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Abstract 
Due to their vital applications in many real-world situations, researchers are still presenting bunches of methods for better 
analysis of motor imagery (MI) electroencephalograph (EEG) signals. However, in general, EEG signals are complex because 
of their nonstationary and high-dimensionality properties. Therefore, high consideration needs to be taken in both feature 
extraction and classification. In this paper, several hybrid classification models are built and their performance is compared. 
Three famous wavelet mother functions are used for generating scalograms from the raw signals. The scalograms are used for 
transfer learning of the well-known VGG-16 deep network. Then, one of six classifiers is used to determine the class of the 
input signal. The performance of different combinations of mother functions and classifiers are compared on two MI EEG 
datasets. Several evaluation metrics show that a model of VGG-16 feature extractor with a neural network classifier using the 
Amor mother wavelet function has outperformed the results of state-of-the-art studies.  
KEYWORDS: Brain-Computer Interface, Deep Learning, Motor Imagery, Transfer Learning, Wavelet Transformation. 

 
I.  INTRODUCTION 

Technology for human-computer interaction has evolved 
quickly in recent years, and the bioelectricity of the human 
body is being developed as an interactive medium. A brain-
computer interface (BCI) system uses brain impulses to 
operate auxiliary equipment as a novel method of human-
computer interaction [1]. In a BCI system, a direct link 
between the brain and a computer is established, bypassing 
the peripheral nervous system and providing a 
communication channel. ALS (Amyotrophic lateral 
sclerosis), cerebral palsy, and motor neuron disease (MND) 
are all examples of brain illnesses that can benefit from BCI 
technology (MND) [2]. An EEG is the most preferred 
physiological sensor for developing a BCI system since it 
meets both convenience criteria (i.e., non-intrusiveness and 
simplicity) as well as efficacy criteria (such as accuracy) 
(i.e., sensitivity, efficiency, and compatibility) [3]. P300 
evoked potentials, steady-state visual evoked potentials 
(SSVEP), and Motor imagery (MI) are among the most 
prominent EEG signal analysis disciplines [1]. Only MI 
relies on spontaneous potential and does not require any 
external stimulation. Researchers have employed MI signals 
to assist handicapped people in managing equipment like 

wheelchairs and even self-driving cars [4]. Imagine moving 
your body part without really moving that body part, which 
is known as MI [5]. EEG signals are generated by both 
imagined and actual human movement. In motor imaging, 
the EEG signals generated exhibit event-related 
synchronization (ERS) and event-related desynchronization 
(ERD) features [6]. There are four lobes in each of the human 
brain hemispheres, each serving a distinct purpose. Fissures 
divide the lobes of the ear (sulcus). In the BCI system, the 
primary somatic sensory cortex (parietal lobe) and the 
primary motor cortex (temporal lobe) are the most critical 
areas [7]. Mu and beta rhythms in the sensorimotor part of 
one's hemisphere drop or increase as one imagines or 
performs the movement of a unilateral limb. 
Desynchronization caused by an event (ERD) and 
synchronisation caused by an event (ERS) are two different 
concepts [7]. 

Fundamentally, MI-based BCI pattern recognition 
systems require three essential processes, namely 
preprocessing of the EEG signal, feature extraction, and 
classification [1]. Essentially, another crucial process in the 
MI EEG pattern recognition model is the process of feature 
extraction. Practically, extracted features are intended to 
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minimize the cost of data processing by recognizing the most 
relevant feature components embedded in the signal. 

In this respect, the feature extraction process can be 
conducted in multiple signal processing domains, such as 
spatial domain, time domain, frequency domain, and time-
frequency domain. Particularly, time-frequency features of 
MI EEG signals are widely used for classification in BCI 
applications, whereas it describes the density and intensity of 
energy of signal at a different time and frequency by 
designing a joint function of time and frequency [1]. 
Principally, EEG signal analysis in the time-frequency 
domain based on wavelet transform (WT) das proved their 
ability and usefulness in handling brain signal characteristics 
compared to other methods such as short-time Fourier 
transform (STFT), autoregressive model (ARM), and 
wavelet transform (WT) [8]. To date, great attention is given 
to the WT in the field of biomedical signal processing 
because of its efficiency in the diagnostic as well as in the 
pattern recognition [1].  

Deep neural networks (DNNs) have recently 
demonstrated impressive categorization capabilities in a 
variety of applications, including computer vision, video 
processing, and speech recognition. Several academics were 
inspired by its enormous success to investigate how deep 
neural networks may be used to categorize EEG signals [9, 
10]. Researchers have begun using deep learning in their BCI 
applications, including seizure detection, memory retrieval, 
and MI categorization [11]. The convolution neural network 
(CNN) has demonstrated that it is capable of extracting 
spatial and temporal characteristics from magnetic induction 
(MI) data. It has been shown that CNN can extract excellent 
features using both shallow and deep models, indicating that 
significant features may be retrieved at different levels [4].  

However, one of the most significant challenges in the 
categorization of MI EEG characteristics using deep learning 
algorithms is the limited amount of data available due to the 
exhaustion of patients throughout the experiments [7]. There 
are also significant individual variations between various 
subjects, making it hard to directly utilize the labeled data 
from other subjects to train the classifier that would be used 
to identify the target individuals [12]. Meanwhile, the 
collection of EEG data is extremely costly, and a sufficient 
quantity of labeled samples is difficult to come by [13]. 
When it comes to combining data from domains with 
different distributions, transfer learning has emerged as a 
viable approach. Incorporated within transfer learning are 
methods that are designed to transfer representations and 
information from one domain to another [14].  In other 
words, the approach enables researchers to easily integrate 
fresh datasets into a machine learning model that has already 
been trained. Having this functionality can be especially 
useful in a BCI system since the amount of data supplied is 
frequently insufficient to ensure the appropriate training of a 
machine learning model [15]. In the BCI studies, it was 
discovered that the CNN-based subject-transfer technique 
outperformed the others. Subject-transfer strategies are 
based on the idea that the typical patterns of the target subject 
and other subjects may be comparable when doing the same 
activity [16]. 

It is critical to select the ideal mother wavelet along the 
course of using WT with deep transfer learning. The 
selection of a mother wavelet (MWT) function, on the other 
hand, has been reported in the literature as an important step 
and component of wavelet analysis to demonstrate the 
advantages of WT in denoising, component separation, 
coefficient reconstruction, and feature extraction from 
signals in the time and frequency domains [17]. The need for 
this phase arises from the fact that no unique MWT basis 
functions have yet been identified that cater to all EEG 
channels. 

Specifically, the research proposes an approach for 
feature extraction and classification that is based on a 
continuous wavelet transform (CWT) in conjunction with 
deep learning-based transfer for feature extraction and 
artificial neural network (ANN) for classification. 

The following is the structure of the reminder for this 
paper: WTNN development, evaluation, and validation were 
all carried out under a methodological framework defined in 
Section 2. Sections 3 and 4, which summarise the findings 
and commentary for the experimental component, 
respectively, are based on two separate datasets, namely the 
BCI Competition dataset IV/2b and the Emotive EPOC 
dataset, and are divided into two sections. After that, the final 
section of this study displays the findings of this research. 

II.  LITERATURE REVIEW  

Al-Qazzaz reported in [18] that even a 0.1% 
intensification in the classification accuracy in medical 
research fields is considered vital due to the high complexity 
of their signals. Therefore, many methods are proposed to 
attain the highest classification accuracy.  

Xu et. al. [19] used a transference CNN framework based 
on VGG-16 and time-frequency spectrum images generated 
by STFT for analyzing MI EEG signals. They obtained 
71.2% of BCI competition classification accuracy for the IV 
2b dataset. Using a continuous wavelet transform (CWT) 
filter bank to classify four MI tasks (left hand, right hand, 
feet, and tongue).  

Mahamune and Laskar [20] proposed a framework for 
developing two-dimensional (2D) images for CNNs that uses 
a continuous wavelet transform (CWT) filter bank to classify 
four MI tasks. On the BCI competition IV 2a dataset, they 
achieved an accuracy of 71.25 percent in classification 
accuracy. Using a common spatial pattern (CSP) and 
filtering in conjunction with the empirical mode 
decomposition (EMD).  

Alvarez-Meza et al. [21] were able to distinguish the mu 
and beta rhythms from one another. The support vector 
machine (SVM) classifier was utilized by the researchers. 
They attained classification accuracy of 92.86 percent on the 
BCIC IV-I dataset and 72.30 percent on the BCIC IV 2b 
dataset, respectively, on the two datasets.  

Wang et. al. [22] proposed a method based on CSP as 
preprocessing while feature extraction was done using 
autoregressive and log-variance; the Kullback-Leibler 
divergence was for feature selection and time segment 
selection. Th classification is achieved using the linear 
discriminate analysis technique. They achieved a 
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classification accuracy of 81.99% and 77.22% on BCIC IV 
2a and BCIC IV 2b datasets respectively.  

Xu et. al.  [23] proposed a method involving extracting 
features based on Hjorth parameter, the power spectrum 
estimation, and time-frequency energy. Then sparse 
representation was used to acquire lower-dimensional 
informative features while keeping the discriminative ability 
among the different patterns. They obtained 79% of 
classification accuracy on BCIC IV 2b. Oh et. al. [24] used 
Hjorth parameter and Fisher ratio to find the dominant 
frequency bands and the timing in training EEG signals and 
79.1%  of classification accuracy was achieved on BCIC IV 
2b.  

Bagh and Reddy [25] used the Hilbert transform (HT) for 
the recognition of Event-related potentials, and the SVM for 
decoding the MI signals. They obtained 86.11% and 82.50% 
of classification accuracy on BCIC III 3a and BCIC IV 2b 
respectively.  

Zhu et. al. [26]  The multi-channel input is encoded using 
a separated channel convolutional network, and the encoded 
features are concatenated and fed into a recognition network, 
which performs the final MI task recognition. They obtained 
83% of classification accuracy on BCIC IV 2b.  

Dai et. al. [27] proposed a segmentation data 
augmentation method for MI EEG signals and used the new 
trails for training a CNN. They obtained 91.57% and 83% of 
classification accuracy on BCIC IV 2a and BCIC IV 2b 
respectively.  

Kim et. al. [28] proposed a method that rely on the power 
spectral density (PSD) to find the noon-stationarity feature 
of each couple of EEG channels by calculating a matrix for 
that. Such that, they exploited the time, frequency, and 
spatial characteristics of the time-series signals. They 
obtained 89.36% of classification accuracy on BCIC IV 2a 
for only two classes classification.  

Sun et. al. [29] used an EOG channel for retaining the 
potential related to MI tasks with the combination of Hjorth 
algorithm to train their model. They obtained 76.45% and 

0.79% of classification accuracy on BCIC IV 2a and BCIC 
IV 2b respectively.  

Kant et. al. [30] combined the continuous wavelet 
transform (CWT) with deep learning-based transfer learning 
and compared this method to different well-known deep 
CNNs using the BCIC III 3a dataset. They obtained 95.71% 
as the best classification accuracy that is retained by the 
VGG-19. Although there are several studies tried to improve 
the accuracy of classification, the results of the reviewed 
studies show that their still an area for enhancement. 

III.  METHODOLOGY 

 The methodological framework of the WTNN for the 
two-class MI EEG classification problem is presented in Fig. 
1. This framework describes the whole process of pattern 
recognition starting from preparing the training samples and 
ending with the performance evaluation stage. The following 
subsections give more details concerning the methodology 
of this research. 

 

A. MI EEG Datasets 
A minimum number of channels is normally preferred 

by developers in designing BCI-based systems such that they 
can be easily employed with minimum cost for real-time 
applications [31]. Therefore, two MI EEG datasets recorded 
by 3 channels are chosen in this study. The two datasets are 
from the BCI competition datasets recorded at Graz 
University. More details regarding the two datasets are given 
in the following subsections. The datasets consist of two 
parts, namely the training part and the validation part. As 
such, it was used in developing and validating the WTNN to 
deal with the complexity of the nine subjects’ specific brain 
signals, such as inter and intra-subject differences. Given the 
lack of a large dataset to develop, evaluate, and validate a 
WTNN, the datasets of all the nine subjects were combined 
(union) to form a large dataset for all the trials involving 
different brain complexities.  

 

 
Fig.  1: Methodological Framework for WTNN model 
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• BCIC IV 2b dataset 
In this dataset, three EEG channels namely C3, Cz, and 

C4 were used to acquire the signals of two motor imagery 
tasks (left hand and right hand). The dataset was collected 
from nine subjects at a 250 Hz sampling frequency. EEG data 
from 160 trials were collected while a subject watching a 
flat-screen and sitting in an armchair. Two types of recording 
sessions were conducted, namely training without feedback 
and evaluation with smiley feedback. During the first two 
sessions, subjects were given a short warning tone to do four 
seconds of a required motor imagery movement based on a 
pointing arrow presented on a blank screen. However, during 
the other three sessions, subjects were instructed to move 
grey smiley feedback centered on the monitor into either the 
right or left direction after they are given a short warning 
beep. The smiley feedback was presented in four seconds and 
its color changes to red when it moved in the wrong direction 
and green when it moved in the right direction. Fig. 2 shows 
the timing scheme of the two types of sessions. 

 
(a) 

 
(b) 

Fig.  2: Trials recording time scheme of BCIC IV 2b dataset 
(a) without feedback, (b) with smiley feedback. 

• BCIC II dataset 
This dataset was recorded from a normal subject 

(female, 25y). The experiment consisted of 280 trials of 9 
seconds total duration for each trial with a 128 Hz sampling 
frequency. The subject was quiet for the first 2s, at t=2s an 
acoustic stimulus indicating the beginning of the trial and 
across ‘+’ were displayed for 1s. Then at t=3s, an arrow (left 
or right) was presented as a cue. Simultaneously, the subject 
was requested to perform the required motor imagery task 
(left hand or right hand). The EEG data was filtered between 
0.5 and 30 Hz. The imaginary task was to move a block based 
on the given cue in the left or right direction. The used three 
EEG channels were C3, Cz, and C4. Each session contains 
40 trials, half of them are for left-hand and half for right-hand 
which are placed randomly. Seven sessions of such 40 trials 
have been recorded with their labels [30]. Fig. 3 shows the 
timing scheme of the recording technique. 

 

 
Fig.  3: Trials recording time scheme of BCIC II dataset. 

B. Preprocessing 
Inevitably, the EEG-MI signal is contaminated by noise 

from various sources, such as body movements, eye blink, 
facial muscle movements as well as artifacts from the 
surrounding environment, such as electromagnetic fields 
generated by electrical devices [1]. Since the framework 
relies on deep learning, the least preprocessing is used. 
Frequency filtering is carried out for enhancing the signal-
to-noise ratio of the raw brainwaves and to enhance relevant 
information of the signals. Specifically, the fourth-order 
Butterworth filter is applied with the range (8-30 Hz) given 
that the MI EEG signals rely on the alpha (8-13 Hz) and beta 
(14-30 Hz) rhythms. 
 

C. Time-Frequency Analysis 
The time-frequency domain is a hybrid representation of 

a time-series signal. In principle, this representation 
considers the signal properties in both temporal and 
frequency domains. This representation yields images that 
highlight the contained frequencies in the time-series signal 
with the time slot those frequencies have been occurred. 
Various methods of time-frequency analysis exist such as 
autoregressive model (ARM), short-time Fourier transform 
(STFT), wavelet transform (WT), and discrete wavelet 
transform (DWT). The DWT method has been proven to be 
more useful in characterizing non-stationary signals 
effectively. Hence, DWT is adopted in this study for 
representing the MI EEG signals in 2D images called 
scalograms.  

DWT relies upon dilating and translating a particular 
function, called a mother wavelet, for representing a signal 
as a linear combination of a set of wavelet functions. The 
mother wavelet gives rise to these wavelets as a part of 
resulting functions through shifting (dilation) and stretching 
(translation) operations along the time axis, respectively. To 
date, great attention is given to the WT in the field of 
biomedical signal processing because of its efficiency in the 
diagnostic as well as in the pattern recognition [32]. WT is 
classified into two types; namely continuous wavelet 
transform (CWT) and discrete wavelet transform (DWT): 

 

 𝐶𝑊𝑇(𝑎, 𝑏) 			= 	+ 𝑥(𝑡)𝜓!,#∗
%&

'&
(𝑡)𝑑𝑡 (1) 

0 1 2 3 4 5 6 7 8 9 sec

Trigger
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whereas 𝑥(𝑡) stands for the time-series signal, a stands for 
dilation, and b represents the translation factor. The 𝜓!,#(t) 
represents the complex conjugate and can be calculated by 
 

 
𝜓!,#(𝑡) = 	

1
1|𝑎|

𝜓 3
𝑡 − 𝑏
𝑎 5 

(2) 

 where ψ(t) is the wavelet. The major weakness of CWT is 
that both dilation and translation parameters change 
continuously. Hence, the wavelet’s coefficients for all 
available scales after calculation require numerous efforts 
but yields inconsequential information [32]. The wavelet 
transform method can be considered as a mathematical 
microscope that splits up a signal into a bunch of signals. In 
such a method, the same signal corresponding to different 
frequency bands can be represented to provide frequency 
bands at appropriate time intervals. Three types of mother 
wavelets namely Morlet, Bump, and Amor were used in this 
study 
 

D. Deep Feature Extraction and Classification 
The classification problem of EEG signals requires high 

dimensional features for representing the latent features of 
the brain signal. Since the classification method plays a 
major role and has a direct impact on the discrimination 
between two MI EEG mental commands, therefore, the 
selection of an appropriate classifier is crucial. The classical 
machine learning methods need hand-crafted features to 
perform classification. Deep CNN (DCNN), on the other 
hand, performs classification by extracting features directly 
from the raw data [33].  

CNN depends on the convolution process in extracting 
dominant features by adopting several kernels (also known 
as filters). Small kernels are moved horizontally and 
vertically along the input sample to capture important 
features which will be translated as coefficients in those 
kernels. However, deep learning requires a lot of time and 

input samples to train big-scale networks. Therefore, transfer 
learning is adopted to tackle that problem [33]. Transfer 
learning means the use of an already-trained network in 
solving another classification problem by re-train a few 
numbers of its last layers. This saves a lot of time for training 
and requires fewer training samples than training the network 
from scratch.  In this regard, VGG-16 [33] is a famous CNN 
model with 16 convolution layers proposed by Oxford Visual 
Geometry Group in 2014 and it has achieved a outstanding 
performance in numerous image processing tasks. In this 
study, the VGG-16 model is used for the MI EEG 
classification problem. The generated scalograms are used 
for training the network.  
 

E. WTNN Evaluation Metrics 
The performance of the proposed WTNN system has 

been evaluated using seven metrics namely accuracy, 
precision, sensitivity, specificity, F1 score, LogLoss, and 
AUC. TABLE I gives the mathematical equations for each 
of the metrics with a brief description of each of them [34]. 
In the table TPL: true positive, TN: true negative, FP: false 
positive, and TN: true negative. 

The Receiver Operating Characteristics (ROC) curve is 
also used for measuring the performance of the models. The 
curve is used for checking the performance of the 
classification model at various threshold settings by 
distinguishing between classes (i.e., a degree of 
separability).  

To evaluate how well a model will perform on unseen 
MI EEG inputs, k-fold cross-validation was used in this 
study. In k-fold cross-validation, the data is divided into k 
subsets, in which k-1 subsets are used for training the model 
and the residual subset is used for testing the model. This 
process is repeated for k times (folds) until all the subsets are 
used as validation data. The results obtained from the k-folds 
can be averaged to determine the accuracy of estimation. 
This study used the 10-fold cross validation for the training 
 

TABLE I 
THE USED EVALUATION METRICS 

Evaluation metric Mathematical equation Explanation 

Classification accuracy 𝐶𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁 The ratio of the number of correctly classified samples to the 
total number of the same class input samples 

Precision Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
The number of correctly classified samples among all the 
classified samples. It tests the classifier's ability to reject 
irrelevant subjects. 

Recall (Sensitivity) Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 The number of correctly classified samples from all the 
positive representations. 

F1-score 𝐹1˗score =
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 
The F1 score can be described as a weighted average of 
precision and recall, where an F1 score achieves its best 
value at 1 and the worst value at 0. 

Specificity Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 Assesses a model’s ability to detect true negatives of each 
category. 

Log Loss 

LogLoss = −
1
𝑛?  

(

)*+

[𝑦)log,(𝑦F))

+ (1 − 𝑦))log,(1 − 𝑦F))] 
n: number of samples 
yF-: predicted probability per label 

Log loss is the crucial classification metric based on 
probabilities. It defines the probability outputs of a classifier 
instead of its discrete predictions. 
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 IV.  RESULTS AND DISCUSSION 

 It was mentioned that this study uses CWT to transform 
the given MI EEG signals into scalograms (time-frequency 
images). Different mother wavelet functions produce 
different time-frequency characteristics. To examine those 
differences, three types of mother wavelets namely Morlet, 
Bump, and Amor were used in this study.  

Also, the hybrid feature extraction and classification 
model has been achieved by using the VGG-16 as a features 
extractor with one classifier. Six classification algorithms 
have been examined namely neural network (NN), K-nearest 
neighbors (KNN), Naïve Bayes (NB), logistic regression 
(LR), SVM, and decision tree (DT).  

The six classifiers are experimented with each of the 
mother wavelet functions to find the best hybrid model over 
the combined subject dataset of (BCI Competition dataset 2b 
, the training part). The results of this experiment are 
presented as confusion matrices in Fig. 4. A confusion matrix 
is presented for each classifier and mother wavelet function. 
Fig. 5 shows the region of convergence (ROC) for each one 
can see that NN based hybrid model outperformed the 
performance of other classification methods with the three 
mother wavelet functions.   

It can be noticed that CNN+NN has achieved the best 
results in comparison to the other experimented hybrid 
models. The confusion matrix shows 100% classification 
accuracy with Amor and Morlet wavelet mother functions. 
For this optimal model, the training time, testing time, and 
log loss are computed for the three mother functions. As 
shown in Fig. 6 and overall, the WTNN model with Amor 
mother functions has delivered the best classification results. 

The second experiment is depicted for evaluating the 
proposed model with another different MI EEG dataset 
which is (dataset II training part, but for individual subject) . 
This helps overcome the inter-subject classification problem. 
To evaluate the optimal model (the WTNN) over different 
brain signal complexities to overcome the problem of inter-
subjects, the model was tested in experiment-2 with another 
dataset (dataset II evaluation part, individual subjects) that 
consists of nine subjects. The result showed that the 
developed model attained 99% of mean accuracy over the 
nine subjects as presented in TABLE II. Additionally, to 
evaluate the performance of the WTNN in the ability to 
overcome intra- subjects' brain signal challenges of sessions 
(in this study we consider the problem of with feedback and 
without feedback recording protocols of two sessions). The 
result showed that the WTNN model attained 99% of mean 
accuracy over the nine subjects as presented in TABLE III. 
Comparing the result of this study with academic literature 
over dataset-I and dataset-II, it is clear that our WTNN model 
outperformed the accuracy of the literature as presented in 
TABLE IV and TABLE IV. This comparative result 
appraises the efficiency of the proposed WTNN model due 
to the capability of VGG-16 and Amor wavelet in extracting 
MI signal features. And also, the efficiency of the hybrid 
model in decoding the right and left commands. This model 
will contribute to the BCI community by facilitating the 

deployment of the proposed framework model in MI-based 
BCI applications. 

V. CONCLUSION 

Deep learning and wavelet transformation are useful 
techniques for dealing with the high-dimensional and 
nonstationary MI EEG signals. This paper studied the use of 
deep learning, three different wavelet mother functions, and 
six different classifiers for the analysis of MI EEG signals. 
The performance of different combinations of mother 
functions and classifiers are compared on two MI EEG 
datasets. Several evaluation metrics show that a model of 
VGG-16 feature extractor with a neural network classifier 
using the Amor mother wavelet function has outperformed 
the results of state-of-the-art studies by achieving 99% of 
classification accuracy on dataset-II and 100% accuracy on 
dataset I. This result will facilitate the deployment of an 
accurate model based on our technique to help the 
community of the BCI users. 
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Fig.  4: Confusion matrices of the different hybrid models and different wavelet mother functions. 
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(a) 

 
(b) 

Fig.  5: ROC (a) for left hand and (b) for right hand. 

 

 
Fig.  6: Training time. test time, log loss for the optimal 
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TABLE II 

WTNN EVALUATION OVER DATASET-II (TRAINING PART) 
 

 
Subjects 

Performance Metrics 
Training 

Time 
Testing 
Time AUC CA F1 Precision Recall Logloss Specificity 

S1 301.676 16.456 1.00 0.997 0.997 0.997 0.997 0.014 0.997 
S2 322.176 24.112 1.00 1.00 1.00 1.00 1.00 0.004 1.00 
S3 299.950 16.285 1.00 0.997 0.997 0.997 0.997 0.006 0.997 
S4 294.909 17.193 0.994 0.997 0.997 0.997 0.997 0.035 0.997 
S5 292.311 17.040 0.996 0.994 0.994 0.994 0.994 0.038 0.994 
S6 310.226 15.267 1.00 0.997 0.997 0.997 0.997 0.008 0.997 
S7 305.679 16.797 1.00 0.997 0.997 0.997 0.997 0.006 0.997 
S8 335.509 17.225 1.00 0.997 0.997 0.997 0.997 0.014 0.997 
S9 293.354 16.175 0.994 0.997 0.997 0.997 0.997 0.031 0.997 

Mean 306.1989 17.39444 0.998222 0.997 0.997 0.997 0.997 0.017333 0.997 
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TABLE III 
WTNN EVALUATION OVER DATASET-II (EVALUATION PART) 

 

 
Subjects 

Performance Metrics 
Training 

Time 
Testing 
Time AUC CA F1 Precision Recall Logloss Specificity 

S1 381.68 17.501 0.999 0.997 0.997 0.997 0.997 0.020 0.997 
S2 293.11 15.572 1.00 0.997 0.997 0.997 0.997 0.008 0.997 
S3 317.75 18.519 0.992 0.994 0.994 0.994 0.994 0.129 0.994 
S4 83.14 4.244 1.00 1.00 1.00 1.00 1.00 0.006 1.00 
S5 118.32 4.601 1.00 0.998 0.998 0.998 0.998 0.014 0.998 
S6 104.40 6.487 1.00 0.997 0.997 0.997 0.997 0.011 0.997 
S7 128.03 7.797 1.00 0.994 0.994 0.994 0.994 0.011 0.994 
S8 123.33 6.893 0.990 0.994 0.994 0.994 0.994 0.048 0.994 
S9 117.84 6.605 1.00 0.994 0.994 0.994 0.994 0.015 0.994 

Mean 185.28 9.802 0.998 0.99 0.996 0.996 0.996 0.029 0.996 

 
TABLE IV 

RESULTS COMPARISON WITH STATE-OF-THE-ART STUDIES 
RELATED TO DATASET-I 

Year Study Method Accuracy 
2015 [35] LDA + based wrapper SFS 90% 
2016 [36] STFT with KNN 83.57% 
2016 [37] WT + SE using SVM and KNN 86.4% 
2016 [38] MEMD + STFT with KNN 90.71% 
2017 [39] Fuzzified Adaptation with SVM 81.48% 
2019 [40] Genetic Algorithm with FKNN 84% 
2019 [41] STFT with CNN 89.73% 
2019 [42] CWT with 1D CNN 92.9% 
2020 [30] WPT + CWT with CNN 95.71% 
2021 [43] WTTD + CWT with CNN 96.43% 

2022 This 
Study 

CWT (Amor and Morlet) + 
VGG-16 + NN 100% 

 
TABLE V 

RESULTS COMPARISON WITH STATE-OF-THE-ART STUDIES 
RELATED TO DATASET-II 

Year Study Method Accuracy 
2014 [24] Hjorth parameter + LDA 79.1% 
2015 [21] CSP + EMD 72.30% 
2018 [22] CSP + autoregressive model 77% 
2018 [28] WDPSD 89.36% 

2018 [29] A normalization model with one 
contralateral EOG channel 96.86% 

2019 [26] a separated channel 
convolutional network 83% 

2019 [19] STFT + VGG16 71.2% 
2020 [23] multi-domain features 79% 

2020 [27] CNN with hybrid convolution 
scale 87.6% 

2020 [25] Hilbert transform (HT)-SVM 82.50% 
2020 [30] CWT + VGG19 97.06% 
2021 [20] CWT + CNN 71.25 

2022 This 
Study 

CWT (Amor and Morlet) + 
VGG-16 + NN 99% 
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