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Abstract 

     In this paper, a simulation was utilized to create and test the suggested controller and to investigate the ability of a quadruped 

robot based on the SimScape-Multibody toolbox, with PID controllers and deep deterministic policy gradient DDPG 

Reinforcement learning (RL) techniques. A quadruped robot has been simulated using three different scenarios based on two 

methods to control its movement, namely PID and DDPG. Instead of using two links per leg, the quadruped robot was 

constructed with three links per leg, to maximize movement versatility. The quadruped robot-built architecture uses twelve 

servomotors, three per leg, and 12-PID controllers in total for each servomotor. By utilizing the SimScape-Multibody toolbox, 

the quadruped robot can build without needing to use the mathematical model. By varying the walking robot's carrying load, 

the robustness of the developed controller is investigated. Firstly, the walking robot is designed with an open loop system and 

the result shows that the robot falls at starting of the simulation. Secondly, auto-tuning are used to find the optimal parameter 

like (KP, KI and KD) of PID controllers and resulting shows the robot can walk in a straight line. Finally, DDPG reinforcement 

learning is proposed to generate and improve the walking motion of the quadruped robot, and the results show that the 

behaviour of the walking robot has been improved compared with the previous cases, Also, the results produced when RL is 

employed instead of PID controllers are better. 

KEYWORDS: Quadruped Robot, Servo Motors, PID Controllers, Reinforcement Learning designer.   

I.  INTRODUCTION 

     Legged machines have gained increased academic 

interest in recent years because of too many possible benefits 

over traditional wheeled or tracked robots in specific 

applications such as navigating tough terrain, and moving 

and interacting in human situations [1]. The major challenge 

for a walking robot is to maintain steady mobility. One of the 

most well-known statically stable gait stability tests is the 

mass center criteria, which states that a robot is statically 

stable if the projection of its center of mass CoM onto a 

horizontal plane falls within the support grid [2]. Various 

control methods, such as Model-Based Algorithm (MBA) 

based on the feedback linearization approach, [3], robust 

control, [4], and so on, have been developed and 

implemented to monitor the intended trajectories of walking 

robots. 

     The modelling system of a quadruped robot with 

numerous legs has a significant degree of nonlinearity and 

uncertainty. As a result, a strong controller is necessary to 

steer the quadruped robot's mobility. The cost of multiple-

leg walking robots is undeniably high. As a result, before 

purchasing a physical robot, a dependable controller must be 

appropriately constructed and its performance thoroughly 

researched. Researchers can use simulation programs to 

analyze and predict a robot's overall performance and 

enhance its process route planning. For these reasons, using 

a simulator program is helpful since it may save time and 

money. Various programs are used to analyze dynamic and 

kinematic properties of walking robot systems, to offline 

programming, and to build various control methods [5]. 

     To design and simulate the robot we need two strategies, 

the first technique is to create the quadruped robot system 

and build the control system using specific libraries, or 

toolboxes, only simulation results may be analyzed using this 

method, and the visible motion of a robotic-system cannot be 

exhibited, so we need to second technique is used to show 

the motion results of the robot [5]. 

     In this paper, The SimScape-Multibody toolbox simulator 

is used to model the movements of certain sorts of robots that 

execute tasks including path planning, line-following, and 

barrier avoiding is utilized to simulate and display the motion 

of a quadruped robot using a suggested controller instead of 

using two programs to design and simulate of the robot.in 

this paper, the robot is designed with four legs, where each 

leg had three joints instead of two joints to increase the 

https://ijeee.edu.iq/Papers/Vol18-Issue2/1570829086.pdf
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freedom of the robot, also uses one servo-motor for each joint 

so, the total number of motors is 12. Firstly, in this paper, the 

quadruped robot is designed with an open-loop system and 

the results show that the robot falls without completing any 

step in the forward direction. Secondly, a 12-PID controller 

is used for each servomotor, to improve the walking-robot 

motion. Finally, a reinforcement learning strategy is used to 

control and improve the quadruped robot motion. The 

efficacy and durability of the developed controller are 

investigated by varying the quadruped robot's carrying 

weight.  

     The simulation results show that the overall quadruped 

robot performance is improved and the reinforcement 

learning results are better compared with closed-loop with 

PID controller and open loop cases.  

     The rest of this paper is organized as follows: section 2. 

The explanation of modelling the quadruped robot with 

Semescap-Multibody in the Matlab program. The control 

design of a quadruped robot was explained in section 3, the 

section is divided into three subsections subsec.1 explains 

the open loop system, subsec. 2 explains the closed loop 

system with PID controllers, and the final subsection 

explains the DDPG reinforcement learning design. The 

simulation results were explanted in section 4, and this 

section was divided into two subsections one for the results 

of the closed-loop control system, and the other for the 

DDPG reinforcement learning method.  In section 5 the 

comparison results are explained. The conclusions were 

demonstrated in section 6. 

II. MODELLING THE QUADRUPED ROBOT BY SEMSCAPE 

MULTIBODY TOOLBOX 

     In this section, we use the Matlab SimScap-Multibody 

toolbox to modulate and simulate the quadruped robot. The 

SimScape toolbox comprises several libraries and Simulink 

blocks that may be used to design any robot architecture, 

such as mobile robots, robotic manipulators with various 

amounts of links, and leg robots. This allows the user to 

create both the mechanical and control systems in the same 

environment. Various analysis modes and powerful 

visualization tools enable users with minimum mechanical 

knowledge to simulate complicated dynamical systems. It 

also includes modelling and control configuration to assist 

people in obtaining essential simulated results and displaying 

possible robot movements. [5, 6]. The following Fig.  1 

shows a Visual display of a quadruped robot in Matlab 

SimScape Multibody.  

 
Fig.  1: Visual display of quadruped robot in SimScape-

Multibody. 

     Figure 1 shows the 3-D structure of a quadruped robot that 

is designed with a Matlab simscape multibody. Where the 

robot contains a torso and four legs and each leg has three 

joints.  

Figure 1 shows the quadruped robot that is designed in 

Matlab Simscape, so Fig.  2 shows the main components of 

a quadruped robot system in Simscape Matlab. 

 
Fig.  2: Main components of a four-leg walking robot. 

 

Figure 2 shows that there are a few blocks that are linked 

together. Begin with the World Frame block, which must 

connect a Solver Configuration and a Mechanism 

Configuration block. The solver block is required for all 

Simescape models, and the mechanism block is applied to 

the complete machine to establish parameters such as gravity 

direction and amplitude. Fig.  3 shows the Robot subsystem 

in Fig.  2. 

 
Fig.  3: Robot subsystem that contains four-leg. 

 

Where Fig.  3 shows the walking robot system that includes 

four legs with three links in each leg. Fig.  4 shows the leg 

subsystem of a quadruped robot that is shown in Fig.  3. 

 

 
Fig.  4: One-leg components of a quadruped robot (leg 

subsystem). 

 Figure 4 show that the leg of the robot contains three 

joint where each joint contain one servo-motor and one PID 

controller, Fig.  5 shows the joint subsystem in Fig.  4. 
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Fig.  5: One joint subsystem of a quadruped robot in. 

 

     Figure 5 shows the components of one joint of a 

quadruped robot, where the joint is controlled by a 

servomotor and the PID controller in the joint servo 

subsystem Fig.  6 shows the PID controller system controls 

the servomotor. 

 
Fig.  6: PID controller system. 

 

     Table 1 describes the functionalities of most Simulink 

blocks used in Fig.  2 to Fig.  6, to help the reader understand 

them. 

 

TABLE 1 

 DESCRIPTION OF THE SEMESCAP-MULTIBODY BLOCKS. 

 

Blocks Name Descriptions 

 Solver- 

Configuration 

 

Sets the simulation's setup 

values. 

 World-Frame 

 

The reference point of the 

mechanical model is built. 

The World's Framework 

 Mechanism- 

Configuration 

 

Initial mechanical and 

simulation - parameter setup 

 Rotational - 

Joint 

 

A rotational joint is used to 

interpret motion at angles 

between the actuators and the 

fixed base. 

 Solid-Block 

 

Solid blocks offer-soled 

characteristics. 

 PS-converter  

 

Converter-Simulink 

 

 

 

 

III- CONTROL SYSTEM OF A QUADRUPED ROBOT 

     Control methods are created in this paper for a 

quadruped robot with 4-legs, and 3- links for each leg, and 

each link is driven by a servomotor. To connect the 

connections, the revolving joint is employed. As illustrated 

in Fig.  7, the revolve joint has 2- inputs and 3- outputs. 

 
Fig.  7: The Revolve joint 

     Inputs B and t indicate the control signal given to a 

servomotor's torque and the port that links the current link to 

the previous link respectively. first output F represents the 

connecting point between the current and upcoming links. 

The second output q reflects the current link's angle and the 

last output w measures speed. A servomotor may be operated 

by sending a series of variable width electrical pulses over 

the line. The voltage provided to the servo motor is modified 

by varying the minimum and maximum duration of the 

pulses, resulting in a change in motor speed owing to voltage 

change. When the voltage changes, the current varies, which 

causes the torque to alter. Therefore, in this paper, we apply 

three cases to the robot first when the open-loop system is 

applied with a servomotor, second, when a closed-loop 

system with PID controllers is chosen, and finally, 

Reinforcement learning techniques are applied to the 

quadruped robot. 

A. open loop system. 

     In this situation, the quadruped robot is created with no 

controls and tests if the robot can finish the move on the road 

steadily. However, the data demonstrate that the quadruped 

robot falls and lost its motion stability after the simulation 

began. Fig.  8a, depicts the quadruped robot in its original 

posture before the simulation began. Fig.  8b, depicts the 

quadruped robot's inability to walk without going forward. 

 
(a) 

 
(b) 

Fig.  8: (a) Quadruped robot stand at the initial position (b) 

quadruped robot falls after the simulation starts. 
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B. Closed loop control system. 

     In case one of the open loop system the quadruped robot 

falls immediately after the simulation begins, so the robot 

needs to control to improve the efficiency of the quadruped 

robot motion, so in this paper, we propose two controllers 

design, a closed-loop control system with PID controllers 

and DDPG reinforcement learning. 

     Because the quadruped robot model contains twelve joint, 

three per leg, and there is a servomotor for each joint totally 

of twelve servomotors, so we need twelve PID controllers, 

one for each servomotor. Fig.  6 shows the block diagram of 

the PID controller system for one joint.  

     Where the best parameters of PID controllers were 

obtained with PID tuner by the auto-tuning method. 

C. PID controllers. 

     The PID term sign to the initial letter of the multiple term 

names that comprise the conventional 3-term controller. In 

the controller, these are P for the proportional term, I for the 

integral term, and D for the derivative term. Appropriate 

adjustment of these parameters will enhance plant 

performance, decrease overshoot, remove the steady-state 

error, and promote system stability. The biggest issue with 

the basic controller is determining the proper PID gains. 

When plant characteristics and operating circumstances 

vary, the controller may not offer the needed control 

performance if fixed gains are used. As a result, tuning must 

be undertaken to ensure that the controller can deal with 

fluctuations in the plant [7]. The following Fig.  9 shows the 

block diagram of the PID controller. 

 
Fig.  9: Block diagram of PID controller [9]. 

The output of the PID controller is given as the following. 

 

 𝑢(𝑡) = 𝐾𝑝𝒆(𝑡) + 𝐾𝑖 ∫ 𝐞(𝐭)𝑑𝑡 + 𝐾𝑑𝐞̇(𝑡) ( 1 ) 

 

Where u is the control signal, and e is the error value. Then 

the transfer function. 

PID controller tuning approaches such as Ziegler-Nichols 

rules, Cohen-Coon rules, and others have been developed. 

Because they give, straightforward tuning criteria for 

determining the PID parameters, these approaches are used 

directly [8-10]. In this paper, the auto-tuning tool with a PID 

tuner in Matlab extracts the best parameters of the PID 

controller. 

D. Reinforcement learning (RL) of a walking robot. 

     Reinforcement learning (RL) is the study of how an agent 

interacts with its environment to develop a policy that 

optimizes predicted cumulative rewards for a task. Recently, 

RL has seen a surge in attention and focus as a consequence 

of promising discoveries in fields such as operating 

continuous systems in robotics, and playing GO game (Go is 

an abstract strategy board game for two players in which 

the aim is to surround more territory than the opponent), 

Atari, and professional video games. RL is utilized to make 

a robot learn to walk in a controlled environment. The 

primary goal of this paper is to learn a quadruped robot to 

walk by creating a model in simscpe Matlab. This work 

explains how to learn a quadruped robot to walk using a deep 

deterministic policy gradient (DDPG) agent. (DDPG) an 

algorithm is a model-free, online, off-policy reinforcement 

learning method. Deep Deterministic Q-learning and Policy 

gradients are combined in the reinforcement learning method 

known as Policy Gradient (DDPG). As an actor-critic 

technique, DDPG uses two models: the actor and the critic. 

Instead of producing a probability distribution of actions, the 

actor is a policy network that receives the state as input and 

outputs the precise action (continuous). A Q-value network 

that receives input from state and action and outputs the Q-

value is the critic. The DDPG is a method that is "off" policy. 

The "deterministic" in DDPG refers to the fact that the actor 

computes the action directly rather than a probability 

distribution over actions. DDPG is employed in the 

continuous action setting [11-13]. 

      The walking robot can be learned by trial and error using 

reinforcement learning (RL) methods. The model and 

everything outside the learning process is referred to as the 

environment in reinforcement learning, and the 

reinforcement learning (RL) environment for this study is a 

quadruped robot. The goal of the training is for the robot to 

walk in a straight path with as little control effort as feasible. 

With our environment model in place, we have picked a 

reinforcement-learning method, which will decide how to 

actuate the joints depending on data from the environment. 

The agent learns to make the proper decisions for successful 

walking after much trial and error. The agent makes 

decisions based on observations, where observations provide 

the agent with information about the condition of the 

environment, such as location, velocities, forces, and any 

other signal that we choose to depend on what the agent 

needs to know to walk. The following Fig.  10 shows the 

quadruped robot system with reinforcement learning RL 

toolbox. 

 
Fig.  10: Quadruped robot system with RL blocks. 

     The following three points explain the observations 

information condition that is delivered to the agent to make 

a decision action, point two shows action details from the 

agent that applied to the robot system, and point three explain 

the reward details that is getting from the environment to 

help the agent to make the best action.  

 

https://en.wikipedia.org/wiki/Abstract_strategy_game
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1) Observations. 

     The environment (robot system) provides the following 

observations to the agent. 

 y and z body position. 

 x, y and z body velocity. 

 Body angles 

 Joint angles. 

 The Contact force between feet and the ground. 

 The commanded torque that was commanded in the 

previous time step. 

 Position of each joint. 

      In addition, there is some assumption for the walking 

robot to make help speed up the learning of the robot. The 

first assumption is, that the legs of the robot are straight, and 

the second assumption is the ankles of all legs are flat in the 

neutral 0 rad position. 

      The foot contact is modelled using the Spatial Contact 

force (SimScape-Multibody) block. The agent may operate 

three particular joints on both legs of the quadruped robot by 

delivering torque signals to three joints. 

2) Actions. 

     After the training end, the agent creates twelve actions, 

where the robot has twelve joints, three per leg. And these 

actions represent the torque that is applied to the robot joints, 

Ankle, Knee and hip.  

3) Reward. 

     The agent receives the following reward at each time step 

during training. Because we want the robot to walk in a 

straight line forward, the first reward is added forward 

velocity (Vx) in the x-direction (which means that the robot 

moving in forward in a straight line). 

     The second and third rewards apply a penalty on the y and 

z dimension displacement, which makes sure the robot, does 

not deviate too far from the line or fall dawn. 

     The fourth reward is applying a penalty on the joint effort 

or joint torque, the reason for this penalty is to reject the 

aggressive motion. 

      The final reward (positive reward) is a duration reward 

to prevent a very common local minimum where the robot 

very early on learns to fall forward. The following Fig.  11 

shows the block diagram of overall rewards in the RL model 

of the robot. 

 
Fig.  11: Block diagram of reward function in RL model. 

IV. SIMULATION RESULTS 

     In this section, the simulation results were divided into 

two subsections one for a closed-loop control system with 

the PID controller's method and the other for the DDPG 

reinforcement learning method. 

A. Simulation results of the closed-loop control system. 

     The auto-tuning tool with Matlab Simulink is used to find 

the optimal parameters of the PID controller i.e. KP, KI and 

KD the following table 2 shows the best parameters that are 

found from the auto-tuning method in the PID tuner tool. 

 

TABLE 2 

 PARAMETERS OF PID CONTROLLERS (AUTO-TUNING 

METHOD). 

PID Kp Ki Kd 

Controller 1 28.64507 634.67449 -0.342715 

Controller 2 22.05537 452.04501 0.0790049 

Controller 3 18.55109 251.79850 0.0458747 

Controller 4 23.10922 643.77684 -0.256986 

Controller 5 19.29109 375.69966 0.0304624 

Controller 6 11.41438 171.16699 0.0526633 

Controller 7 23.79493 216.2899 -0.01950 

Controller 8 22.9857 401.729 -0.06874 

Controller 9 46.9703 371.527 -0.52653 

Controller 

10 
25.95642 580.8400 -0.118329 

Controller 

11 
18.23887 314.4904 -0.12582 

Controller 

12 
12.90897 156.2225 0.182405 

 

     The robustness of the designed controller is studied by 

changing the carried weight of the quadruped robot 

Simulation results can be divided into three cases, the first is 

when the robot is without any carried weight. The second 

case is when the robot is loaded with a 1-kg weight, and 

finally when a 2-kg weight is added to the robot.  

Case One: A quadruped robot without load.  

     Figs. 12 a and b show the robot simulation results without 

load at stars and after a few meters respectively. 

 
(a) 

 
(b) 

Fig.  12 (a) Walking robot with no load at initial position 

(b) walking robot with no load after a few meters. 

     Because a walking robot has four legs, each with 3-links, 

demonstrating the performance of each joint is difficult. As 

a result, this piece only depicts the performance of the front 
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right leg. Fig.  13 shows the PID control efforts for the front 

right leg of the quadruped robot. 

 
Fig.  13: Front right leg control efforts of the walking robot 

with no load. 

 

 Also, the comparison between the desired angle and the 

act. the 3-joints ankle, knee and hip are shown in Figs. 14-

16. 

 
  

Fig.  14: Desired angle and actual angle comparisons for the 

hip joint. 

 
 

Fig.  15: Desired angle and actual angle comparisons for the 

knee joint. 

 
Fig.  16: Desired angle and actual angle comparisons of the 

ankle joint. 

     From the above results of the case, one with a closed-loop 

control system with PID controllers show that the walking of 

the robot is stable and the robot is able to reach the final goal 

without falling. 

Case Two: A quadruped robot when loaded with a 1-kg. 

     When the 1-kg load is added to the torso of a quadruped 

robot. The following Figs. 17 a and b show the walking 

robot standing at the stars and after a few meters. 

 
(a) 

 
(b) 

Fig.  17: (a) Walking robot with a 1-kg stand at initial 

position (b) walking robot with a 1-kg after few meters. 

 

     The following Fig.  18 shows the PID control efforts of 

the front right leg of a walking robot with a 1–kg load. 

 
 

Fig.  18: PID control efforts for front right leg hip, knee and 

ankle links of a walking robot with a 1-kg weight. 

 

     Also, the comparison between the desired angle with the 

actual for the 3-joints ankle, knee and hip are shown in Figs. 

19-21. 

 
Fig.  19: Desired angle and actual angle comparisons for the 

hip joint. 
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Fig.  20: Ref. angle with actual angle comparisons for the 

knee joint. 

 
Fig.  21 Ref. angle with actual angle comparison for the 

ankle joint. 

     From the above results of the case, two when the robot is 

loaded with 1-kg on the torso with a closed-loop control 

system with PID controllers show that the walking of the 

robot is stable and the robot is able to reach the final goal 

without falling. 

Case Three: A quadruped robot when loaded with a 2-kg. 

      When a 2-kg load is loaded to the torso of the 

quadruped robot. The following Figs. 22 a and b show the 

walking robot with a 2-kg weight standing at the start and 

after a few meters respectively. 

 
(a) 

 
(b) 

Fig.  22: (a) Walking robot with a 2-kg stand at initial 

position (b) walking robot with a 2-kg after few meters. 

 

     The following Fig.  23 shows the PID control efforts of 

the front right leg of a walking robot with a 2–kg load. 

 

 
Fig.  23: PID control effects for front right leg hip, knee and 

ankle links of a walking robot with a 2-kg weight. 

 

      In addition, the comparison between the reference angle 

with the actual for the 3-joints ankle, knee and hip are shown 

in Figs. 24-26. 

 
Fig.  24: Desired angle and actual angle comparisons for the 

hip joint. 

 

 
Fig.  25: Ref. angle with actual angle comparisons for the 

knee joint. 

 

 
Fig.  26: Ref. angle with actual angle comparison for the 

ankle joint. 
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     From the above results of the case, two when the robot is 

loaded with 2-kg on the torso with a closed-loop control 

system with PID controllers show that the walking of the 

robot is stable and the robot is able to reach the final goal 

without falling. 

     The following table 3 shows the results of a travelled 

distance in 10 sec. for three cases with the closed-loop 

control system. 

TABLE 3 

 TRAVELLED DISTANCES OF ROBOT WITH PID. 

Load (kg) Travelled-distance(m) with PID 

No load 2.2 

1 1.9 

2 1.25 

 

B. Simulation Results of DDPG reinforcement learning. 

     In this section, DDPG reinforcement learning (RL) with 

Matlab is used to learn the quadruped robot system, whereas 

the DDPG reinforcement-learning algorithm is used to learn 

the quadruped robot for walking in a straight line. Where the 

RL-designer toolbox with Matlab is used to train the robot, 

the RL-designer toolbox is turned on several times to get the 

best training for a quadruped robot to walk in a straight line. 

     The final simulation of a quadruped robot is getting when 

the robot is training with 5000 episodes, and the following 

Fig.  26 shows the training results after running 5000 

episodes. 

    The following parameters have been chosen to train the 

quadruped robot. 

 Sample time (Ts) = 0.025 sec. 

 Final end time (Tf) = 10 sec. 

 Discount factor = 0.99. 

 Mini batch size = 128. 

 Experience buffer length = 500000. 

 Target smooth factor = 0.001. 

 Mean attraction constant = 5. 

 Variance = 0.5. 

 Variance decay rate = 0.00001. 

 Maximum episodes = 5000. 

 Maximum steps per episode = Tf/Ts. 

 Score averaging window length = 100. 

 Stop training value = 200. 

 Save agent value = 200. 

 Learning rate = 0.001. 

 

     As shown in Fig.  27, the 3rd  at least of the episodes were 

pretty short and didn't generate much of a rapid happened 

where the RL algorithm was able to explore out of some local 

min. and then the reward became much higher until it trended 

upward to the point where the training cancelled, also we can 

see the blue curve where the individual episode rewards are 

stall very noisy but there is a general upwards trend with a 

lot of noise for that moving as we see that the (DDPG) is a 

high variance method, which indicates that the reward is not 

guaranteed to increase monotonically and the final reward 

that is getting from the training results is about 194. 

 

 
Fig.  27: Final episode training of the quadruped robot with 

5000 episodes. 

 

     The robustness of the designed controller is studied by 

changing the carried weight of the quadruped robot. 

Simulation results can be divided into three cases, the first is 

when the robot is without any carried weight. The second 

case is when the robot is loaded with a 1-kg weight, and 

finally when a 2-kg weight is added to the robot.  

 

Case One: A quadruped robot without load.  

 

    Figs. 28 a and b show the robot simulation results without 

load at stars and after a few meters respectively. 

 

 
(a) 

 
(b) 

Fig.  28: a Quadruped robot with no load stand at initial 

position b walking robot with no load after few meters with 

RL. 

 

     From the above result of the case, DDPG reinforcement 

learning shows that the walking of the robot is stable and the 

robot is able to reach the final goal without falling. 

 

Case Two: A quadruped robot when loaded with a 1-kg. 

 

     When the 1-kg load is added to the torso of a quadruped 

robot. The following Figs. 29 a and b show the walking robot 

standing at the stars and after a few meters. 
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(a) 

 
(b) 

 

Fig.  29: a Walking robot with 1 kg stands at the initial 

position b walking robot with a 1-kg after a few meters 

with RL. 

 

     From the above results of the case, two when the robot is 

loaded with 1-kg on the torso with DDPG reinforcement 

learning show that the walking of the robot is stable and the 

robot is able to reach the final goal without falling. 

 

Case Three: A quadruped robot when loaded with a 2-kg. 

 

    When the 2-kg weight is loaded onto the torso of a 

quadruped robot. Figs. 30 a and b show the walking robot 

with a 2-kg weight standing at the start and after a few meters 

respectively. 

 
(a) 

 
(b) 

Fig.  30: a Walking robot with a 2-kg stands at the initial 

position b walking robot with a 2-kg after a few meters 

with RL. 

 

     From the above results of the case, two when the robot is 

loaded with 2-kg on the torso with DDPG reinforcement 

learning show that the walking of the robot is stable and the 

robot is able to reach the final goal without falling. 

The following table 4 shows the results of a travelled 

distance in 10 sec. for three cases with the closed-loop 

control system. 

 

 

 

 

 

TABLE 4 

 TRAVELLED DISTANCES OF ROBOT WITH DDPG. 

 

Load (kg) Travelled-distance(m) with DDPG 

No load 7.5 

1 7 

2 6.6 

V. RESULTS COMPARISON 

     In this section, there are some comparisons between three 

previously introduced cases for controlling the gait stability 

of a quadruped robot to attain its goal along a particular path. 

The comparison is based on the link between the total 

distance travelled and the time required to complete the 

entire path.  

    In the case of a closed loop control system with PID 

controllers, we can see from the table 3 the robot can travel 

the distance in three cases with little different distances as 

the load increase, while the robot in the case with no load has 

a larger travelled distance (2.2 m), and when the robot in the 

case with a 2-kg load has a smaller travelled distance (1.25 

m), and when the robot in case of the 1-kg load has the 

travelled distance is (1.9 m). However, the robot in each case 

can reach the final time simulation. 

   In the case of DDPG reinforcement learning we can see 

from the table, 4 the robot can travel the distance in three 

cases with little different travelled distance as the load 

increase, while the robot in the case with no load has a larger 

travelled distance (7.5 m), and when the robot in the case 

with a 2-kg load has smaller travelled distance (6.6 m), and 

when the robot with a 1-kg has the travelled distance (7 m).  

However, the robot in each case can reach the final time 

simulation. 

, in addition the travelled distance in the case of using DDPG 

as a control system is higher than that of the case with PID 

controllers (closed loop system) with the same simulation 

time (10 sec.). 

     Therefore, the DDPG reinforcement learning technique 

has an advantage over another case (closed loop system with 

PID controllers) in the travelled distance with the same time 

(10 sec.). 

     The following table 5 shows the comparison between the 

PID control system method and the DDPG reinforcement 

learning method with a travelled distance of 10 seconds.  

 

TABLE 5  

TRAVELLED DISTANCES COMPARITIONSOF ROBOT. 

 

load 

(kg) 

Travelled-

distance(m) with 

PID 

Travelled-

distance(m) with 

DDPG 

No load 2.2 7.5 

1 1.9 7 

2 1.25 6.6 
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VI. CONCLUSION 

     In this study, the following points can be noted. 

1- The proposed quadruped robot model with three moveable 

links per leg will provide significant benefits in terms of 

moving easily and smoothly. 

2- The robot is built using the SimScape-Multibody, in 

addition, the robot was tested without using any controller, 

and the results suggest that the robot is not completing its 

gait to the final goal. As a result, we offer two learning 

methods: the PID controller approach and reinforcement 

learning (RL). 

3- The proposed controllers' robustness was evaluated by 

loading more weights onto the top of the quadruped robot. 

There are two distinct weights added, 1-kg and 2-kg. In each 

case, the controlled system was stable and flowed in a correct 

motion notwithstanding disturbance rejection. 

4- As a result, the whole proposed system demonstrates 

practicability and efficacy in operating a quadruped robot. 

And the control design with DDPG reinforcement learning 

has an advantage over the control system with PID 

controllers.  

VII. FEATURE WORKS 

     The proposed system architecture will be built practically 

in future development. As a result, real-time experiments 

will be carried out to validate the suggested control systems, 

and then extensive comparisons between theoretical and 

actual trials will be carried out. 
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