher by analyzing the frequency of occurrence
of letters or symbols in the encrypted data. Therefore, the
method exploits the frequency of the encrypted data that is
uploaded to SI, which can be represented as either term fre-
quency (TF) or term frequency-inverse document frequency
(TF-IDF) [23]. TF is the measure of the number of times a
term wi appears in a document . On the other hand, TF-IDF is
the product of TF and IDF values. IDF is a measure of how
important wii is to a collection of documents. It is calculated
as the logarithm of the ratio of the total number of documents
in the collection ndbto the number of documents that contain
wi. CS potentially carry out this attack and determine the
keyword being searched for if they have access to this impor-
tant information. However, our work is designed to protect
against such attacks as the values stored in CS are encrypted
and do not reflect the original identifiers directly. Instead, they
are represented by a text that helps the user Ui to access the
identifiers later. Therefore, we can confidently state that our
work is secure against this type of attack.

3) Inverted Keyword Knowledge IKK attack
IKK attack is used to determine the plaintext words that were
used by the user Ui to search for trapdoors [24]. This attack
relies on the disclosure of partially known information, specifi-
cally the leaking of the access pattern information. The access

pattern information is defined as the result of the search for
T in SI by CS. To provide an example, consider a database
that contains information about networks, and a user submits
three queries as trapdoors: T1, T2 and T3 , which correspond
to the words ”communications,” ”computers,” and ”link,” re-
spectively. After the communication between the user Ui and
CS is completed, the CS obtains the results, which are the
set of identifiers corresponding to the trapdoors. The CS can
then calculate the probability of any two of these keywords
appearing together in any document by analyzing the number
of documents that are common between the corresponding
trapdoors. By continuing the search and gradually revealing
the access pattern, CS can obtain more information about
the probabilities of the keywords corresponding to the trap-
doors [24]. Eventually, through this process, the server may
be able to determine the keywords that correspond to the trap-
doors. However, our scheme is designed to resist this type of
attack. Specifically, the search results obtained by the CS are
encrypted, and the access pattern does not leak any important
information. Therefore, the CS will not be able to access the
identifiers that correspond to the trapdoors, which ensures the
security of our scheme against the IKK attack.

4) Man-in-the-middle attack MITM
This type of attack occurs when the communication channel
between the user Ui and CS is not secure, as an attacker can
impersonate one of the parties [25]. To prevent this type
of attack, we have implemented several security measures
in our work. Firstly, we secure the communication channel
by encrypting the exchanged data (T and S̆tr) between the
CS and Ui using kv key. Additionally, we ensure mutual
authentication between the two parties using the same key.
These steps are taken during each the Token generator phase,
secure search phase, and resolve phase as the following:

CONSTRUCTION 2. In token generator phas:
Ui selects a random identifier IDU .
HIDU = Hkv(IDU)
Send (HIDU ∥ IDU ∥ T̆) to CS
In Secure Search Phase:
CS selects a random identifierIDCS.
if HIDU = vr f ykv(IDv)→Ui authentication
Before send E S̆tr
HIDCS = Hkv(IDCS)
Send (HIDU ∥ IDU ∥ E S̆tr) to Ui
In Resolve Phase:
if HIDCS = vr f ykv(IDCS)→CS authentication

74 | Alyousif & Yassin

VII. EXPERIMENTAL RESULTS
In this section, the performance of the proposed scheme was
evaluated using a real-data collection of Wikipedia articles.
A database of 2250 files was selected, with ndb = 2250 and
112300 words, W=112300. The study was conducted on a
64-bit Windows 10 PC, which was equipped with an Intel
Core i5 CPU clocked at 2.6 GHz and 8 GB of RAM. Python
was chosen as the programming language for its numerous
functionalities.

A. Comparison with previous schemes
As an initial step to ensure the effectiveness of the approach,
several prior schemes [4–6,26], were implemented. In the sec-
ond phase, an experiment was conducted on the same DB and
wi, utilizing the AES256 encryption algorithm to evaluate the
search time required to retrieve the identifiers associated with
the word. This experiment involved the proposed approach
as well as four other previously implemented schemes. The
word that occurs in the largest number of files, nw = 1933,
was selected for the evaluation. The successful outcomes of
the efforts to enhance the pace of information retrieval are
demonstrated in ??.
To ensure a fair comparison with other studies, the duration
of the resolve phase was included in addition to the research
time, which was not incorporated in previous schemes.
In the second experiment, a word that appeared only in two
files, nw = 2, was focused on. The outcomes demonstrated
that search speed was remarkably high across all schemes,
including the proposed method. This outcome was anticipated
as the number of identifiers was small. However, the exper-
iment verified that the adjustments made to the encrypted
inverted index storage mechanism did not result in negative
impacts when the number of identifiers was limited, as shown
in ??.

B. Discussion
In this discussion, we will delve into the factors that have
contributed to the success of the proposed scheme and how
it differentiates itself from previous schemes that underwent
evaluation alongside it. It is clear from the practical experi-
ments that were conducted, the time taken to perform a search
operation is predominantly influenced by several factors, in-
cluding the locality (i.e., the frequency of accessing various
memory locations within CS), the structure of the encrypted
index stored on CS, and the number of decryption operations
required to retrieve the relevant identifiers. Certain schemes
can be significantly impacted by poor locality, as in refer-
ence [26] in the experiment, the first word retrieved neces-
sitated the cloud server to move to 1933 different positions,

Fig. 1. Comparison the time it takes to search for a word with
nw = 1933 in proposed scheme with the time required by
previous schemes.

resulting in a potential delay in search time as shown in ??.
The search process may experience delays due to the structure
of the index stored on the cloud server and the frequency of
decryption required, even if the locality is relatively good as
in [4–6].
Regarding the suggested scheme, it exhibits optimal locality
O(1), resulting in the cloud server moving only once instead
of 1933 positions during the search process. Additionally, de-
cryption is only required once, which significantly improves
the speed of access to identifiers. These factors, in the pro-
posed scheme, have contributed to its success and set it apart
from previous schemes.

VIII. CONCLUSIONS
This paper addresses the issue of suboptimal performance in
large databases caused by cloud server accessing data from
multiple positions during the search process to respond to a
single query from the user. The primary focus of this paper

75 | Alyousif & Yassin

Fig. 2. Comparison the time it takes to search for a word with
nw = 2 in proposed scheme with the time required by
previous schemes.

is on the issue of poor locality, and a solution is presented
to improve the performance by modifying the inverted index
storage mechanisms. The proposed scheme ensures optimal
locality O(1), which enhances the overall performance of
searchable symmetric encryption. Additionally, the proposed
scheme boasts robust security measures, significantly reduc-
ing information leakage to the server and making it highly
resistant to most known SSE attacks. Furthermore, experi-
ments were conducted using real-world data to demonstrate
the practical efficiency and accuracy of the proposed scheme.

CONFLICT OF INTEREST

The authors have no conflict of relevant interest to this article.

REFERENCES

[1] H. Akbar, M. Zubair, and M. S. Malik, “The security
issues and challenges in cloud computing,” International
Journal for Electronic Crime Investigation, vol. 7, no. 1,
pp. 13–32, 2023.

[2] A. Ahmed, S. Kumar, A. A. Shah, and A. Bhutto, “Cloud
computing security issues and challenges,” Tropical Sci-
entific Journal, vol. 2, p. 1–8, Jan. 2023.

Character Description
wi Word
W Number of words
M Words in DB M = wi, ...,ww
id Identifier
ndb Total of identifiers DB
nw Total of identifiers wi

N ∑
w
i=1 |DB(wi)| where

DB(wi) = {idi, ..., idnw}
PRF Pseudo-random function

HT

A hash table is a type of data structure used
for storing and retrieving data.
It comprises a pair of algorithms,
namely ”Add” and ”Get,” [7]
which enable efficient and fast access to
stored information.

Add
Algorithm adds pairs of (key , value)
to HT

Get value=Get(key)
Str String
S̆tr Encrypted string

la
Label is used to store and retrieve
Ŝ in HT ,
Add(la, S̆tr), Ŝ = Get(la)

Enc Function to encryption Str

Dec
Function to decryption
S̆tr

la Derivative key to create la

ke
Derivative key to encrypted
and decrypted

T̆ Encryption T

76 | Alyousif & Yassin

[3] G. S. Poh, J.-J. Chin, W.-C. Yau, K.-K. R. Choo, and
M. S. Mohamad, “Searchable symmetric encryption: de-
signs and challenges,” ACM Computing Surveys (CSUR),
vol. 50, no. 3, pp. 1–37, 2017.

[4] D. Cash and S. Tessaro, “The locality of searchable
symmetric encryption,” in Advances in Cryptology–
EUROCRYPT 2014: 33rd Annual International Confer-
ence on the Theory and Applications of Cryptographic
Techniques, Copenhagen, Denmark, May 11-15, 2014.
Proceedings 33, pp. 351–368, Springer, 2014.

[5] G. Asharov, M. Naor, G. Segev, and I. Shahaf, “Search-
able symmetric encryption: optimal locality in linear
space via two-dimensional balanced allocations,” in Pro-
ceedings of the forty-eighth annual ACM symposium on
Theory of Computing, pp. 1101–1114, 2016.

[6] I. Demertzis and C. Papamanthou, “Fast searchable en-
cryption with tunable locality,” in Proceedings of the
2017 ACM International Conference on Management of
Data, pp. 1053–1067, 2017.

[7] G. Asharov, G. Segev, and I. Shahaf, “Tight tradeoffs in
searchable symmetric encryption,” Journal of Cryptol-
ogy, vol. 34, pp. 1–37, 2021.

[8] A. M. Abdullah et al., “Advanced encryption standard
(aes) algorithm to encrypt and decrypt data,” Cryptogra-
phy and Network Security, vol. 16, no. 1, p. 11, 2017.

[9] Y. Alemami, M. A. Mohamed, and S. Atiewi, “Advanced
approach for encryption using advanced encryption stan-
dard with chaotic map,” Int. J. Electr. Comput. Eng,
vol. 13, pp. 1708–1723, 2023.

[10] D. X. Song, D. Wagner, and A. Perrig, “Practical tech-
niques for searches on encrypted data,” in Proceeding
2000 IEEE symposium on security and privacy. S&P
2000, pp. 44–55, IEEE, 2000.

[11] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu,
and M. Steiner, “Highly-scalable searchable symmet-
ric encryption with support for boolean queries,” in
Advances in Cryptology–CRYPTO 2013: 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 18-22, 2013. Proceedings, Part I, pp. 353–373,
Springer, 2013.

[12] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic
searchable symmetric encryption,” in Proceedings of the
2012 ACM conference on Computer and communica-
tions security, pp. 965–976, 2012.

[13] M. Chase and S. Kamara, “Structured encryption and
controlled disclosure,” in Advances in Cryptology-
ASIACRYPT 2010: 16th International Conference on the
Theory and Application of Cryptology and Information
Security, Singapore, December 5-9, 2010. Proceedings
16, pp. 577–594, Springer, 2010.

[14] P. Van Liesdonk, S. Sedghi, J. Doumen, P. Hartel, and
W. Jonker, “Computationally efficient searchable sym-
metric encryption,” in Secure Data Management: 7th
VLDB Workshop, SDM 2010, Singapore, September 17,
2010. Proceedings 7, pp. 87–100, Springer, 2010.

[15] K. Kurosawa and Y. Ohtaki, “How to update documents
verifiably in searchable symmetric encryption,” in Cryp-
tology and Network Security: 12th International Con-
ference, CANS 2013, Paraty, Brazil, November 20-22.
2013. Proceedings 12, pp. 309–328, Springer, 2013.

[16] S. Kamara and C. Papamanthou, “Parallel and dynamic
searchable symmetric encryption,” in Financial Cryptog-
raphy and Data Security: 17th International Conference,
FC 2013, Okinawa, Japan, April 1-5, 2013, Revised Se-
lected Papers 17, pp. 258–274, Springer, 2013.

[17] H. M. Mohammed and A. I. Abdulsada, “Secure multi-
keyword similarity search over encrypted data with se-
curity improvement.,” Iraqi Journal for Electrical &
Electronic Engineering, vol. 17, no. 2, 2021.

[18] H. M. Mohammed and A. I. Abdulsada, “Multi-keyword
search over encrypted data with security proof,” Journal
of Basrah Researches (Sciences), vol. 47, no. 1, 2021.

[19] C. Guo, W. Li, X. Tang, K.-K. R. Choo, and Y. Liu,
“Forward private verifiable dynamic searchable symmet-
ric encryption with efficient conjunctive query,” IEEE
Transactions on Dependable and Secure Computing,
2023.

[20] J. Katz and Y. Lindell, “Introduction to modern cryptog-
raphy crc press,” 2020.

[21] Y. Watanabe, T. Nakai, K. Ohara, T. Nojima, Y. Liu,
M. Iwamoto, and K. Ohta, “How to make a secure in-
dex for searchable symmetric encryption, revisited,” IE-
ICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences, vol. 105, no. 12,
pp. 1559–1577, 2022.

[22] Y. Miao, Q. Tong, R. H. Deng, K.-K. R. Choo, X. Liu,
and H. Li, “Verifiable searchable encryption framework
against insider keyword-guessing attack in cloud stor-
age,” IEEE Transactions on Cloud Computing, vol. 10,
no. 2, pp. 835–848, 2020.

77 | Alyousif & Yassin

[23] D. Siva Kumar and P. Santhi Thilagam, “Searchable
encryption approaches: attacks and challenges,” Knowl-
edge and Information Systems, vol. 61, pp. 1179–1207,
2019.

[24] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-
abuse attacks against searchable encryption,” in Proceed-
ings of the 22nd ACM SIGSAC conference on computer
and communications security, pp. 668–679, 2015.

[25] S. Gangan, “A review of man-in-the-middle attacks,”
arXiv preprint arXiv:1504.02115, 2015.

[26] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk,
M.-C. Roşu, and M. Steiner, “Dynamic searchable en-
cryption in very-large databases: Data structures and
implementation,” Cryptology ePrint Archive, 2014.

	Introduction
	PRIMITIVE TOOLS
	SSE algorithms
	The Advanced Encryption Standard (AES)

	RELATED WORKS
	PROPOSED SCHEME
	THE PROPOSED SCHEME WITH MORE DETAIL
	Key generation phase
	Setup and secure phase
	Trapdoor phase
	Secure search phase
	Resolve phase

	SECURITY ANALYSIS
	Server information leakage
	Resisting attacks
	KGA (Known-Keyword Attack)
	Frequency analysis attack
	Inverted Keyword Knowledge IKK attack
	Man-in-the-middle attack MITM

	Experimental RESULTS
	Comparison with previous schemes
	Discussion

	CONCLUSIONS

