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Abstract 
Due to the changing flow conditions during the pipeline's operation, several locations of erosion, damage, and failure occur. 
Leak prevention and early leak detection techniques are the best pipeline risk mitigation measures. To reduce detection time, 
pipeline models that can simulate these breaches are essential. In this study, numerical modeling using COMSOL Multiphysics 
is suggested for different fluid types, velocities, pressure distributions, and temperature distributions. The system consists of 12 
meters of 8-inch pipe. A movable ball with a diameter of 5 inches is placed within. The findings show that dead zones happen 
more often in oil than in gas. Pipe insulation is facilitated by the gas phase's thermal inefficiency (thermal conductivity). The 
fluid mixing is improved by 2.5 m/s when the temperature is the lowest. More than water and gas, oil viscosity and dead zones 
lower maximum pressure. Pressure decreases with maximum velocity and vice versa. The acquired oil data set is utilized to 
calibrate the Support Vector Machine and Decision Tree techniques using MATLAB R2021a, ensuring the precision of the 
measurement. The classification result reveals that the Support Vector Machine (SVM) and Decision Tree (DT) models have 
the best average accuracy, which is 98.8%, and 99.87 %, respectively. 
KEYWORDS: Leakage Detection, Fluid Flow, Heat Transfer, Pipeline Monitoring, SVM, DT, Computational Fluid 
Dynamics.  
 

I.  INTRODUCTION 

According to the Worldwide World Energy Report in 
2020, natural gas and fossil fuels accounted for 30% of the 
global demand for energy production[1]. Fuel delivery, 
including fuel supply through fluid pipes, is essential to 
energy provision [2]. Applied stress, environmental factors, 
and noise levels are among the many challenges that 
pipelines encounter, with mechanical systems deteriorating 
to various extents [3]. Certain factors in the leakage 
phenomenon are challenging to measure in actuality. Some 
researchers have recently embraced computational fluid 
dynamics as a technique to aid in this process. Many 
industrial operations involve the simultaneous flow of two 
immiscible liquids in vertical pipes, one of which is the 
petroleum industry [4]. Because of the importance of the 
topic, many authors have focused their attention on the study 
of methods that could be used to identify leaks in pipelines 
that are used for the production and transit of oil [5]–[7].  At 
the current time, many different techniques for detecting 
leaks, including those based on harmful pressure waves, 

acoustic sensors, satellite surveillance, mass and volume 
balance, and analytical model-based procedures, have been 
put into practice. These methods depend on many aspects of 
the process, such as the temperature, pressure, mass and 
volumetric flow rates, and so on [8]. 

According to Dong et al. [9], the most beneficial of these 
technologies is the negative pressure strategy since it offers 
great leak sensitivity and availability. Unfortunately, this 
method has a high likelihood of creating a false alert if the 
pressure measurement records indicate significant changes 
or if the leak is tiny (0.5% of nominal flow) [10]. As a result, 
it needs to investigate using numerical methods into the 
hydrodynamics of heavy oil-water flow in a vertical pipe 
with a slight leak, which is much more challenging to detect 
using conventional methods [11]. Pipelines that are utilized 
in real-time operations are frequently situated in extreme 
environments, such as those found in the sea, where they 
have been subjected to the pressure that is exerted by the 
water; in the middle of the desert; or even underground, 
where they are subjected to the force that is exerted by the 
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force of soil stress [12]. Pipelines utilized in real-time 
operations are frequently located in these kinds of 
environments. The most serious issue is the difficulty in 
discovering leaks caused by physical corrosion and pipes age 
[13]. The situation deteriorates when used over an extended 
period without being discovered. Most leaks could be 
located using the trial-and-error method that involves 
watching a change in the fluid flow pattern [14]. There may 
be a sudden change in pressure across the free stream due to 
the leak, which would cause the flow to be distorted. The 
performance of systems that include the mobility of tiny 
spherical particles about the fluids in which they could be 
immersed involves a wide range of phenomena that are 
significant to researchers and engineers. The terminal 
settling velocity of a single spherical particle in an infinite 
fluid is of interest to various fields, as is the fluid flow drag 
(pressure drop) that a sphere experiences during fluid flow. 
Consequently, several empirical and theoretical 
investigations have been concentrated on them. One may 
reasonably presume that all significant problems were 
addressed some decades ago. Significant physical and 
mathematical ramifications are associated with using an 
analytical drag formula. The intricacy of the flow prevents 
an analytical description of the friction factor and viscous 
forces from being possible across a wide range of velocities 
where the pressure drop of leakage detection cannot be 
easier to detect theoretically [15]–[17]. Research on the 
pressure drop in the sphere area has been undertaken 
throughout a wide range of flow velocities, fluid viscosity, 
and density ever since the pioneering investigations of 
Stokes, Osteen, and others for flow through a ball. The 
characteristics of the fluid will change in general as a result 
of the change in the fluid [18], [19]. The recent studies are 
performed using numerical simulation for leakage detection 
modeling as seen in Table I in addition to processing the real 
or numerical data utilizing various machine learning 
Algorithms.  

TABLE I 

LEAK DETECTION MODELING IN RECENT STUDIES AND 
PRESENT WORK SCOPE. 

Reference Scope 

Barbosa et al. [20] 

Modeling of leakage effect on 
pressure and velocity profiles of 
(oil-gas) two-phase flow in a gas 
pipeline using leak localization (LL) 
functionality 

Sousa et al. [21] 

Modeling of leakage behavior on 
pressure and velocity distribution 
under two-phase flow (water-oil) 
conditions in the presence using CFX 
(ANSYS) software where the Finite 
Element Method and CFD modeling 
were applied 

Araújo et al., [22] 
a numerical investigation of two 
leakage points on oil pipeline using 
CFX simulation where the leakage 

points effect on pressure and velocity 
profiles were obtained 

Adebayo [23] 

use data-driven intelligent models of 
machine learning to find the small 
leakage depending upon the behavior 
of flow and heat of the gas pipeline 

Sharma [24] use SVM for leakage detection in the 
gas pipeline using image processing. 

Shen and Cheng 
[25] 

use on-site data for leakage detection 
utilizing machine learning models in 
Water Distribution Systems(WDS) 

Proposed 
investigation 

- Fluid flow and temperature transfer 
modeling of various fluids pipelines 
in presence of leakage detection ball. 

- Resultant data from numerical 
simulation using in training of 
machine learning (SVM and DT) 
algorithm for realistic leakage 
detection. 

II.  MACHINE LEARNING IN PIPELINE LEAK DETECTION 

Support Vector Machine (SVM), which is selected since it 
works well in a wide subspace, can efficiently manage vast 
volumes of data, and is ideal for categorizing non-linear 
input, is the algorithm that will be used [26]. A support 
vector machine is a type of supervised machine learning 
model that solves issues involving two groups of 
categorizations by using classification techniques. When an 
SVM model is provided with sets of labeled training data for 
each category, the model can classify newly encountered 
text. When compared to the most recent algorithms, such as 
neural networks, they offer two primary advantages: 
increased speed and improved performance with a 
constrained quantity of data points (in the thousands). 
Because of this, the approach is well suited for solving issues 
involving the categorization of text, which often involves 
having access to datasets containing no more than a few 
thousand annotated examples at most [13]. 

Adebayo [23] uses data-driven intelligent models to find 
small leakage depending upon the behavior of the flow and 
heat of the gas pipeline. He found that SVM gives a good 
approximation for leakage detection but does not provide the 
most accurate measurement and DT is the most sensitive 
algorithm. Sharma [24] uses SVM for leakage detection in 
the pipeline using image processing. This approximation 
gives a superior leakage indication based on practical reality. 
The image resolution promoted no superior accuracy (15 % 
tolerance). Shen and Cheng [25] use on-site data for leakage 
detection utilizing a machine learning algorithm. Adaboost, 
random forest, and Discussion tree are used in their 
investigation. DT has the most accurate approximation with 
a minimum false rate.  

This paper proposes techniques to estimate leak location 
and leakage rate by creating a model to simulate leak 
detection in the oil transmission pipeline utilizing a movable 
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ball detecting leaks within the pipeline using acoustic 
signals. With this information, trained guesses can be made 
about where the leak is and how fast it is spreading. The 
velocity, pressure, and temperature profiles will be used to 
calibrate the internal control system using the Support 
Vector Machine (SVM) and Decision Tree (DT) algorithms 
for classification leaks using the ball. The control system 
factors in the disruptions brought about by the fluid flow 
around the ball, and it makes a relationship between the 
levels of sound pressure and the detection of leaks.     

   Machine learning is a branch of artificial intelligence (AI) 
and computer science that focuses on using data and 
algorithms to imitate how humans learn, to constantly 
improve the simulation's accuracy. Several kinds of machine 
learning algorithms are often employed. These are as 
follows: Support Vector Machine (SVM), Decision trees 
(DT), and K- Nearest-Neighbor (KNN). This paper uses 
SVM and DT for comparison. The obtained data of velocity, 
pressure, and temperature distribution parameters, where the 
leakage sound energy is applied, are employed within the 
linear regression algorithm using SVM[27]. The detailed 
steps for developing the current SVM system are illustrated 
in Fig. 1, 

 
Fig. 1: SVM detailed steps. 

 
     MATLAB R2021a is used throughout this study to carry 
out Support Vector Machine calculations (SVM) where the 
optimum correction curve is utilized statistically using the 
following Equation:  
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Where RMSE is a root mean square deviation of 

resultant error. 

y: is response values  

n: is the number of data set. 

The root-mean-square error (RMSE) is a popularly 
used measurement of the gaps that exist between the values 
(both sample and population values) that are forecasted by a 
model or estimator and the values that are observed. The 
resultant optimization model is used for measurement 
modification. When explaining or summarizing the expected 
results of a classification problem, confusion matrices are a 
beneficial tool. Linear regression algorithm develops 
Support Vector machine prevails Confusion matrix. A 
Confusion matrix's most crucial function is to provide a 
class-by-class breakdown of the total number of correct and 
incorrect guesses that have been generated. The performance 
of the machine learning method can be investigated using the 
parameters of precisions, accuracy, recall, and F1-score. The 
confusion matrix determines the following [28], [29]: 

- True Positive (TP): Both the value that was seen and the 
value that was predicted are positive. 

- False Negative (FN): When the actual observed value is 
interpreted as having a negative sign, even when it has a 
positive one.4 

- The condition that is referred to as a “True Negative” 
(TN) is one in which the observations are consistent with 
the expectations of the null hypothesis. 

When it comes to classifiers, the Receiver Operating 
Characteristic (ROC) graph is a useful tool for 
determining which element is the most essential. The rate 
of true positives is represented along the ROC curve’s Y 
axis, while the rate of false positives is shown along the 
ROC curve’s X axis. The “ideal” location, which may be 
found at the top left corner of the map, has a failure 
probability of zero and a success probability of one. It is 
evident that this is not the case; nevertheless, it does show 
that a larger Area under the curve (AUC) is desirable in 
the majority of circumstances [30], [31]. The “steepness” 
of ROC curves is one factor that may affect the ideal 
strategy, which is to increase the TP rate while decreasing 
the FP rate. The analytical result was negative, but the 
projection is that it will be positive. ROC curves are 
frequently used for binary classification to evaluate the 
output of a classification, and this is exactly what is being 
done here because the classification technique includes 
whether or not a leakage is identified [31]. 

The SVM and DT were trained using our dataset generated 
from simulation, with extra leakage points added for 
optimum performance during training and testing. The data 
is divided using cross-validation (K-fold) with K=10, with 
70% of the data randomly selected for training and 30% for 
testing, with the accuracy evaluated at each iteration. The 
data consist of three parameters (velocity, pressure, and 
temperature). Each parameter has velocity values (0.1 m/s, 1 
m/s, and 2.5 m/s). The confusion matrices of SVM after 
training and testing the data is shown in Fig. 2, and the 
confusion matrices of DT for training and testing data is 
shown in Fig. 3, 
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As the figures show, the rows of the confusion matrices 
represent the true classes, whereas the columns represent the 
predicted classes. The numbers in the blue cells represent 
correct predictions. These cells have higher values than the 
other cells in the same row. Therefore, it can be assumed that 
the model performed well if the diagonal (from top to 
bottom) was highlighted. 
 

 
(a) Training data 

 
(b) Testing data 

Fig. 2: The confusion matrices for SVM  
 

 
(a) Training data 

 
(b) Testing data  

Fig. 3: The confusion matrices for DT 

III.  MODELING USING COMSOL MULTIPHYSICS® 

 The COMSOL Multiphysics® Software simulates the 
actions of a smart ball with sensors to identify oil/water 
pipeline breaches. COMSOL Multiphysics is a 
cross-platform finite element analysis solution. It enables 
physics-based and linked PDEs (PDEs). It is also monitoring 
related tasks to improve an organization's performance. 
Systems engineering, industrial engineering, and validation 
sciences are related. COMSOL oversees the purpose and 
status of projects within a program and can use this oversight 
to support project-level activity to ensure program goals are 
met by providing decision-making capacity that cannot be 
achieved at the project level, providing the project manager 
with a program perspective when needed, or serving as a 
sounding board for ideas and problem-solving approaches. 
COMSOL may be well-positioned to deliver this knowledge 
by aggressively soliciting information from project 
managers. Electrical, Mechanical, Fluid, Chemical, 
Multipurpose, and Interfacing modules are available. 
COMSOL Multiply allows linking and communication 
between simulations. This horrible scenario is real [3]. 
COMSOL Multiphysics 5.6 solves fluid, thermal, and 
mechanical problems. COMSOL Multiphysics model 
builder is a tree. The COMSOL tree's main components are 
[32]: 

v  Geometry builder imports solid work geometry 
via a graphical interface. 

v Material specification: This item modifies the 
physical characteristics of materials in the COMSOL 
database or generates new blank properties. 

v Physics selection specifies which physics will be 
utilized to apply conservation equations and how 
they will be connected and regulated. Physics needs 
the boundary condition to solve. 

v COMSOL's mesh generation is based on physics and 
geometry. Normal, coarse, coarser, extremely 
coarse, fine, finer, and very fine. 

v Stable (steady state) or time-dependent 
model-solving study (unsteady state). 
 

 COMSOL Multiphysics was used to develop the 
pipeline form of this mobile inspection ball. The COMSOL 
Computational Fluid Dynamics (CFD) module was used to 
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describe the velocity and pressure propagation around the 
ball in the pipeline and connect it to heat transfer to compute 
the temperature around the pipes and its transfer to the liquid 
in two cases: 
I) The pipeline's continuous flow of fluid with no leaks.  
II) The pipeline leaks a ball detector.  
 The CFD module calculates ball temperature by 
analyzing velocity and pressure characteristics. Simulate 
leak-caused noise using Acoustics and Vibrations. 
COMSOL Multiphysics has a tree-based model builder.  
 COMSOL Multiphysics was used to design this 
self-driving ball's pipeline shape. The COMSOL CFD 
module was used to model the velocity and pressure 
propagation around the ball inside the pipeline. Then it was 
linked to heat transfer to compute the temperature around 
the tubes and its transmission to the liquid. 
 The ball's velocity, pressure, and temperature are all 
determined via the CFD module. The next step is to 
replicate the noise that is created by a leak using the 
acoustics and vibrations module. COMSOL Multiphysics 
was used to build the pipeline form of this autonomous ball, 
which represents a novel design in mobile inspection 
equipment. The ball itself is a revolutionary design. The 
COMSOL Computational Fluid Dynamics (CFD) module 
was then used to model the velocity and pressure 
propagation around the ball positioned inside the pipeline. 
 The CFD module is used to identify the velocity and 
pressure profiles located in the area around the moving ball, 
in addition to the heat transfer used to compute the 
temperature. The next step is to use the acoustics and 
vibrations module to simulate the spread of noise created 
when a leak occurs. The model under investigation 
comprises the flow of fluid around a stationary spherical 
ball placed within a pipeline, as well as the propagation of 
sound created by an induced leak. To get an appropriate 
comprehension of the collected data, Multiphysics was 
included in the construction of the model. Fig. 4, depicts an 
algorithm. 

 The use of single-phase laminar flow, where µ is dynamic 
viscosity, ρ is density, U is used velocity, and F is applied 
momentum force due to pressure sound at a specified point. 
The continuity equation (1), consists of the conservation of 
control volume mass with inflow and outflow transported 
mass. Navier Stoke equation (2), refers to the equality of 
inertia term to the sum of viscous force, gravity force, and 
volume force due to the acoustic action. 
 
- Fluid flow equations 
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- Heat transfer equation 
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Fig. 4: The algorithm steps of solving the current model. 
 
 Initial conditions for laminar flow are v=0 m/s and p=0 
Pa, while boundary conditions include an inlet, exit, wall, 
and pressure point limitations owing to leaks. Initial heat 
transfer conditions are 293.15 K, and boundary conditions 
include fluid, thermal insulation, solid domain heat transfer, 
inflow, outflow, heat flux, and point heat source. Initial 
acoustic dispersion is at w=0 j/m3. The boundary condition 
is a leaky powerpoint. Reference temperature (293 K) 
establishes fluid flow physical attributes (viscosity and 
pressure) and density distribution within the pipe. First, the 
fluid flow (momentum transfer) is solved using the Navier 
Stoke equation [10]. The thermal physical parameters 
(thermal conductivity and heat capacity) are generated by 
reference temperature to solve the heat transfer equation 
with the momentum transport equation; then the temperature 
distribution is gentle. The trial-and-error approach loops are 
used based on the first phase where a new temperature 
distribution replaces a reference temperature, etc. New 
temperature implies new physical characteristics and 
velocity distribution; the cycle is continued until the error 
residence is 0.1% or less. The acoustic pressure point creates 
non-uniform distribution in the free stream as an extra sound 
power source within the momentum force.   
      To simulate the fluid flow around the ball, a section of a 
typical cylindrical pipeline model was developed having a 
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10-inch pipe length of 12 m, as shown in Fig. 5, Oil, water, 
and gas were used as the fluid flow, which was given an 
initial inlet of three velocities 0.1, 1, 2.5 m/s, respectively. 
The ball has a diameter of 5 inches. Fig. 6, shows the mesh 
distribution of the proposed system. The present problem is 
solved by utilizing the 96245 mesh elements; all of them are 
tetrahedral. The simulation generates 96245 algebraic square 
matrices from utilized atrial differential equations, all of 
which are solved using numerical methods, such as 
Jacobean.  
   

 
Fig. 5: The geometrical view of a spherical ball inside the 

pipe. 

 
Fig. 6: Mesh distribution of the present system. 

IV. RESULTS AND DISCUSSION 

A. Numerical Results 
This simulation used the Computational Fluid Dynamics 

(CFD) module. Fig. 7, shows the velocity contours for 
various fluids. The dead flow zones (blue color regions) are 
formed in solid wall regions (pipe wall and ball wall). The oil 
has the maximum dead zones while the gas has a minimum. 
The dead zones are a boundary layer formed by the mean of 
viscous forces Fig. 8, shows the velocity distribution 
between water, gas, and oil for various velocities. The fluid 
type has no significance on velocity distribution, and the ball 
region prevails over minimum velocity values. The oil has 
lower velocity values than the water case; the viscosity of the 
oil is higher than water, indicating the flow resistance 
behavior. Natural gas has higher velocity values than water, 
yet its density is lower, resulting in fewer momentum forces 
in the pipeline system 

 
(a) Oil 

 
(b) Gas 

 
(c) Water 

Fig. 7: Velocity profile of various fluids. 

 
(a) V=0.1 m/s 

Fig. 8: Comparison of velocity distribution between water, 
gas, and oil for various velocities. 
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(b) v=1 m/s 

 
(c) v=2.5 m/s 

Fig. 8: Continued. 
 
 Fig. 9, shows the temperature contours for various 
fluids. The gas fluid has a maximum temperature gradient, 
while the minimum water gradient is observed in the water 
case. The thermal conductivity of gas is less than oil, and 
water has maximum thermal conductivity. The gas acts as 
thermal insulation from the pipe wall and bulk fluid. The 
leakage can be detected by the mean of temperature 
distribution easily. Fig. 10, shows the comparison of 
temperature distribution between water, gas, and oil for 
various velocities. The temperature distribution of gas is the 
minimum value for whole inlet velocity values. The physical 
properties, especially the thermal characteristics of the gas, 
are less than oil and water, such as thermal conductivity. The 
heat energy due to pressure sound is restricted by the thermal 
properties of the used fluid. The higher temperature 
difference between the inflow and outflow of the pipeline in 
the natural gas case indicates that the physical properties 
(thermal properties) of natural gas are less than the liquids. 
The temperature difference in the gas case decreases as inlet 
velocity increases. Fig. 11, shows the comparison of the 
temperature distribution in gas for various velocities. The 
maximum velocity (2.5 m/s) provides a minimum 
temperature gradient, and the temperature gradient decreases 
as velocity increases. The increasing velocity enhances the 
cold and hot fluid particles, maximizing heat transfer 
tendency. 

 
(a) Oil 

 
(b) Gas 

 
(c) Water 

Fig. 9: Velocity profile of various fluids. 
 
 Fig. 12, shows the comparison in pressure distribution 
between water, gas, and oil for various velocities. The 
pressure distribution of oil is the maximum value for whole 
inlet velocity values. The viscous forces, due to dead zones, 
can be exhibited as pressure drop. The maximum pressure 
drop indicates boundary layer development where the 
laminar flow is performed. Fig. 13, shows the comparison in 
pressure distribution in gas for various velocities. The 
increase in velocity increases pressure values. The velocity 
component converts into pressure forces using energy 
conservation. Fig. 14, illustrates a Pressure comparison 
between leaks, non-leaks, and non-leak-non-ball cases 
where oil flows in 2.5 m/s. The leakage case promotes 
negative pressure values near the pressure region while the 
whole pressure values are positive in the absence of leakage. 
Leaks can easily cause sudden changes in pressure 
distribution. 
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(a) V=0.1 m/s 
 

 
 

(b) V=1 m/s 
 

 
 

(c) V=2.5 m/s 
 

Fig. 10: The comparison in Temperature distribution 
between water, gas, and oil for various velocities. 

 
 
 
 

 
 
 
 
 

 
 

Fig. 11: Temperature distribution of various velocities; gas is 
used as the fluid. 

 

 
 

(a) V=0.1 m/s 
 

 
 

(b) V= 1 m/s 
 

Fig. 12:  The comparison in pressure distribution between 
water, gas, and oil for various velocities. 
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(c) V =2.5 m/s 

Fig. 12:  Continued. 
 

 
Fig. 13: Pressure distribution of various velocities, gas is 

used fluid. 
 

 
Fig. 14: Pressure comparison between leaks and non-leaks 

cases where oil flows in 2.5 m/s. 

B. Machine learning models results  
 The training phase of SVM and DT is divided into 70% 
for training and 30% for testing by cross-validation, and the 
average accuracy is 98.8%, and 99.87%, respectively. Table 
II shows the SVM and DT model's average precision, recall, 
and F1-score of the present work. The DT has perfect 
precision, Recall, and F1-score as compared with SVM. The 
membership function of DT is more than SVM, the DT 

algorithm is more complicated. The DT is considered a 
confirmation algorithm more than SVM because it does not 
deal with the dependent and independent data as linear or 
non-linear regression. While SVM should be specified for 
linear or nonlinear expressions which must be solved by 
Gaussian approximation [33], the accuracy is determined by 
the following equation: 
 
 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ?@A?B

?@AC@A?BACB
	 (6)	

 
The following equations also determine the precision, recall, 
and F1-score for the SVM model: 
 
 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ?@

?@AC@
	 (7) 

	
 𝑅𝑒𝑐𝑎𝑙𝑙 = ?@

?@ACB
	 (8) 

 
 𝐹1 − 𝑠𝑐𝑜𝑟𝑒	 = 2	⨉	@D'EFGFH"	⨉ J'E%KK		

@D'EFGFH"AJ'E%KK
	 (9)	

Where: 
TP is True Positive 
TN is True Negative 
FP is False Positive, and 
FN is False Negative 

 
TABLE II  

Precision, recall, and f1-score for the (SVM) and (DT) 
models. 

Model Precision % Recall % F1-score % 
SVM 91.67 88 89.8 
DT 100 97 100 

 
 Fig. 15, shows that the optimization plots are developed 
based on trained values; the parallel coordinate of column 
interactions (position, pressure at 0.1 m/s, pressure at 1 m/s, 
and pressure at 2.5 m/s). The scatter plot indicates the 
pressure distribution of the leaked and non-leaked points are 
presented based on optimization plots and confusion matrix. 
 

 
(a) Parallel coordinates of optimization. 

 
Fig. 15: The optimization plot and Scattering 

examination using the SVM model. 
 

Inlet  Oil Outlet Oil 
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Leak 
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(b) Scattering plot examination. 
 

Fig. 15: Continued. 

V. CONCLUSION 

 The results of a numerical examination of the velocity, 
pressure, and temperature distribution have been 
satisfactorily modeled over various velocities and kinds of 
fluid. In the case of oil, the production of the most dead 
zones is seen, whereas, in the case of gas, the values are at 
their lowest. Due to the thermally poor qualities of the gas 
phase, insulation activity is encouraged to take place within 
the pipe (thermal conductivity). The 2.5 meters per second 
velocity enables more fluid mixing in the region where the 
temperature distribution is most uniform. Compared to water 
and gas, oil has a higher maximum pressure drop because of 
its viscous forces and dead zones. The highest pressure drop 
and highest velocity are both provided by the maximum 
velocity. In this paper, An SVM was proposed for detecting 
leakage at four points in 3 m, 4.5 m, 6 m, and 9 m pipelines 
using a pressure sensor. The dataset of this study was 
obtained from the simulation with three parameters of 
velocity, pressure, and temperature. Each parameter consists 
of three values (0.1, 1, 2.5 m/s). The SVM and DT models 
get an average accuracy (validation) of 98.8%, and 99.87%, 
respectively for classification. Comparing the results 
obtained, we conclude that we obtain higher accuracy when 
training and testing the DT. So, for this data type, it is best to 
use the DT algorithm because it is faster and more accurate 
than another algorithm. For future work, different 
classification algorithms could be applied and the resulting 
classification accuracy could be compared to achieve higher 
efficiency. 
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