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Abstract 

Hybrid electric vehicles have received considerable attention because of their ability to improve fuel consumption compared to 

conventional vehicles. In this paper, a series-parallel hybrid electric vehicle is used because they combine the advantages of the 

other two configurations. In this paper, the control unit for a series-parallel hybrid electric vehicle is implemented using a 

Nonlinear Model Predictive Control (NMPC) strategy. The NMPC strategy needs to create a vehicle energy management 

optimization problem, which consists of the cost function and its constraints. The cost function describes the required control 

objectives, which are to improve fuel consumption and obtain a good dynamic response to the required speed while maintaining 

a stable value of the state of charge (SOC) for batteries. While the cost function is subject to the physical constraints and the 

mathematical prediction model that evaluate vehicle's behavior based on the current vehicle measurements. The optimization 

problem is solved at each sampling step using the (SQP) algorithm to obtain the optimum operating points of the vehicle's 

energy converters, which are represented by the torque of the vehicle components. 

KEYWORDS: Series-Parallel Hybrid Electric Vehicle (HEV), Nonlinear Model Predictive Control (NMPC), Planetary Gear 

Set (PGS), Energy Management Strategies (EMS), state of the charge (SOC).

I. INTRODUCTION 

The series-parallel hybrid electric vehicle can operate 

either in series or parallel power flow mode due to the 

presence of a planetary gear set (PGS) that separates the 

power generated by the engine into mechanical and electrical 

paths [1]. The planetary gear set consists of three nodes 

called the ring gear, the sun gear, and the carrier gear where 

these nodes are connected directly to the engine (ICE), 

generator (MG1), and the vehicle's body respectively. While 

the motor (MG2) is also connected to a ring gear, which acts 

as a traction motor to propel the vehicle [2]. It also works as 

a generator to capture the kinetic energy resulting from the 

deceleration of the vehicle or when applying the brakes or 

when descending from a slope and this is called regenerative 

braking. Fig.1 shows the elements and connections of the 

planetary gear set and the configuration of the powertrain of 

the series-parallel hybrid electric vehicle. 

As the energy is transmitted through the mechanical path 

from the engine to the planetary gear set (PGS) by the carrier 

gear and then it is transferred directly to the ring gear and 

reaches the vehicle after the energy passes through the 

reduction gear which connects the ring gear with the vehicle. 

 
Fig.1: The powertrain and vehicle dynamic block 

While the energy is transmitted through the electrical 

path from the engine to the Planetary Gear Set (PGS) by the 

carrier gear and then transmitted to the MG1 after passing 
through the sun gear, and then transferred as electrical energy 

to be stored in the on-board battery or used to feed the MG2 

[3]. 
The series-parallel hybrid electric vehicle's control units 

that control the operation of the vehicle are based on one of 

the various energy management strategies (EMS)[4][5][6]. 

This strategy is responsible for managing the vehicle’s 

energy represented by liquid fuel and batteries, in addition to 
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the kinetic energy when decelerating or braking, as it works 

to improve fuel consumption and the vehicle’s dynamic 

response by determining the operating points of the vehicle's 

energy converters (engine, motor, and generator)[7]. In this 

paper, the NMPC control strategy was used to manage the 

energy in a series-parallel hybrid electric vehicle. This 

strategy predicts the future behavior of the vehicle during a 

period called the prediction horizon. Therefore, it needs a 

mathematical model that describes the operation of the 

vehicle, and it also needs to create a cost function that 

expresses the control objectives of this strategy. To find the 

optimum value of the control inputs for a hybrid electric 

vehicle, this is done by solving its optimization problem, 

which is represented by the equation of cost subject to the 

mathematical prediction model and the physical constraints 

of the vehicle, which is solved by one of the methods of 

solving mathematical optimization problems. In this study, a 

nonlinear MPC controller provided by MATLAB was used 

to build this strategy, where this strategy aims to optimize the 

vehicle's fuel consumption and make the vehicle achieve the 

desired speed by the driver, as well as maintain the state of 

charge of the batteries at the desired value. Where this study 

can be used to learn how to build the mathematical model of 

the series-parallel hybrid electric vehicle as well as how to 

use the NMPC control strategy to manage this vehicle. 

In [8] model predictive control (MPC) strategy was 

applied to a series-parallel HEV where was used linear 

mathematical prediction model to express the behavior of the 

series-parallel HEV which is used by this strategy to predict 

the future vehicle's behavior. The cost function used consists 

of three terms. The first term is the square of the difference 

between the actual and predicted torques of the wheels, and 

the predicted torque of the wheels is estimated using an 

adaptive recursive prediction algorithm that depends on the 

past and present torque of the drivetrain. The second term 

represents the square of the engine's fuel flow rate, and the 

last term represents the square of the batteries' equivalent 

fuel consumption. The cost function is solved by a Linear 

Quadrature Tracking (LQT) approach to obtain the control 

inputs values that achieve a minimum fuel consumption, 

minimizing the difference between the actual and predicted 

torque output of the drivetrain as well as maintaining the 

battery charge condition at the required level. In [9]  is used 

model predictive control (MPC) strategy to manage the first 

level of the series-parallel hybrid electric vehicle's control 

unit. Since this unit consists of two levels, the first level finds 

the optimal values for both the speed and torque of the 

engine, which are references for the second control level. 

The standard linear MPC is used to solve the optimization 

problem in each sampling step by Quadratic Program (QP) 

approach to find the optimum values of both the speed and 

torque of the engine to get the minimum fuel consumption, 

reduce using the friction brake, and keep the state of the 

charge of the battery at the required level. In [10]the model 

predictive control (MPC) strategy was also applied to 

manage a control unit of the series-parallel HEV. Where the 

standard linear MPC was used to solve the optimization 

problem in each sampling step by MATLAB MPC toolbox 

to find the optimal values torque of the engine, motor, and 

generator in order to obtain the minimum fuel consumption, 

as well as maintain the state of the charge of the battery at 

the required level. 

This paper has been organized in the following manner. 

Section II describes the architecture of the series-parallel 

HEV model used in this paper. Section III illustrates the 

dynamic equations for the powertrain and vehicle dynamic 

equations and the dynamic equations for the state of charge 

of the batteries in addition to describing how to express the 

rate of fuel flow equation in terms of both the speed and 

torque of the internal combustion engine. While section IV 

explains the MPC algorithm in details, and section V deals 

with the NMPC control strategy for a series-parallel HEV 

and how to formulate the optimization problem of a series-

parallel HEV to achieve the objectives of the NMPC control 

strategy in addition that it also contains how to create the 

non-linear MPC controller block. Section VI explains 

Sequential Quadratic Programming (SQP) Algorithm. 

Section VI demonstrates the results of the simulation of the 

series-parallel HEV model, where its unit was based on the 

NMPC control strategy, while the last section discussed the 

results of the simulation and the future work of the study. 

II. ARCHITECTURE OF THE SERIES-PARALLEL HEV 

MODEL 

Building a model of a series-parallel hybrid electric 

vehicle to study its controller that was built based on a model 

predictive control. The approach used in this model is 

classified as a forward-looking approach, as the control unit 

depends on the required speed of the vehicle and the current 

speed of the vehicle in creating commands to produce 

torques through the drivetrain (the engine, motor, and 

generator), to obtain the required vehicle traction force[11]. 

This model consists of three parts, as shown in Fig.2. 

 

Fig.2: Architecture of the series-parallel HEV model 

These parts are:- 

 References block: - This block contains the driving cycle 

and the desired values or the target value for the state of 

charge (SOC) of the battery. 

  Control unit: - The control unit was built depending on 

the NMPC control strategy. The driving cycle and the 

target state of charge of the battery are represented some 

of the control unit entries which come from the reference 

block. There is also feedback that only includes the 

manipulated variables (MVs) that were computed in the 

previous sampling step. There is also feedback that only 

includes the manipulated inputs that are computed for the 

current time step. In addition, the rest entries are the state 

variables, which come from the powertrain and vehicle 

dynamic block. While the engine torque, motor torque, 

and generator torque are the outputs of this block and go 

to the block of powertrain and vehicle dynamic. 
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 The block of powertrain and vehicle dynamic:-This block 

includes the dynamic equations that express the vehicle 

and the powertrain, as the powertrain includes the engine, 

motor, generator, batteries, and a planetary gear set. 

Engine torque, motor torque, and generator torque are the 

entries of this block that come from the control unit. 

While the state variables are transmitted from this block 

to the control unit, the outputs of this block are the vehicle 

speed and the battery charge state.  

III. DYNAMIC EQUATIONS OF A SERIES-PARALLEL HEV 

AND FUEL FLOW RATE EQUATION 

In general, the dynamic equations of the series-parallel 

hybrid electric vehicle can be divided into:- 

A. The Powertrain and Vehicle Dynamic Equations 

In the planetary gear set, the rotational speed of the ring 

gear ω𝑟 , the sun gear ω𝑆 and the carrier gear ω𝐶  are 

governed by the constraints of kinematic equality at all times 

by the following relationship[12]:- 

 𝑅𝜔𝑟 + 𝑆𝜔𝑆 = (𝑅 + 𝑆)𝜔𝐶          (1) 

The rest of the abbreviations used in the equations are found 

in Table I. The above equation can be written in terms of the 

engine speed 𝜔𝑒  (rad/sec), the motor speed 𝜔𝑚  (rad/sec), 

and the engine speed  𝜔𝑔(rad/sec).  

Where:   

 

𝜔𝑐 = 𝜔𝑒

𝜔𝑟 = 𝜔𝑚

 𝜔𝑠 = 𝜔𝑔

},          (2)   

Then (1) becomes: 

 𝑅𝜔𝑚 + 𝑆𝜔𝑔 = (𝑅 + 𝑆)𝜔𝑒 (3) 

The another constraint of the kinematic equality between 

the planetary gear set and the vehicle speed is that the 

rotational speed of the ring gear is a function of the vehicle 

speed and is represented by the following relationship:- 

  V𝑣𝑒ℎ = 𝑟𝑤
𝜔𝑟

𝑓𝑑
 ,         ∴ 𝜔𝑟 = 𝑓𝑑

V𝑣𝑒ℎ

𝑟𝑤
                (4)  

TABLE I 

 LIST OF ABBREVIATIONS AND THEIR VALUE 

Abbr. Definition  Units 

𝐀𝐟 Vehicle frontal area 2.16m2 

𝐠 Gravitational constant 9.81m/s2 

𝛒 Air density 1.18kg/m2 

𝐂𝐝 Drag coefficient 0.26 

𝐦 Total mass  of the vehicle 1200Kg 

𝐕𝒗𝒆𝒉 Speed of the vehicle m/s 

𝛉 The slope of the road 0radians 

𝐂𝐭 Wheel rolling friction coefficient 0.01 

𝑻𝒃𝒓𝒌 Friction brake torque Nm 

𝑺 Number of teeth of the sun gear 30 

𝑹 Number of teeth of the ring gear 78 

𝒇𝒅 Final gear ratio 1.3 

𝒓𝒘 wheel radius 0.3m 

𝑸𝒃𝒂𝒕𝒕 Capacity of the battery 8.1A.h 

𝑷𝒃𝒂𝒕𝒕 Battery power watt 

𝑹𝒃𝒂𝒕𝒕 Internal resistance of the battery 0.246Ohm 

𝑽𝒐𝒄 Battery voltage Volt 

𝑻𝒆 Engine torque Nm 

𝑻𝒎 Motor  torque Nm 

𝑻𝒈 Generator torque Nm 

 

 In the dynamic equations of powertrain and vehicle, the 

following assumptions are made:- 

1. The carrier inertia, the ring inertia, and the sun inertia are 

neglected. 

2. Only the longitudinal dynamics of the vehicle are 

considered. 

Thus, the dynamic equations of powertrain and vehicle 

are[13]: 

 𝐽𝑒�̇�𝑒 = 𝑇𝑒 − 𝐹(𝑅 + 𝑆)    (5) 

 𝐽𝑔�̇�𝑔 = 𝐹𝑆 + 𝑇𝑔     (6) 

 𝐽𝑚�̇�𝑚 = 𝑇𝑚 + 𝐹𝑅 − 𝑇𝑜𝑢𝑡         (7) 

𝑚 �̇�𝑣𝑒ℎ = {((𝑇𝑜𝑢𝑡𝑓𝑑 + 𝑇𝑏𝑟𝑘)/𝑟𝑤) − 0.5𝜌𝐶𝑑𝐴𝑓𝑉𝑣𝑒ℎ
2  

                   −𝑚𝑔(𝑓𝑟cos𝜃 + sin𝜃)}     (8) 

From (1)-(8) we obtain:  

 �̇�𝑚 = �̇�𝑚1 − �̇�𝑚2 + �̇�𝑚3 + �̇�𝑚4        (9) 

 �̇�𝑚1 = ((𝐴1𝑇𝑚)/(𝐴1𝐵1 − 𝐴2𝐵2)) 
 �̇�𝑚2 = ((𝐵2𝑇𝑒)/(𝐴1𝐵1 − 𝐴2𝐵2)) 
 �̇�𝑚3 = ((𝑇𝑔(𝐴1𝐵3 − 𝐴3𝐵2))/(𝐴1𝐵1 − 𝐴2𝐵2))  

 �̇�𝑚4 = (𝐴1/(𝐴1𝐵1 − 𝐴2𝐵2){((−0.5𝜌𝐶𝑑𝐴𝑓𝑟𝑤
3 𝜔𝑚

2 )/𝑓𝑑
3) 

             −(𝑚𝑔𝑓𝑟) + (𝑇𝑏𝑟𝑘/𝑓𝑑)} 
 

 �̇�𝑒 = �̇�𝑒1 + �̇�𝑒2 + �̇�𝑒3 − �̇�𝑒4 − �̇�𝑒5     (10) 

 �̇�𝑒1 = (𝑇𝑒/𝐴1) 

 �̇�𝑒2 = ((𝐴3𝑇𝑔)/𝐴1) − ((𝐴2𝑇𝑚)/(𝐴1𝐵1 − 𝐴2𝐵2)) 

 �̇�𝑒3 = ((𝐴2𝐵2𝑇𝑒)/(𝐴1(𝐴1𝐵1 − 𝐴2𝐵2))) 

 �̇�𝑒4 = (𝐴2𝑇𝑔/𝐴1)((𝐴1𝐵3 − 𝐴3𝐵2)/(𝐴1𝐵1 − 𝐴2𝐵2)) 

 �̇�𝑒5 = (𝐴2/(𝐴1𝐵1 − 𝐴2𝐵2){((−0.5𝜌𝐶𝑑𝐴𝑓𝑟𝑤
3 𝜔𝑚

2 )/𝑓𝑑
3) 

           −(𝑚𝑔𝑓𝑟) + (𝑇𝑏𝑟𝑘/𝑓𝑑)} 
Where:- 

𝐴1 = 𝐽𝑒 + ((𝑆 + 𝑅)/𝑆)2𝐽𝑔 

𝐴2 = −(𝑅(𝑅 + 𝑆)/𝑆2)𝐽𝑔  

𝐴3 = (𝑅 + 𝑆)/𝑆 

𝐵1 = 𝐽𝑚 + (𝑅2/𝑆2)𝐽𝑔 + (𝑟𝑤/𝑓𝑑)2𝑚 

𝐵2 = −𝑅(𝑆 + 𝑅/𝑆2)𝐽𝑔  

𝐵3 = −𝑅/𝑆 

 

B. Battery Dynamic Equations  

 One of the most important parameters in the energy 

management of hybrid electric vehicles is the battery state of 

charge (SOC), which represents a measure of the remaining 

electric energy in the battery, it is determined by[14]: 

     𝑆𝑂𝐶 =
𝑄𝑏𝑎𝑡𝑡−∫ 𝐼𝑏𝑎𝑡𝑡(𝜏)𝑑𝜏

𝑡
𝑡0

𝑄𝑏𝑎𝑡𝑡
                    (11) 

The battery current 𝐼𝑏𝑎𝑡𝑡  can be found after solve this 

equation[15]: 

    𝑃𝑏𝑎𝑡𝑡 = 𝑉𝑜𝑐𝐼𝑏𝑎𝑡𝑡 − 𝐼𝑏𝑎𝑡𝑡 
2  𝑅𝑏𝑎𝑡𝑡             (12) 

Then 

𝐼𝑏𝑎𝑡𝑡 = −
𝑉𝑜𝑐 − √𝑉𝑜𝑐

2 − 4𝑅𝑏𝑎𝑡𝑡𝑃𝑏𝑎𝑡𝑡

2𝑅𝑏𝑎𝑡𝑡

 

 The dynamic equation of the state of charge (SOC) can 

be obtained by taking the time derivative of (11)[16]: 

 𝑆𝑂𝐶̇ = −
𝑉𝑜𝑐−√𝑉𝑜𝑐

2−4𝑅𝑏𝑎𝑡𝑡𝑃𝑏𝑎𝑡𝑡

2𝑅𝑏𝑎𝑡𝑡𝑄𝑏𝑎𝑡𝑡
    (13) 
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Where the battery power can also be expressed[17]: 

 𝑃𝑏𝑎𝑡𝑡 = 𝜔𝑔𝑇𝑔 + 𝜔𝑚𝑇𝑚   (14) 

After substitute (13) into (14), we get:- 

 𝑆𝑂𝐶̇ = −
𝑉𝑜𝑐−√𝑉𝑜𝑐

2−4𝑅𝑏𝑎𝑡𝑡(𝜔𝑔𝑇𝑔+ 𝜔𝑚𝑇𝑚 )

2𝑅𝑏𝑎𝑡𝑡𝑄𝑏𝑎𝑡𝑡
  (15) 

From (1) we obtain:- 

𝜔𝑔 = 𝐴3𝜔𝑒 + 𝐵3𝜔𝑚 

Now substitute 𝜔𝑔 into (15)  

 𝑆𝑂𝐶̇ = −
𝑉𝑜𝑐−√𝑉𝑜𝑐

2−4𝑅𝑏𝑎𝑡𝑡((
(𝑅+𝑆)

𝑆
𝜔𝑐−

𝑅

𝑆
𝜔𝑟)𝑇𝑔+ 𝜔𝑚𝑇𝑚 )

2𝑅𝑏𝑎𝑡𝑡𝑄𝑏𝑎𝑡𝑡
  (16) 

C. Fuel Flow Rate equation 

 Through the experimental data of the fuel flow rate obtained 

by (http://www.transportation.anl.gov/pdfs/HV/2.pdf), a 

mathematical relationship was formed between the fuel flow 

rate on the one hand, and on the other side, both speed and 

torque generated by the engine, by applying the multiple 

linear regression analysis method[18]. Where this method is 

used to form a mathematical model between a dependent 

variable represented here by the fuel flow rate, and several 

independent variables represented here by both the speed and 

torque generated by the engine, as shown in (17). 
 �̇�𝑓 = 𝑎 + 𝑏 𝜔𝑒 + 𝑐 𝑇𝑒   (17) 

Where the least square method is used to estimate 

coefficients of the regression, 𝑎, 𝑏, 𝑎𝑛𝑑 𝑐  in (17). Fig.3 

represents the mathematical relationship to express the fuel 

flow rate in terms of both the rotational speed and the output 

torque of the engine, and it is noted in this figure that when 

the rotational speed and torque of the engine are increased, 

the fuel flow rate increases linearly. 

 
Fig.3: The fuel flow rate function  

IV. MODEL PREDICTIVE CONTROL 

The MPC algorithm is a process methodology (approach) 

used to control dynamic constrained systems[19], which is 

well suited to multivariate constrained operations. This 

algorithm is considered a class of computer control 

algorithms because it iteratively solves the optimization 

problem of this algorithm at each sampling step in order to 

find the optimal control input trajectory (manipulated 

variables (MVs)) of the plant. To achieve the control 

objectives on which this algorithm is built, it is formulated in 

the form of an optimization problem, which includes the cost 

function, which represents the objectives to be achieved by 

the algorithm, where the cost function is subject to 

predictions of the future behavior of the plant in addition to 

the plant's physical constraints. The predictions of the future 

behavior of the plant are obtained when using a process 

model, which is a mathematical model that describes the 

work of the plant, where the current measurements of the 

plant at the moment of sampling, represented by the values 

of state variables and optimal inputs (MVs), are used to 

predict the future behavior of the plant during a finite time 

interval called the prediction horizon. The prediction horizon 

can be defined as the future in which the algorithm can see 

the future behavior of the plant. At each sampling time, this 

algorithm works to find a solution to the optimization 

problem to obtain values of the optimal inputs trajectory, 

where only the first value of this trajectory is applied to the 

plant until the next sampling moment is reached. Because of 

the formulation of this algorithm and its dependence on 

process measurements at the moment of sampling to find the 

optimal inputs trajectory, it is considered as an open-loop 

controller [20]. 

Fig.4 shows the basic work of MPC, in which the MPC 

algorithm, at each sampling step, re-solves the optimization 

problem of open-loop control subject to system dynamics 

and constraints. Where the measurements obtained from the 

process model at current sampling time are used by the MPC 

algorithm to predict the future dynamics behavior of the 

plant y (•|k) over a prediction horizon 𝑇𝑝 . Result of 

optimization problem solving is getting the optimal control 

input trajectory u (•|k), where only the first value of this 

trajectory is used to fed the next sampling step[21][22].  

 
Fig.4: Basic principle of MPC 

Due to the large number of computations resulting from 

predicting the behavior of system dynamics and solving the 

optimization problem at each sampling step over the 

prediction horizon, this definitely increases the demand for 

computation. The computational complexity can be greatly 

reduced by introducing a horizon called the control horizon 

𝑇𝑐 which is less than the prediction horizon. Where after the 

time interval of the control horizon 𝑇𝑐 , the output of the 

controller is constant, where the value of the output of the 

controller is the value of the optimal control input at the 

sampling step of the control horizon 𝑇𝑐, assuming that the 

system has reached the steady-state[23], as shown in Fig.4. 

If the predictions of the dynamic behavior of the plant 

are obtained from the equations of the nonlinear model, then 

the MPC in this case is called the Nonlinear Model Predictive 

Control (NMPC). Therefore, nonlinear predictive model 

control is an extension of linear predictive control 

http://www.transportation.anl.gov/pdfs/HV/2.pdf
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[24].Where the standard NMPC algorithm procedures are as 

follows [20]:- 

 At each sampling step, use the current values of optimal 

control inputs (MVs) and measure or estimate the current 

values of the system state variables to use all these values to 

predict the future behavior of the plant across the prediction 

horizon. Calculate the open-loop optimal control from 

solving the optimization problem that is subject to dynamics 

of the system and constraints of the input and state over the 

prediction horizon𝑇𝑝. 

 Calculate the optimal control inputs trajectory by solving 

the optimization problem, where the optimization problem is 

the cost function subject to predictions of the future behavior 

of the plant in addition to the physical constraints of the 

plant. 

 Implement the first part of the optimal control inputs 

trajectory until the next sampling instant. 

 Continue with step (1) when the next sampling step is 

reached. 

In the MPC algorithm, the prediction trajectories for the 

state variables of the plant and the plant output are a linear 

function of both the current state variable and the optimal 

control input used in the current sampling step. Therefore, 

the solution of the optimization problem deals with the 

solvers that are efficient and high-performance. While the 

NMPC algorithm, the prediction trajectories for the state 

variables and outputs of the plant are a nonlinear function for 

the current state variable and the optimal control input used 

at the current sampling step. Thus the optimization problem 

becomes a nonlinear optimization problem and also known 

as nonlinear programming (NLP) problems, which needs a 

different approach (solvers) than in the MPC algorithm and 

where it is more computationally complex [25].  

In NMPC the optimization problem is solved at every 

sampling step, which is represented by the cost function and 

the inequality and equality constraints as shown in below:- 

  
𝑚𝑖𝑛
𝑈(𝑘)

 𝐽 = ℱ[𝑌(𝑘), 𝑈(𝑘)]  (18) 

Subject to the following inequality constraints: 

 𝑢𝑚𝑖𝑛 > 𝑢(𝑘 + 𝑗 |𝑘) > 𝑢𝑚𝑎𝑥 , 0 > 𝑗 > 𝑇𝐶 − 1   (19) 

 𝑦𝑚𝑖𝑛 > 𝑦(𝑘 + 𝑗 |𝑘) > 𝑦𝑚𝑎𝑥 , 1 > 𝑗 > 𝑇𝑃    (20) 

In addition, the equality constraints: 

 𝑥(𝑘 + 𝑗 + 1|𝑘) = 𝐹[𝑥(𝑘 + 𝑗 |𝑘), 𝑢(𝑘 + 𝑗|𝑘)],                  
0 > 𝑗 > 𝑇𝑃 − 1,      (21) 

 𝑦(𝑘 + 𝑗 |𝑘) = ℎ[𝑥(𝑘 + 𝑗|𝑘)]     ,    1 > 𝑗 > 𝑇𝑃   (22) 

Where:- 

 𝑥(𝑘 + 1|𝑘) , 𝑢(𝑘 + 1|𝑘) are the state variable and 

optimal control input predicted at time 𝑘 + 1 from 

measurements of the process model at time 𝑘 

respectively. 

 𝑈(𝑘) 𝑎𝑛𝑑 𝑌(𝑘) are the optimal control inputs and 

outputs predicted from the process measurements 

of the model at time 𝑘 respectively. 

 𝑈(𝑘) =
[𝑢(𝑘|𝑘),𝑇 𝑢(𝑘 + 1|𝑘)𝑇 , … . , 𝑢(𝑘 + 𝑇𝐶  − 1|𝑘)𝑇] (23)                                

 𝑌(𝑘) =
[𝑦(𝑘|𝑘),𝑇 𝑦(𝑘 + 1|𝑘)𝑇 , … . , 𝑦(𝑘 + 𝑇𝑃  |𝑘)𝑇] (24) 

V. NMPC CONTROL STRATEGY FOR SERIES-

PARALLEL HEV 

In this study, the NMPC control strategy, which is one of 

the energy management strategies for hybrid electric 

vehicles, was chosen, as this strategy works to accomplish 

the tasks of the series-parallel HEV controller, and this 

strategy is built by formulating the optimization problem and 

solving it in one of the methods of mathematical 

optimization. The optimization problem includes the cost 

function subject to the nonlinear prediction model and 

physical constraints of the vehicle, where the cost function 

represents the objectives to be achieved by this strategy. In 

this study, the non-linear MPC control block was chosen to 

build and implement this strategy on the series-parallel HEV. 

The following is explained how to build the cost function and 

the non-linear MPC control 

A. Formulation of the Optimization Problem for a Series-

Parallel HEV 

The optimization problem includes the cost function that 

represents the objectives to be achieved by the vehicle, and 

the cost function is subject to the predictions of the plant 

model that represents the equality constraints of the cost 

function. These predictions are obtained through the 

application of the mathematical model that describes the 

work of the vehicle based on the current values of the state 

variable and optimal control inputs (MVs) of the vehicle. The 

cost function is also subject to the physical constraints of the 

vehicle that represents the inequality constraints of the cost 

function. In this study, the cost function of the series-parallel 

HEV is formulated to minimize fuel consumption while 

ensuring that the vehicle can move at the speed required by 

the driver and maintain the state of the charge of the battery 

at the desired value. The optimization problem of the series-

parallel HEV is shown in the following equations:- 

 
𝑚𝑖𝑛
𝑈(𝑘)

 𝐽 = ∫‖𝛤(𝑥, 𝑢)‖2𝑑𝑡   (25) 
Subject to  

1. Equality constraints: 

 {
�̇� = 𝑓(𝑥, 𝑢)
𝑦 = 𝑔(𝑥, 𝑢)

     (26) 

Where:- 

𝑥 = [
𝜔𝑒

𝜔𝑚

𝑆𝑂𝐶
],              𝑢 = [

𝑇𝑒

𝑇𝑚

𝑇𝑔

],               𝑦 = [
𝑉𝑣𝑒ℎ

𝑆𝑂𝐶
] 

are the vectors of state, control inputs and tracking outputs 

respectively. 

2. inequality constraints:  

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥  
𝜔𝑒

𝑚𝑖𝑛 ≤ 𝜔𝑒 ≤ 𝜔𝑒
𝑚𝑎𝑥  

  𝜔𝑚
𝑚𝑖𝑛 ≤ 𝜔𝑚 ≤ 𝜔𝑚

𝑚𝑎𝑥    (27) 
𝑇𝑒

𝑚𝑖𝑛 ≤ 𝑇𝑒 ≤ 𝑇𝑒
𝑚𝑎𝑥  

𝑇𝑚
𝑚𝑖𝑛 ≤ 𝑇𝑚 ≤ 𝑇𝑚

𝑚𝑎𝑥  
𝑇𝑔

𝑚𝑖𝑛 ≤ 𝑇𝑔 ≤ 𝑇𝑔
𝑚𝑎𝑥  

𝑉𝑣𝑒ℎ
𝑚𝑖𝑛 ≤ 𝑉𝑣𝑒ℎ ≤ 𝑉𝑣𝑒ℎ

𝑚𝑎𝑥  
Where the superscripts "min" and "max" denote the lower 

and upper bounds of the parameters. 

In (21) the integrand Γ(𝑥, 𝑢) is defined as:- 
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Γ(𝑥, 𝑢) = [

𝑤𝑉𝑣𝑒ℎ
(𝑉𝑣𝑒ℎ − 𝑉𝑅𝑒𝑓)

𝑤𝑆𝑂𝐶(𝑆𝑂𝐶 − 𝑆𝑂𝐶𝑟)

𝑤𝑚𝑓(𝑚�̇�)

] 

Where𝑉𝑅𝑒𝑓, 𝑆𝑂𝐶𝑟 are the required speed of the vehicle and 

the desired value of the SOC respectively,  𝑤𝑉𝑣𝑒ℎ
, 𝑤𝑆𝑂𝐶    and 

 𝑤𝑚𝑓   are penalty weights. While the fuel flow rate equation 

(𝑚�̇�) is described in (13).  

The cost function of the series-parallel HEV is formulated in 

discrete-time form as:- 

𝐽 = ∑ ((𝑤𝑉𝑣𝑒ℎ
(𝑉𝑣𝑒ℎ(𝑘 + 𝑖 + 1) − 𝑉𝑅𝑒𝑓)

2𝑇𝑃−1
𝑖=0 +

(𝑤𝑆𝑂𝐶(𝑆𝑂𝐶 (𝑘 + 𝑖 + 1) − 𝑆𝑂𝐶𝑟)
2 + (𝑤𝑚𝑓(𝑚�̇�(𝑘 + 𝑖 +

1)))2)    (28)                                                                                  

Where: -  𝑖 is represented sampling time. 

B. Building NMPC control strategy for series-parallel 

HEV by using the non-linear MPC control block 

A series-parallel HEV model was created using MATLAB 

whose controller was built based on the NMPC control 

strategy using the non-linear MPC control block provided in 

the MPC Toolbox in MATLAB SIMULINK®. This block is 

based on calculating the optimal control trajectory over the 

prediction horizon ( 𝑇𝑝 ) by solving the nonlinear 

optimization problem which includes the nonlinear objective 

function subject to the nonlinear predictions of the future 

behavior of the plant and physical constraints of the plant. To 

implement this block, the number of the state variables, 

inputs control, and outputs concerning the predictive model 

of the plant is defined. In this study, the predictive model of 

the plant contains [26]:- 

 Three state variables, which are the engine speed 𝜔𝑒  

(rad/sec), motor speed 𝜔𝑚 (rad/sec), and SOC.  

 Three inputs, which are the engine torque 𝑇𝑒 (N.m), 

motor torque𝑇𝑚(N.m), and generator torque𝑇𝑔(N.m) 

 Two outputs, which are Vehicle velocity (km/h), and 

SOC. 

After defining the number of variables related to the 

predictive model of the series-parallel HEV the following 

will be specified:- 

1. The dynamic states functions (time derivative of state 

functions) for a nonlinear prediction model, where the 

dynamic state equations in this study are motor speed 

�̇�𝑚  (rad/sec), engine speed �̇�𝑒  (rad/sec), and the state of 

charge 𝑆𝑂𝐶̇  of the battery as shown in (9), (10), and 

(16) respectively. The computational efficiency of the 

controller becomes better when using an analytical 

Jacobian for dynamic states functions, and when not 

using an analytical Jacobian, the controller calculates 

the Jacobian by numerical perturbation. The Jacobian of 

the  state functions are[26]:- 

𝛻𝑥𝑓 =
𝜕𝑓

𝜕𝑥
=

[
 
 
 
 

𝜕𝑓1

𝜕𝑥1
⋯

𝜕𝑓1

𝜕𝑥𝑛𝑥

⋮ ⋱ ⋮
𝜕𝑓𝑛𝑥

𝜕𝑥1
⋯

𝜕𝑓𝑛𝑥

𝜕𝑥𝑛𝑥]
 
 
 
 

, and   

   𝛻𝑢𝑓 =
𝜕𝑓

𝜕𝑢
=

[
 
 
 
 

𝜕𝑓1

𝜕𝑢1
⋯

𝜕𝑓1

𝜕𝑢𝑛𝑢

⋮ ⋱ ⋮
𝜕𝑓𝑛𝑥

𝜕𝑢1
⋯

𝜕𝑓𝑛𝑥

𝜕𝑢𝑛𝑢]
 
 
 
 

     (29) 

Where:-  

𝑓1 to 𝑓𝑛𝑥
are dynamic states functions of the model, 

        𝑥1to 𝑥𝑛𝑥
 are states variables of the model, 

        𝑢1to 𝑢𝑛𝑢
 are manipulated  variables of the model. 

2. The outputs functions for a nonlinear prediction model 

are vehicle velocity (km/h) is defined by (4), and SOC 

is represented by the third state variable. An analytical 

Jacobian was also used to improve the efficiency of the 

computational.  

3. The non-linear MPC controller block needs to define a 

cost function that represents the objectives for which 

the controller is built or to be achieved by the controller. 

The cost function of any study when using a nonlinear 

MPC controller block can be represented by either 

using the standard cost function that consists of four 

terms where each term describes an aspect of the 

controller performance as shown in the following 

equation:- 

𝐽(𝑧𝑘) = 𝐽𝑦(𝑧𝑘) + 𝐽𝑢(𝑧𝑘) + 𝐽𝛥𝑢(𝑧𝑘) + 𝐽𝜀(𝑧𝑘)    (30) 

Where the standard cost function terms are output 

reference tracking 𝐽𝑦(𝑧𝑘) , manipulated variable 

tracking 𝐽𝑢(𝑧𝑘) , manipulated variable move 

suppression𝐽𝛥𝑢(𝑧𝑘) , and constraint violation 𝐽𝜀(𝑧𝑘) 

respectively. If the standard cost function cannot 

represent the cost function of a particular study, a 

function called the custom cost function can be built so 

that it contains terms that are not present in the standard 

cost function. Sometimes it is required to combine the 

standard cost function and a custom cost function to 

represent the control cost function. In this study, both 

the standard cost function and the assigned cost 

function are used to express the cost function of the 

series-parallel HEV shown in (28) is expressed by 

dividing it into two parts. The first part of the cost 

function illustrates making the vehicle move at the 

desired speed while maintaining the state of the charge 

of the battery at the desired value, which is represented 

by the first term of the standard cost function, which is 

called output reference tracking. The rest of the terms 

of the standard cost function are eliminated by making 

the penalty weight zero for each of them. While the 

second part of the cost function explains minimizing 

fuel consumption as it is represented by the custom cost 

function, which is the fuel flow rate equation (17). 

4.  Define the physical constraints of the system, which 

consist of the standard bounds on states, inputs, and 

outputs as shown in (27). While the equality and 

inequality of custom constraints were not used in this 

study. 

After providing the previously mentioned requirements 

for the design or construction of a nonlinear MPC control 

block for the series-parallel HEV, this block calculates at 

each sampling step the optimal control inputs (engine 

torque𝑇𝑒, motor torque 𝑇𝑚, generator torque𝑇𝑔). The optimal 

control input is the solution of the nonlinear optimization 

problem represented by the cost function (28) subject to (26) 

and (26) but after formulating both (26) and (27) in the form 

of a discrete time as shown in (21) and (22) respectively. 

Where the nonlinear MPC controllers solve the nonlinear 
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optimization problem using Sequential Quadratic 

Programming Algorithm (SQP), the following is an 

explanation of the SQP algorithm.  

VI. SEQUENTIAL QUADRATIC PROGRAMMING 

ALGORITHM (SQP) 

The SQP algorithm is considered one of the most 

important and successful methods for solving numerical 

constrained nonlinear optimization problems[27].This 

algorithm is based on forming the sub-problem of Quadratic 

Programming (QP) at each main iteration and using the 

resulting solution from this sub-problem to form the QP sub-

problem at the subsequent iteration[28], where Fig.5 shows 

the flowchart of this algorithm. In general, this algorithm 

transforms a constrained nonlinear optimization problem 

into a series of successive iterations of quadratic 

programming (QP) sub-problems[29]. The basis of this 

algorithm is solving the nonlinear equations of the Karush-

Kuhn-Tucker (KKT) optimality conditions equation of the 

constrained nonlinear optimization problems using Newton's 

numerical methods to solve these equations. Where it was 

found that this basis corresponds to solving the result of 

generating the sub-problem of Quadratic Programming (QP) 

iteratively, that is, at each iteration[27]. 
To implement the SQP algorithm for the following 

constrained nonlinear optimization problem:- 

                 Find 𝒙 which minimizes 𝑭(𝒙)  (31) 

Subject to  

𝐺𝑖(𝑥) = 0                   (i =  1, . . . , me) 

𝐺𝑖(𝑥) ≤ 0             (i = me + 1, . . . , m) 

Where me and m are the number of equality constraints and 

number of constraints of the problem respectively. The 

Quadratic Programming (QP) sub-problem of this problem 

at k iteration is formulated as:- 

 𝑚𝑖𝑛𝑠   
1

2
 𝑆𝑇𝐵𝑘𝑆 + ∇𝐹(𝑥𝑘)

𝑇𝑆  (32) 

∇𝐹(𝑥𝑘)
𝑇𝑆 + 𝐺𝑖(𝑥𝑘) = 0                   (i =  1, . . . , me) 

 ∇𝐹(𝑥𝑘)
𝑇𝑆 + 𝐺𝑖(𝑥𝑘) ≤ 0              (i = me + 1,… ,m) 

 
Where S  is search direction. As it is clear that the QP sub-

problem () needs to find B_k, which is positive definite the 

approximate Hessian matrix of the Lagrangian function,    

 𝐿(𝑥, 𝜆) = 𝑭(𝒙) + ∑ 𝜆𝒊 ∙𝒎
𝒊=𝟏 𝐺𝑖(𝑥)   (33) 

 

Where 𝜆𝒊  is the Lagrange multiplier. The QP sub-

problem also needs to make nonlinear constraints linear 

using the Taylor series approximation. 

In the non-linear MPC control block, the QP sub-problem 

is solved using  the active set strategy which needs an initial 

guess feasible for the QP sub-problem to find the direction 

of the search at the current iteration𝑆𝑘 and in addition to 

finding Lagrange multipliers𝜆𝒊, this solution contributes to 

the formation of the next iteration as shown below[30][31]:- 

             𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑆𝑘   (34) 

 

 
Fig.5: Flowchart of the SQP algorithm. 

Where the step length parameter 𝛼𝑘 is chosen in a way that 

achieves a decrease in the following merit function[27]:- 

 Ψ(𝑥) = 𝑭(𝒙) +
∑ (𝑟𝒊 ∙

me
𝒊=𝟏 𝐺𝑖(𝑥)) ∑ (𝑟𝒊 ∙m

𝒊=me+𝟏 𝑚𝑎𝑥[0, 𝐺𝑖(𝑥)])  (35)              

Where 𝑟𝑖  is the penalty parameter:-  

 𝑟𝑖 = (𝑟𝑘+1)𝑖 = 𝑚𝑎𝑥𝑖 {𝜆𝑖 ,
(𝑟𝑘)𝑖+𝜆𝑖

2
} (i =  1, . . . , m)  (36)  

The initial values of the penalty parameters 𝑟𝑖:- 

                                 𝑟𝑖 =
‖∇𝐹(𝑥)‖

‖∇𝐺𝑖(𝑥)‖
                                     (37) 

As for 𝐵, it is updated at major iterations using the 

Broyden Fletcher Goldfarb Shanno (BFGS) method as 

shown in the following equation[27][30]:- 

N

o 

Star

t 

Find 𝛼𝑘 that 

achieves a 

decrease the merit 

function 

Set  

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑆𝑘 

Update  

𝑘
= 𝑘 + 1 

Initial guess 

feasible 𝑥0, 𝑘 = 0 

Calculate 

∇𝐹(𝑥𝑘), ∇𝐺𝑖(𝑥𝑘) 

 

Update 𝐵𝑘 using 

Eq(39) 

End Convergen

ce? 

Ye

s 

Solve QP sub-

problem using 

active set strategy   
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 𝐵𝑘+1 = 𝐵𝑘 +
𝑞𝑘𝑞𝑘

𝑇

𝑞𝑘
𝑇𝑏𝑘

−
𝐵𝑘 𝑏𝑘𝑏𝑘

𝑇𝐵𝑘
𝑇

𝑏𝑘
𝑇𝐵𝑘𝑏𝑘

       (38) 

Where  

𝑏𝑘 = 𝑥𝑘+1 − 𝑥𝑘                                                                (39) 

 𝑞𝑘 = (∇𝐹(𝑥𝑘+1) + ∑ 𝜆𝑖 ∙𝑚
𝑖=1 ∇𝐺𝑖(𝑥𝑘+1)) − (∇𝐹(𝑥𝑘) +

             ∑ 𝜆𝑖 ∙𝑚
𝑖=1 ∇𝐺𝑖(𝑥𝑘))                                                 (40)  

Since the solution of a nonlinear optimization problem 

has many solutions, it is difficult to find a solution to this 

problem unless we start with guess points that fall within the 

feasible solution regions that enable the SQP algorithm to 

make the first iteration to solve the optimization problem. In 

subsequent iterations, the predicted state variables and the 

optimal control inputs (control interval) from the previous 

step act as initial guesses for solving the optimization 

problem at that iteration.  This is why feedback is built for 

this block, as shown in Fig.2. So when starting to solve a 

series-parallel HEV optimization problem, the guess torque 

values of the vehicle's energy converters are chosen and 

these values should be determined within the possible 

solution regions. 

VII. SIMULATION RESULTS 

The model of the series-parallel HEV with the 

specifications mentioned in Table I was built and simulated 

using the MATLAB / Simulink (2019b) environment. As 

mentioned previously, this vehicle model consists of three 

blocks. The first block values represent the reference values 

or the values to be achieved by the outputs of this vehicle 

model, where the New European Driving Cycle (NEDC) was 

chosen to represent the required speed of the vehicle during 

the vehicle's trip. As for the second reference value, it is the 

SOC value, which represents the value required for the state 

of charge of the batteries during this trip, as this value was 

chosen to be 65% of the full value of the charging state of the 

batteries. Where this SOC value allows the battery to store 

the vehicle's kinetic energy captured from the vehicle's 

deceleration, as well as the possibility to equip the motor 

with electrical energy[32]. 

The second block, which represents the control unit of the 

series-parallel HEV model, was created by MATLAB Model 

Predictive Control toolbox using a nonlinear MPC controller 

block. This block needs to specify the number of the state 

variables, the manipulated variables, and the outputs where 

in this study are 3, 2, and 3 respectively, it also needs to 

specify the controller sample time, prediction horizon, and 

control horizon are determined by the following values 0.1 

sec, 10, and 5 respectively. When creating the Nonlinear 

MPC controller block, a mathematical model to represent a 

series-parallel HEV is required to predict the vehicle's future 

behavior, where this model includes the engine speed 𝜔𝑒  

(rad/sec), motor speed 𝜔𝑚 (rad/sec), and SOC are designated 

as the state variables. While the engine torque 𝑇𝑒 (N.m), 

motor torque 𝑇𝑚(N.m), and generator torque 𝑇𝑔(N.m) are set 

as manipulated variables (MVs), and each the vehicle 

velocity (km/h) and SOC are the plant outputs. 

To implement the Nonlinear MPC controller block needs 

to define the state equations of the nonlinear plant model 

( �̇�𝑚 , �̇�𝑒 , and 𝑆𝑂𝐶̇ ) which are (9), (10),  and (16) 

respectively, and also need to determine their Jacobian 

equations using (29). Also, this block needs the output 

equations of the nonlinear plant model (the vehicle velocity 

and 𝑆𝑂𝐶) and their Jacobian equations are determined by the 

following (29). In addition to setting the constraints for each 

of the state variables, the manipulated variables (MVs), and 

the output variables, as in (27). The second block also needs 

the values of the manipulated variables from the previous 

sampling step and the values of the state variables received 

by the third block for the purpose of finding the optimal 

torques values for each of the engine, motor, and generator 

to apply them to the third block, which represents the vehicle 

model (the powertrain and vehicle dynamic equations). 

The aim of this simulation is to study the possibility of 

making the vehicle drive the required speed and also make 

the state of charge of the battery at the desired value, and that 

this is all done with minimal fuel consumption To 

accomplish this, we construct the objective function as 

shown in (28), since the objective function is composed of 

two parts where the first part of the objective function is 

represented by the first part of  the standard cost 

function(30), which is called output reference tracking. In 

order to implement this part, the reference values for each of 

the outputs variables (vehicle speed and SOC) are received 

from the first block and the weight coefficients of the output 

variables are determined where the values 100 and 200 are 

chosen for each of the weight coefficients for the output 

variables (vehicle speed and SOC) respectively. As for the 

second part of the objective function, it is the custom cost 

function shown in (17). 

After completing the simulation of the series-parallel HEV 

model, the results obtained were good because the vehicle 

control unit was able to achieve the desired objectives. Fig.6 

shows the state variables are the engine speed 𝜔𝑒  (rad/sec), 
motor speed 𝜔𝑚  (rad/sec), and SOC. where it is observed 

that the state variable SOC changes between two values 

(65.2%) and (64%) during the driving cycle and this is a good 

result in tracking the desired value (65%), and this change is 

considered a small, insignificant change. While the outputs 

of the control unit are the optimal values of the manipulated 

variables (MVs) (engine torque (Nm), motor torque (Nm), 

and generator torque (Nm)) which are obtained by solving 

the optimization problem (minimizing the cost function 

subject to the nonlinear prediction model and physical 

constraints of the vehicle). Where Fig.7 represents these 

 
Fig.6: The state variables trajectory 

these optimal values that are applied to the engine, motor, 

and generator to drive the vehicle in order to achieve 

tracking of each of the reference values of the vehicle speed 
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and SOC as well as focus and attention to obtain the best 

possible minimization in fuel consumption. 

 
Fig.7: The trajectories of the optimal manipulated variables 

It is noted that the tracking and dynamic response of the 

reference speed of the series-parallel HEV is good as shown 

in Fig.8, where the series-parallel HEV model was able to 

travel 10.9 km and the total fuel used was 0.4482 liters during 

the New European Driving Cycle (NEDC), and it is 

considered a good result in terms of improving fuel 

consumption. In the end, it can be said that a model of the 

hybrid electric vehicle was able to achieve the objectives 

required of it. 

 
Fig.8: Series-parallel HEV speed by using NMPC strategy 

VIII. CONCLUSIONS 

To implement the NMPC control strategy for power 

management among the hybrid electric vehicle's energy 

converters, the nonlinear optimization problem must first be 

appropriately created, which includes the cost function 

subject to the physical constraints of the vehicle and the 

mathematical prediction model that is used to evaluate the 

vehicle's future behavior based on the vehicle's current 

measurements which are state variables and control inputs. 

In this study, this strategy improved the fuel consumption 

and dynamic performance of the vehicle as well as 

maintained the state of charge (SOC) of the battery at the 

desired value, they are formulated in the cost function. 

Secondly, this strategy solves the constrained nonlinear 

optimization problem by using the SQP algorithm at each 

sampling step to find the optimum values torque of the 

engine, motor, and generator to provide the power required 

to drive the vehicle. This strategy was able to achieve the 

required objectives of making the vehicle go at the required 

speed with the best fuel consumption, in addition to making 

the value of the state of the charge of the battery at the desired 

value. This indicates that the strategy was able to supply the 

motor with electrical energy, either the generator or the 

kinetic energy captured from the deceleration of the vehicle 

so that the state of the charge remains close to the desired 

value. Although this strategy makes many calculations, it 

was able to implement all the optimization tasks required of 

it well due to its ability to find the optimal operating points 

for energy converters in this vehicle. It is possible to benefit 

from this study by comparing the NMPC control strategy 

with other energy management strategies for the same 

vehicle, in addition to the possibility of using the 

mathematical model equations for this vehicle in other 

studies.  
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