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Abstract 

The necessity for an efficient algorithm for resource allocation is highly urgent because of increased demand for utilizing the 

available spectrum of the wireless communication systems. This paper proposes an Enhanced Bundle-based Particle Collision 

Algorithm (EB-PCA) to get the optimal or near optimal values. It applied to the Orthogonal Frequency Division Multiple Access 

(OFDMA) to evaluate allocations for the power and subcarrier. The analyses take into consideration the power, subcarrier 

allocations constrain, channel and noise distributions, as well as the distance between user's equipment and the base station. 

Four main cases are simulated and analyzed under specific operation scenarios to meet the standard specifications of different 

advanced communication systems. The sum rate results are compared to that achieved with employing another exist algorithm, 

Bat Pack Algorithm (BPA). The achieved results show that the proposed EB-PAC for OFDMA system is an efficient algorithm 

in terms of estimating the optimal or near optimal values for both subcarrier and power allocation. 

KEYWORDS: OFDMA, Enhanced Bundle-based Particle Collision Algorithm, Resource Allocation, Particle Collision 

Algorithm, optimization, communication systems, Adaptive Resource Allocation, power allocation algorithm, multi-

objective optimization. 

 

I.  INTRODUCTION 

In recent years, global demand for higher data transmission 

rates with quality of services in wireless communication 

systems have been growing enormously. However, the 

available communication resources are too limited to 

satisfy such huge demand [1]– [3]. There are many 

resource allocation protocols and algorithms were proposed 

to manage the case. Orthogonal frequency–division 

multiple access (OFDMA) has been adapted as one of the 

efficient schemes of resource allocation [4], [5]. In 

OFDMA systems, Radio Resource Management (RRM) 

algorithms are the key elements. It crucially affects the 

current and overall future communication performance 

largely by providing different QoS experienced by each of 

the end users [6]–[8]. The key issue in OFDM/OFDMA is 

solving the resource allocation problem which means 

finding the optimal or suboptimal resource allocation - for 

the subcarrier (subchannel) and the power.  

      Four key cases are analyzed under some specific 

optimization scenarios with employing the EB-PCA. In the 

first case, a relatively small equal number of users and 

subcarriers (7 each) are considered to estimate the best 

subcarrier and power allocation. The second case is 

conducted to discuss when the number of users is less than 

the available subcarriers (half number of available 

subcarriers is taken), While in the third case the contrary 

situation is discussed (the available subcarriers are less than 

the number of users). It mimics the scenario for sharing a 

limited subcarrier to provide a reasonable data rate to each 

user with respect to the channel conditions. Finally, case 

four discussed the case when both number of users and 

subcarriers are doubled.  

      The achieved results show that the proposed EB-PAC 

for OFDMA system is an efficient algorithm in terms of 

estimating the optimal or near optimal values for both 

subcarrier and power allocation.  

      Section 2 investigates some related work and Section 3 

of this paper presents a theoretical background for the 

resource allocation and the algorithms used in this work 

whereas Section 4 reports the main simulation results. A 

comparison with that achieved by employing Bat Pack 

https://ijeee.edu.iq/Papers/Vol18-Issue2/1570793235.pdf
https://ijeee.edu.iq/Papers/Vol18-Issue2/1570793235.pdf
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Algorithm (BPA) is given in Sections 5 and finally Section 

6 synthesizes research main conclusions. 

II. RELATED RESEARCH 

Several calculation-based approaches have been presented 

by researchers. Condoluci, M., et al. [9] and JuYeop Kim 

et al. [10] discussed minimizing power consumption with 

employing a heuristic algorithm for allocating resources 

suboptimal with low complexity in OFDM While [11] 

applied it to the resource allocation in the OFDMA. Junzhi 

Yu et al. [12] utilizing the Stachelberg game algorithm to 

handle the complex robust joint allocation problem. It is 

applied to the OFDM system to achieve power allocation 

in the downlink. 

      Importance to finding a powerful and efficient 

algorithm is taking priority to deal with complex 

optimization problems. Several algorithms were inspired 

by mimicking some of nature or physical phenomena. A 

stochastic optimization algorithm that was loosely inspired 

by the physics of nuclear particle collision reactions was 

introduced. This algorithm is called Particle Collision 

Algorithm (PCA) [13]. 

      The original and modified versions of PCA are used 

with different optimization problems. For instance, Sacco, 

Filho et al., [14] applied original PCA for cost-based 

formulation of a reactor core design optimization problem 

and Domiciano et al. [15] used it to automatically estimate 

the digital elevation models in a specific area for the 

unmanned aerial vehicles. Knupp, Neto et al., [16] 

implemented a PCA with the deterministic Levenberg-

Marquardt method to evaluate the inverse radiative transfer 

problem. An optimum architecture design for a supervised 

artificial neural network (ANN) is applied to atmospheric 

temperature profile identification. It was performed by 

employing the multi-particle collision algorithm (M-PCA) 

[17] and the authors in [18] used the M-PCA to generate a 

set of candidate solutions that correspond to an ANN 

architecture to retrieve atmospheric temperature profile 

from satellite data under cloud covering. However, neither 

the original PCA nor its variants algorithm is used to solve 

the resource allocation problem yet. The PCA algorithm in 

its original form is not suitable to deal with such multi 

elements, multi dimensions, and multi constrained 

problems. Therefore, this paper proposes Enhanced 

Bundle-based Particle Collision Algorithm (EB-PCA). 

Then, the algorithm is applied to find the optimal or near 

optimal value for the power and subcarrier allocations in an 

OFDMA system. 

III. THEORY 

A. OFDMA Resource Allocation 

Consider a single cell uplink OFDMA system with K users 

and N subcarriers to be allocated. Also, if all the users with 

Variable Bit Rate (VBR) and error-free data throughput. 

So, the channel gain-to-noise ratio (CNR) may be given by 

[19], [20]:  

 𝑔𝑘,𝑖 =
𝐻𝑘,𝑖

𝜎𝑘,𝑖
2  ,   for 𝑘 = 1, . . . 𝐾, 𝑖 = 1 , . . . , 𝑁     (1)            

where 𝐻𝑘,𝑖  is the channel gain and 𝜎𝑘,𝑖
2  is the total noise 

power for each user, k, and subcarrier, i. 

Let 𝛼𝑘,𝑖 is the binary decision variable of the subcarrier 

allocation, then: 

 

𝛼𝑘,𝑖 = {
1,  if subcarrier 𝑖 is assigned to user 𝑘

0, if subcarrier 𝑖 is not assigned to user 𝑘
 

    (2) 

Given that each subcarrier is only assigned to a single 

user. This leads to: 

 ∑ 𝛼𝑘,𝑖 ≤ 1𝐾
𝑘=1  ,     for 𝑖 = 1 , . . . , 𝑁      (3) 

 

𝛼𝑘,𝑖 takes either 1 or 0, “0” indicates that the subcarrier is 

not assigned to any user. 

Let the matrix of the channel allocation indices A (K × 

N) is: 

 

 𝐀 = [

α11 ⋯ α1N

⋮ ⋱ ⋮
αK1 ⋯ αKN

]      (4) 

 

   If 𝑃𝑘,𝑖  is the power allocated to subcarrier i by user k. 

The power consumed by a specific user over all its allocated 

subcarriers must not exceeded the allowable maximum 

transmission power, Pk,max: 

 ∑ 𝑃𝑘,𝑖 ≤ 𝑃𝑘,𝑚𝑎𝑥
𝑁
𝑖=1  ,     for 𝑘 = 1 , . . . , 𝐾    (5)             

where,  

 𝑃𝑘,𝑖 ≥ 0,     for 𝑘 = 1 , . . . , 𝐾     (6) 

 

Likewise, P is a K × N matrix of the allocated powers 𝑃𝑘,𝑖 

and is formed as: 

 

 𝐏 = [
P11 ⋯ P1N

⋮ ⋱ ⋮
PK1 ⋯ PKN

]       (7) 

Therefore, the total rate of user k is: 

 𝑅𝑘 = ∑ 𝛼𝑘,𝑖
𝑁
𝑖=1   𝑙𝑜𝑔2(1 + 𝑃𝑘,𝑖𝑔𝑘,𝑖)   (8) 

 

and the total system rate is: 

 

 𝑅(𝐴, 𝑃) = ∑  𝐾
𝑘=1 ∑ 𝛼𝑘,𝑖

𝑁
𝑖=1   𝑙𝑜𝑔2(1 + 𝑃𝑘,𝑖𝑔𝑘,𝑖)   (9) 

 

Therefore, the resource allocation problem for the 

OFDMA can be formulated for maximizing the weighted 

sum-rate as: 

 

 𝑚𝑎𝑥 𝐸𝑔 {∑ 𝜋𝑘  𝐾
𝑘=1 ∑ 𝛼𝑘,𝑖

𝑁
𝑖=1   𝑙𝑜𝑔2(1 + 𝑃𝑘,𝑖𝑔𝑘,𝑖) } (10)           

 

which is subject to: 

 

 𝐸𝑔{∑ 𝑃𝑘,𝑖 ≤ 𝑃𝑘,𝑚𝑎𝑥
𝑁
𝑖=1   } ,   for 𝑘 𝑢𝑠𝑒𝑟𝑠    (11) 

 

   The user rate must be greater than or equal to its 

allowable (or desired) minimum data rate, 𝑅𝑘,𝑚𝑖𝑛: 

 

𝐸𝑔{∑ 𝛼𝑘,𝑖
𝑁
𝑖=1   𝑙𝑜𝑔2(1 + 𝑃𝑘,𝑖𝑔𝑘,𝑖)   } ≥ 𝑅𝑘,𝑚𝑖𝑛 ,

for k users                                                                   (12) 
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where, E{·} is an expectation operator and πk is the weight 

given to the rate of specific user k. The weights given to the 

users’ rates are chosen from: 

 

 ∑ πk K
k=1 = 1    (13) 

 

The resource allocation problem is non-convex because 

the set of values for αk,i  , given in Eq. (10). It can be 

converted to a convex when the condition of αk,i is relaxing 

by allowing them to take any values from the interval [0, 

1]. This corresponds to the case when time-sharing is 

allowed to a single subcarrier between different users. 

Assume that 𝑓𝑘,𝑖 = 𝛼𝑘,𝑖𝑃𝑘,𝑖  then the resource allocation 

problem can be rewritten as: 

 

 𝑚𝑎𝑥 𝐸𝑔 {∑ 𝜋𝑘  𝐾
𝑘=1 ∑ 𝛼𝑘,𝑖

𝑁
𝑖=1   𝑙𝑜𝑔2(1 +

𝑓𝑘,𝑖

𝛼𝑘,𝑖
𝑔𝑘,𝑖) }  (14) 

 

which is subject to 

  

 𝐸𝑔{∑ 𝑓𝑘,𝑖 ≤ 𝑃𝑘,𝑚𝑎𝑥
𝑁
𝑖=1   } ,   for k user   (15) 

 

or, 

 

𝐸𝑔{∑  𝐾
𝑘=1 ∑ 𝛼𝑘,𝑖𝑃𝑘,𝑖  ≤ 𝑃𝑡𝑜𝑡𝑎𝑙

𝑁
𝑖=1   } ,   for all users (16) 

and, 

 𝐸𝑔 {∑ 𝛼𝑘,𝑖
𝑁
𝑖=1   𝑙𝑜𝑔2(1 +

𝑓𝑘,𝑖

𝛼𝑘,𝑖
𝑔𝑘,𝑖)   } ≥ 𝑅𝑘,𝑚𝑖𝑛 ,

for k users   (17) 

Equation (14) is convex since expectation conserves 

convexity and log2 (1 + b/a) is recognized as a concave 

function form. Therefore, the problem can be solved 

reliably and efficiently [21]. It should be noted that the 

resource allocation problem is subject to constraints Eqs. 

(3), (5), (6) and (13) in addition to Eqs. (15-17). Principles 

of the PCA and the Enhance Bundle-based Particle 

Collision Algorithm (EB-PCA) are detailed in the 

following sections: 

B. Particle Collision Algorithm 

Wagner F. Sacco and Cassiano R.E. de Oliveira [13] 

proposed the original version of the Particle Collision 

Algorithm (PCA). This algorithm is loosely based on the 

physics of nuclear particle collision reactions, mainly 

scattering and absorption. In scattering, the incident 

neutron is scattered by the impact of its collision with a 

target nucleus. While in absorption, the incident neutron is 

absorbed by that nucleus. So, depending on the quality or 

fitness of the target nucleus, the hitting particle either 

absorbs and explores the boundaries if nucleus quality is 

high; or scattered to another region if nucleus quality is low. 

Through these repeated scattering and absorption collision 

operations, the exploration and exploitation of the search 

space for better areas is performed. In its structure, the 

original PCA bears a resemblance to simulated annealing 

with the basic difference that it does not require the user to 

define parameters except the number of iterations [13], 

[14].  

      The general structure of the PCA is as follows: after 

selecting the initial (old) configuration, new configuration 

is generated by modifying the old configuration. Then, 

evaluation and comparison of both of them are performed 

to determine their quality and decide whether to accept the 

new configuration to replace the old one for the next step, 

or reject it and proceed with a new change of the old 

configuration. The key pseudo code of the PCA can be 

formulated as [13], [14], [16], [22], see Appendix – A.  
      The stochastic perturbation pointed out in the loop of 

pseudo code represents varying of the variable’s values. 

They are random within their range’s boundaries. 

Stochastic perturbation pseudo code, as Ref.[22], is given 

in Appendix – B.  

      An exploration of the boundaries for a better solution is 

performed upon the particle absorption (the new 

configuration quality is better than that of the old one). The 

local search is carried out by exploration as it will generate 

a small stochastic perturbation. It is similar to the previous 

stochastic perturbation but the new value of each variable 

is reserved within the boundaries of the original value. 

Exploration pseudo code is given as Ref. [13], [14], [16], 

see Appendix – C. The small stochastic perturbation pseudo 

code, illustrated in Appendix – D, given as Ref. [22]. 

The particle, on the other hand, is scattered if the new 

configuration quality is not better or even worse than the 

old configuration. The scattering probability, P, is inversely 

proportional to the quality. This means that as the quality 

of particles is lowered there is a greater chance to be 

scattered  [13], [14], [16], [22], see Appendix – E. 

 In PCA, a solution trial acceptance is carried out with a 

certain probability. Therefore, PCA may be considered as a 

Metropolis algorithm and this acceptance chance may lead 

to avoid convergences to local optima [13], [14]. The 

Multi-Particle Algorithm (M-PCA) is based on the original 

or canonical PCA, introducing a new characteristic of using 

several particles (each particle represents a solution) not 

only a single particle. Particle’s coordination was achieved 

by a blackboard strategy (Best Fitness rank is public for all 

the particles during the search progression [16]. M-PCA 

needs multi-processing capability to perform such 

operations. 

C. Enhanced Bundle-based Particle Collision 

Algorithm (EB-PCA) 

Structure of the pseudo code of the PCA and MPCA are 

matched up with the basic idea that these algorithms are 

based on. However, a more intensive analysis will reveal 

that an unintentional but misleading equation in stochastic 

perturbation is part of the algorithm. This unintentional 

deceived equation can be explained by simply starting from 

the basic equation used to generate perturbation as follow: 

 

New_Config [i]= Old_Config [i] + ((Upper - Old_Config 

[i])* Rand) - ((Old_Config [i] - Lower)*(1- Rand)) 
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 = Old_Config [i] + (Upper * Rand) – (Old_Config [i] * 

Rand) - (Old_Config [i] * (1- Rand)) + (Lower * (1- Rand)) 

 = Old_Config [i] + (Upper * Rand) – (Old_Config [i] * 

Rand)- (Old_Config [i]) +(Old_Config [i] * Rand) + 

Lower – (Lower * Rand) 

 = (Upper * Rand) + Lower – (Lower * Rand) 

or can be rewritten as: 

 New_Config [i] = Lower+ (Upper – Lower) * Rand  

  (18)                                                                     
where here Rand = random (0,1). The resulting Eq. (18) 

states that a simple random search. This means that the 

resulting New_Config is generated randomly and does not 

even depend on Old_Config (since Old_Config does not 

appear in Eq.(18)) and only depends on the boundary 

(Upper and Lower) which is fixed. This explains the weak 

improvement in New_Config since it does not make use of 

its previous configuration Old_Config. The small 

stochastic perturbation in the exploration part applies the 

same basic equation to generate small perturbation but with 

the difference that the boundary depends on Old_Config 

(though this is done indirectly since Upper and Lower are 

the ones that depend on it). Therefore, this work proposes 

an efficient approach to avoid this unnecessary complexity 

and low-efficiency search mechanism and at the same time 

try to keep it simple to prevent over computation. 

First of all, the New_Bundle (Bundle term is used in this 

work instead Config term as will be explained next) is 

generated using the principle of random walk to provide an 

adaptive search mechanism that will utilize Old_Bundle 

efficiently as follow: 

𝑁𝑒𝑤−𝐵𝑢𝑛𝑑𝑙𝑒 

= {

𝑂𝑙𝑑𝐵𝑢𝑛𝑑𝑙𝑒 + (𝑈𝑝𝑝𝑒𝑟 − 𝑂𝑙𝑑𝐵𝑢𝑛𝑑𝑙𝑒) ∗ 𝑅𝑎𝑛𝑑𝑊   ,
                                                      for 𝑅𝑎𝑛𝑑𝑊 ≥ 0

𝑂𝑙𝑑𝐵𝑢𝑛𝑑𝑙𝑒– (𝑂𝑙𝑑𝐵𝑢𝑛𝑑𝑙𝑒– 𝐿𝑜𝑤𝑒𝑟) ∗ |𝑅𝑎𝑛𝑑𝑊|,
                                                    for 𝑅𝑎𝑛𝑑𝑊 < 0

 

where RandW ∈  [-1, 1] is random walk decision variable, 

this also can be rewritten as: 

RandW =2*random (0,1) - 1; 

if RandW >= 0 

New_Bundle = Old_Bundle * (1- RandW)+ Upper * RandW; 

Else 

New_Bundle = Old_Bundle * (1-abs(RandW))+Lower 

*abs(RandW); 

End 

This work presents a Bundle-based approach to solve multi 

elements, multi dimensions, multi constrained problems 

combined with the proposed enhanced search mechanism. 

This new approach is called Enhanced Bundle-based 

Particle Collision Algorithm (EB-PCA). Then EB-PCA 

will be applied to solve the resource allocation problem of 

the OFDMA system to find the optimal or near optimal 

power and subcarrier allocations. 

In this approach a group of particles may be used to 

search the solution space. The Bundle term is used here to 

avoid confusion with Multi-Particle Algorithm (M-PCA) 

which also uses several particles to act over the search 

space. The main difference is that each particle in M-PCA 

is represents a solution. On the other hand, in addition to 

the improved random walk part, Enhanced Bundle-based 

Particle Collision Algorithm (EB-PCA) proposed here is 

using a bundle (main group) of particles as a single solution 

to solve multi elements, multi dimensions, and multi 

constraint problems. This bundle can be further subdivided 

into sub-bundles and these can be also subdivided and so 

on. This dividing approach provides a way that bundle, sub-

bundle and so on can obey one or several constraints or 

conditions in multi-level manner (i.e. global constraints 

will be applied to bundle, besides that local constraints will 

also be applied to sub-bundle and so on). Appendix – F 

shows the main pseudo code of the EB-PCA. 

The (stochastic enhanced perturbation) pseudo code is 

given in Appendix – G, while the (Enhanced Exploration) 

pseudo code presented in Appendix – H. Therefore, the 

(small stochastic enhanced perturbation) pseudo code is 

given in Appendix – I, And, the (Enhanced Scattering) 

pseudo code is given in Appendix – J. 

IV. IMPLEMENTATION AND SIMULATION 

In this work, the resource allocation and the power 

allocation matrices are formulated and simulated with 

applying the EB-PCA for different scenarios.  

     If a single cell OFDMA system is used with subcarriers 

subject to Rayleigh fading distribution noise (1000 channel 

realizations are utilized). The mean is equal to the path gain 

representing propagation loss. The propagation loss is 

modeled using the path loss model as [23], [24]: 

 𝐿𝑃 = 𝑐𝐷𝑘
−𝑢    (19) 

where, c is the path loss constant (= −128.1 dB), u is the 

path loss which is set to 3.76 for urban environments, and 

Dk is the distance from the user k to the base station (BS). 

All the parameters’ values use in the simulation are listed 

in Table I. The minimum allowed rate is chosen to be zero 

for all the users with noise level -16.9 dBm and equal 

weights, according to Eq. 13. All the users are allowed to 

transmit power, 𝑃𝑘,𝑚𝑎𝑥 set to 1 watt, distance = 400 meters, 

and the atterations = 250. These assumptions are made to 

simplify the simulated cases in terms of distances, data rate, 

and the weights. 

Table I 

Summarization for the considered cases. 

Case No. Users (K) Subcarriers (N) 

1st 7 7 

2nd 7 14 

3rd 14 7 

4th 14 14 
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The bundle (solution) has a pair of sub-bundles, first sub-

bundle is the subcarrier allocation matrix A (K × N) and the 

second one is the power allocation matrix P (K × N), where 

K is number of users and N is the subcarriers number. 

Elements of A lie in the range [0,1] while P elements may 

take any values between 0 to the max power of a specific 

user. This representation is done in a way that ensures the 

subcarrier and power allocation constraints are both 

satisfied as well as ensuring that all the solutions are within 

the legal area of the search space. The termination 

condition is selected to depend on the number of iterations 

to avoid premature-termination and to explore capability of 

the suggested EB-PCA.   

      The cases listed in Table I are illustrated in the 

following subsections. The best results are selected over 10 

runs. Each run has 250 iterations. All runs are performed 

for the same channel conditions and the 

resource allocation operation scenario. The best run is 

selected depending on final iteration results (best sum of 

rates which relate to best solution (bundle) that contain best 

A and P). 

A. Case 1 

In this case 7 users over 7 subcarriers is shown in Figure 1. 

It is clear that all EB-PCA runs experience a very fast 

convergence toward the targeted best sum of rates at the 

first iterations. Afterward, the obtained best sum of rates 

tends to increase in a slower manner. Even so, small 

differences in values between runs as the iteration number 

increases are still observable. The rising behavior of each 

run is related to the principles of EB-PCA operators 

(exploration, perturbation, and scattering) that try to search 

for better solutions in the search space (locally and 

globally). Also, the difference between runs can be 

explained by remembering that the EB-PCA algorithm trial 

solution can be accepted or rejected with a certain 

probability which is depending on the random factors that 

might lead to differences between the EB-PCA runs. 

 

 
Figure 1. Best sum of rates of 10 runs using EB-PCA 

(users = 7, subcarriers = 7). 

 

      Figure 2 shows both the best and worst sum of rates for 

each iteration in the run 5. It is notable that the large gap 

between them is decreased after 24 iterations. After that, 

the gap keeps increasing slowly to reach the final iteration 

with more obvious fluctuated differences (due to the worst 

sum of rate fluctuations caused by EB-PCA operators). 

 

Figure 2. Best and worst sum of rates of 5th run. 

 

  In Fig. 3 the subcarrier and power allocation of the best 

sum of rates (solution) of run 5. The subcarrier and power 

allocation distributions of the best solution have high 

similarity even with the presence of some minor 

differences. 

 

 

(a) 

 

(b) 

Figure 3. Best solution of 5th run, (a) subcarrier 

allocation, (b) power allocation. 

 

      Figure 4 depicts the case for run 5 with the users’ rates 

which are depending on the subcarrier and power allocation 

of the best solution and the channel condition. It’s clear that 

all the users have a data rate greater than the minimum data 

rate (which was set to zero). 
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Figure 4. Users’ rates of 5th run. 

B. Case 2 

The best sum of rates for 10 runs (250 iterations for each 

run) with 7 users over 14 subcarriers is shown in Figure 5. 

At the first iterations, all EB-PCA runs experience a very 

fast convergence toward the targeted best sum of rates. 

Afterward, the obtained best sum of rates tends to increase 

in slow manner with small observable differences in values 

between runs as the iteration number increases. The rising 

behavior of each run is related to the principles of EB-PCA 

operators (exploration, perturbation, and scattering) that 

will try to search for better solutions in search space. To 

explain the difference between runs, it must be remembered 

that the EB-PCA algorithm trial solution can be accepted or 

rejected with a certain probability which depends on 

random factors that in turn might lead to differences 

between EB-PCA runs. 

 
Figure 5. Best sum of rates of 10 runs using EB-PCA 

(users = 7, subcarriers = 14). 

In Figure 6 both best and worst sum of rates of run 5 are 

given. It is obvious that after iteration 33, the gap between 

them decreases. Then, the gap returns will slowly be 

increased until its final iteration with a fluctuated difference 

due to the worst sum of rate fluctuations caused by EB-

PCA operators.  

 

 

 
Figure 6. Best and worst sum of rates of 5th run. 

     The best sum of rates (solution) of run 5 for the 

subcarrier and power allocation is given in Fig. 7. It is clear 

that even with some difference between both subcarrier and 

power allocation of the best solution there is some 

similarity. 

 

(a) 

 

(b) 

Figure 7. Best solution of 5th run, (a) subcarrier allocation, 

(b) power allocation. 

      Figure 8 illustrates the users’ rates of run 5. It depends 

on the subcarrier and power allocation of the best solution 

and the channel condition. Data rates of all users are greater 

than the minimum data rate (minimum data rate set to zero). 
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Figure 8. Users’ rates of 5th run. 

C. Case 3 

In this case, the best sum of rates for 10 runs (250 iterations 

for each run) with 14 users over 7 available subcarriers is 

presented in Figure 9.  During the first iteration, all the EB-

PCA runs are going through a very fast convergence toward 

the targeted best sum of rates. 

Then, the obtained best sum of rates is slowly increasing. 

Also, the small differences in values between runs become 

more recognizable as the iteration number increases. The 

rising behavior of each run is related to the principles of the 

EB-PCA operators (exploration, perturbation, and 

scattering) that targets searching for the better solution in 

the search space. In addition, the difference between runs 

can be plainly explained by remembering that EB-PCA 

algorithm trial solution can be accepted or rejected with a 

specific probability that is dependent on the random factors, 

which might lead to differences between the EB-PCA runs. 

 

 
Figure 9. Best sum of rates of 10 runs using EB-PCA 

(users = 14, subcarriers = 7). 

 

      Figure 10 depicts the best and worst sum of rates of run 

5. It is clear that the gap between them decreases after 

iteration 9 and keep increasing in slower manner until the 

final iteration with more obvious fluctuated difference as 

the iteration number increases (presented by the worst sum 

of rate fluctuations that are caused by EB-PCA operators). 

 

 

 

 

 

Figure 10. Best and worst sum of rates of 5th run. 

 

     Figure 11 illustrates the best sum of rates (solution) of 

run 5. It shows some similarity even with the presence of 

obvious differences. Figure 12 gives the users’ rate for run 

5, which is depending on the subcarrier and power 

allocation of the best solution and the channel condition. It 

is clear that all the users have a data rate greater than the 

minimum data rate value (minimum data rate is set to zero 

for all users). 

 

 
(a) 

 
(b) 

 

Figure 11. Best solution of 5th run: (a) subcarrier 

allocation, (b) power allocation. 
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Figure 12. Users’ rates of 5th run. 

D. Case 4 

This case considers 14 users over 14 subcarriers. The beat 

sum of rates for 10 runs with 250 iterations for each is 

shown in Fig. 13. EB-PCA runs experience a very fast 

convergence toward the targeted best sum of rates at the 

first iteration. Later, the obtained best sum of rates is 

decelerated with diminutive differences, yet recognizable, 

in values between runs as the iteration number increases. 

The improving behavior of each run is related to the 

principles of EB-PCA operators (exploration, perturbation, 

and scattering) that will try to explore the search space for 

better solutions. The difference between runs can be 

explained simply by recalling that acceptance or rejection 

of EB-PCA algorithm trial solutions is made with a distinct 

probability that depends on random factors which may in 

turn lead to differences between EB-PCA runs. 

 

 

 

Figure 13. Best sum of rates of 10 runs using EB-PCA 

(users = 14, subcarriers = 14). 

 

 Both best and worst sum of rates of run 4 is shown in 

Figure 14. It is obvious that the large difference between 

them is decreased after iteration 88 and then keep 

increasing slightly to the rest of iterations with much 

smaller differences with slight fluctuations (caused by 

fluctuations of the worst sum of rates that in turn is caused 

by EB-PCA operators). 

For run 4, the subcarriers and power allocation of the best 

sum of rates (solution) are explained in Figure 15. Both 

subcarrier and power allocation of the best solution show 

modest similarity with the presence of differences. 

 

 

Figure 14. Best and worst sum of rates of 4th run. 

 

(a) 

 

(b) 

Figure 15. Best solution of 4th run, (a) subcarrier 

allocation, (b) power allocation. 

Depending on the subcarrier and power allocation and 

the channel condition, the users’ rates of the best solution 

for run 4 is given in Figure 16. It is clear that all the users 

have a data rate greater than the minimum data rate value 

(which was set to zero). 

 
Figure 16. Users’ rates of 4th run. 
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V. COMPARISON STUDY 

In this section, we present a comparison for the 

performance versus  employing our work with another 

algorithm called Bat Pack Algorithm (BPA) [24]. The 

comparison is based on evaluating the sum rate for the 

considered main four scenarios, as follows: the results in 

Fig. 1 is compared to that with using the BPA, Fig. 17, 

when the number of users and available subcarriers are 

relatively small and equal. After 50th iterations the best 

sum of 10 runs will hold about 5 with applying BPA, but 

with EB-PCA the sum rate keeps growing to be about 6. 

 
Figure 17. Best sum of rate using BPA [25], when 

number of users equal to the available subcarriers. 

 
Figure 18. Best sum of ratesusing BPA [25], when 

number of users is half the subcarriers. 

      When the number of subcarriers is doubled the number 

of users, the sum rate approaches 9.3 with employing the 

BPA, see Fig. 18 (Fig. 6 in [25]), and about 12 with 

applying the EB-PCA, Fig. 5. 

 
Figure 19. Best sum of rate of 10 runs using BPA [25], 

when number of users = 14 doubled the subcarriers. 

 

      In the third scenario, when number of users is doubled 

the available subcarriers, amount of sum rate with 

employing the BPA is about 2.4, as presented in Fig. 19 

(Fig. 10 in [25]), but is approximate to 3 with applying the 

EB-PCA, see Fig. 9. 

 

 
Figure 20. Best sum of rates of 10 run using BPA [25], 

when number of users equal to the subcarriers. 

 

In the last case, when the number of users equals to the 

subcarriers, the sum rate is about 4.7, and 5.8 using the 

BPA, Fig. 20, and EB-PCA, Fig. 13, respectively. 

VI. CONCLUSIONS 

This work proposes and applies Enhanced Bundle-based 

Particle Collision Algorithm (EB-PCA) to find the optimal 

or near optimal power and subcarrier allocations for 

OFDMA system. The results demonstrate that EB-PCA is 

adaptive and efficient in finding the optimal or near optimal 

solution for both subcarrier and power allocation. It inherits 

the structural advantages of the original PCA with the 

presence of enhanced adaptive perturbation mechanisms 

(dependent on random walk principles) that give an 

effective and fast approach for local and global search with 

a highly converging speed. In addition, this approach 

provides a better basis for other variants of the PCA or in 

hybrid forms with other algorithms. 

In all the analyzed cases, the results show the ability of 

the EB-PCA for searching and reaching suitable and 

acceptable solutions in both efficient and adaptive manner. 

Also, using multi run (10 runs) for each case shows that 

there is notable but yet small differences between the 

different runs. The best obtained run of the first three cases 

were the fifth runs which are depending on MATLAB 

internal random seed generator. Also, depending on the 

nature of the targeted problem in hand, to provide a balance 

between the level of the required best result on one hand 

and the processing cost and time on the other hand. 

APPENDICES 

Appendix – A 

 

Generate an initial solution Old_Config 

For n = 0 to # of iterations 

     Generate a stochastic perturbation of the solution 

     If Fitness (New_Config) > Fitness (Old_Config) 

          Old_Config = New_Config 

          Exploration ( ) 

     Else 

          Scattering ( ) 

     End If 

End For 



30   | AlSabbagh & Ibrahim 

 

 

 
 

Appendix – B 

 

Appendix – C 

 

Appendix – D 

 

Appendix – E 

 

Appendix – F 

 

Appendix – G  

 
 

 

 

 

Perturbation ( ) 

For i=0 to # (Dimensions-1) 

     Upper=Superior_Limit[i] 

     Lower=Inferior_Limit[i] 

     Rand=random (0,1) 

     New_Config [i] = Old_Config [i] + ((Upper - 

Old_Config [i]) * Rand ) 

                 - ((Old_Config [i] - Lower) * (1-Rand)) 

     If New_Config [i]> Upper 

          New_Config [i]= Superior_Limit[i] 

     Else 

           if New_Config [i] < Lower 

                   New_Config [i] = Inferior_Limit[i] 

          End IF 

      End IF 

End For  

Return 

 

Exploration ( ) 

For n = 0 to # of iterations 

Generate a small stochastic perturbation of the 

solution 

     If Fitness (New_Config) > Fitness (Old_Config) 

          Old_Config = New_Config 

     End If 

End For 

Return 

Small Perturbation ( ) 

For i=0 to # (Dimensions-1) 

     Upper =Random (1, 1.2)* Old_Config [i] 

     If Upper > Superior_Limit[i] 

          Upper = Superior_Limit[i] 

     End IF 

     Lower =Random (0.8, 1)* Old_Config [i] 

     If Lower < Inferior_Limit[i] 

          Lower = Inferior_Limit[i] 

     End IF  

     Rand=random (0,1) 

     New_Config [i]= Old_Config [i] + ((Upper- 

Old_Config [i])* Rand) - ((Old_Config [i]- 

Lower)*(1- Rand)) 

End For 

Return 

Scattering ( ) 

Pscattering = 1 −
Fitness (New_Config)

Best Fitness
 

If Pscattering > random (0, 1) 

     Old_Config = random solution 

Else 

     Exploration ( ); 

End if 

Return 

% Enhanced Bundle-based Particle Collision 

Algorithm (EB-PCA) 

Generate an initial Old_ Bundle (multi-elements 

solution) 

For n = 0 to Iterationsmax 

     Generate a stochastic enhanced perturbation of the 

solution 

     If Fitness (New_ Bundle) > Fitness (Old_ Bundle) 

          Old_ Bundle = New_ Bundle 

          Enhanced Exploration  

     Else 

          Enhanced Scattering   

     End If 

End For 

% Generate a stochastic enhanced perturbation of the 

solution 

For i=0 to Iterationsmax 

     Upper=Superior_Limit 

     Lower=Inferior_Limit 

 

     RandW =2*Random (0, 1) - 1; 

     If RandW > = 0 

New_ Bundle = Old_ Bundle *(1- RandW)+ 

Upper * RandW; 

     Else 

New_ Bundle = Old_ Bundle * (1-

abs(RandW))+Lower *abs(RandW); 

     End if  

     If New_ Bundle > Upper 

          New_ Bundle = Upper 

     Else if New_ Bundle < Lower 

          New_ Bundle = Lower  

     End If 

 End For  
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Appendix – I 

 

Appendix – J 
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