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Abstract

Hybrid electric vehicles have received considerable attention because of their ability to improve fuel consumption compared to
conventional vehicles. In this paper, a series-parallel hybrid electric vehicle is used because they combine the advantages of the
other two configurations. In this paper, the control unit for a series-parallel hybrid electric vehicle is implemented using a
Nonlinear Model Predictive Control (NMPC) strategy. The NMPC strategy needs to create a vehicle energy management
optimization problem, which consists of the cost function and its constraints. The cost function describes the required control
objectives, which are to improve fuel consumption and obtain a good dynamic response to the required speed while maintaining
a stable value of the state of charge (SOC) for batteries. While the cost function is subject to the physical constraints and the
mathematical prediction model that evaluate vehicle's behavior based on the current vehicle measurements. The optimization
problem is solved at each sampling step using the (SQP) algorithm to obtain the optimum operating points of the vehicle's
energy converters, which are represented by the torque of the vehicle components.

KEYWORDS: Series-Parallel Hybrid Electric Vehicle (HEV), Nonlinear Model Predictive Control (NMPC), Planetary Gear
Set (PGS), Energy Management Strategies (EMS), state of the charge (SOC).
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The series-parallel hybrid electric vehicle can operate a FR—
either in series or parallel power flow mode due to the . o
presence of a planetary gear set (PGS) that separates the
power generated by the engine into mechanical and electrical
paths [1]. The planetary gear set consists of three nodes
called the ring gear, the sun gear, and the carrier gear where
these nodes are connected directly to the engine (ICE), PGS
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generator (MG1), and the vehicle's body respectively. While
the motor (MG2) is also connected to a ring gear, which acts
as a traction motor to propel the vehicle [2]. It also works as
a generator to capture the kinetic energy resulting from the
deceleration of the vehicle or when applying the brakes or
when descending from a slope and this is called regenerative
braking. Fig.1 shows the elements and connections of the
planetary gear set and the configuration of the powertrain of
the series-parallel hybrid electric vehicle.

As the energy is transmitted through the mechanical path
from the engine to the planetary gear set (PGS) by the carrier
gear and then it is transferred directly to the ring gear and
reaches the vehicle after the energy passes through the
reduction gear which connects the ring gear with the vehicle.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.
2022 The Authors. Published by Iragi Journal for Electrical and Electronic Engineering by College of Engineering, University of Basrah.

Hybrid powertrain

Fig.1: The powertrain and vehicle dynamic block

While the energy is transmitted through the electrical
path from the engine to the Planetary Gear Set (PGS) by the
carrier gear and then transmitted to the MG1 after passing
through the sun gear, and then transferred as electrical energy
to be stored in the on-board battery or used to feed the MG2
[3].

The series-parallel hybrid electric vehicle's control units
that control the operation of the vehicle are based on one of
the various energy management strategies (EMS)[4][5][6].
This strategy is responsible for managing the vehicle’s
energy represented by liquid fuel and batteries, in addition to
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the kinetic energy when decelerating or braking, as it works
to improve fuel consumption and the vehicle’s dynamic
response by determining the operating points of the vehicle's
energy converters (engine, motor, and generator)[7]. In this
paper, the NMPC control strategy was used to manage the
energy in a series-parallel hybrid electric vehicle. This
strategy predicts the future behavior of the vehicle during a
period called the prediction horizon. Therefore, it needs a
mathematical model that describes the operation of the
vehicle, and it also needs to create a cost function that
expresses the control objectives of this strategy. To find the
optimum value of the control inputs for a hybrid electric
vehicle, this is done by solving its optimization problem,
which is represented by the equation of cost subject to the
mathematical prediction model and the physical constraints
of the vehicle, which is solved by one of the methods of
solving mathematical optimization problems. In this study, a
nonlinear MPC controller provided by MATLAB was used
to build this strategy, where this strategy aims to optimize the
vehicle's fuel consumption and make the vehicle achieve the
desired speed by the driver, as well as maintain the state of
charge of the batteries at the desired value. Where this study
can be used to learn how to build the mathematical model of
the series-parallel hybrid electric vehicle as well as how to
use the NMPC control strategy to manage this vehicle.

In [8] model predictive control (MPC) strategy was
applied to a series-parallel HEV where was used linear
mathematical prediction model to express the behavior of the
series-parallel HEV which is used by this strategy to predict
the future vehicle's behavior. The cost function used consists
of three terms. The first term is the square of the difference
between the actual and predicted torques of the wheels, and
the predicted torque of the wheels is estimated using an
adaptive recursive prediction algorithm that depends on the
past and present torque of the drivetrain. The second term
represents the square of the engine's fuel flow rate, and the
last term represents the square of the batteries' equivalent
fuel consumption. The cost function is solved by a Linear
Quadrature Tracking (LQT) approach to obtain the control
inputs values that achieve a minimum fuel consumption,
minimizing the difference between the actual and predicted
torque output of the drivetrain as well as maintaining the
battery charge condition at the required level. In [9] is used
model predictive control (MPC) strategy to manage the first
level of the series-parallel hybrid electric vehicle's control
unit. Since this unit consists of two levels, the first level finds
the optimal values for both the speed and torque of the
engine, which are references for the second control level.
The standard linear MPC is used to solve the optimization
problem in each sampling step by Quadratic Program (QP)
approach to find the optimum values of both the speed and
torque of the engine to get the minimum fuel consumption,
reduce using the friction brake, and keep the state of the
charge of the battery at the required level. In [10]the model
predictive control (MPC) strategy was also applied to
manage a control unit of the series-parallel HEV. Where the
standard linear MPC was used to solve the optimization
problem in each sampling step by MATLAB MPC toolbox
to find the optimal values torque of the engine, motor, and
generator in order to obtain the minimum fuel consumption,

as well as maintain the state of the charge of the battery at
the required level.

This paper has been organized in the following manner.
Section Il describes the architecture of the series-parallel
HEV model used in this paper. Section Il illustrates the
dynamic equations for the powertrain and vehicle dynamic
equations and the dynamic equations for the state of charge
of the batteries in addition to describing how to express the
rate of fuel flow equation in terms of both the speed and
torque of the internal combustion engine. While section 1V
explains the MPC algorithm in details, and section V deals
with the NMPC control strategy for a series-parallel HEV
and how to formulate the optimization problem of a series-
parallel HEV to achieve the objectives of the NMPC control
strategy in addition that it also contains how to create the
non-linear MPC controller block. Section VI explains
Sequential Quadratic Programming (SQP) Algorithm.
Section VI demonstrates the results of the simulation of the
series-parallel HEV model, where its unit was based on the
NMPC control strategy, while the last section discussed the
results of the simulation and the future work of the study.

1. ARCHITECTURE OF THE SERIES-PARALLEL HEV
MODEL

Building a model of a series-parallel hybrid electric
vehicle to study its controller that was built based on a model
predictive control. The approach used in this model is
classified as a forward-looking approach, as the control unit
depends on the required speed of the vehicle and the current
speed of the vehicle in creating commands to produce
torques through the drivetrain (the engine, motor, and
generator), to obtain the required vehicle traction force[11].
This model consists of three parts, as shown in Fig.2.

States variables (x)

References Control Unit Powertrain and
vehicle dynamic
Block (NLMPC) Block
Output
Manipulated variables (MVs)

Fig.2: Architecture of the series-parallel HEV model

These parts are:-

o References block: - This block contains the driving cycle
and the desired values or the target value for the state of
charge (SOC) of the battery.

e Control unit: - The control unit was built depending on
the NMPC control strategy. The driving cycle and the
target state of charge of the battery are represented some
of the control unit entries which come from the reference
block. There is also feedback that only includes the
manipulated variables (MVs) that were computed in the
previous sampling step. There is also feedback that only
includes the manipulated inputs that are computed for the
current time step. In addition, the rest entries are the state
variables, which come from the powertrain and vehicle
dynamic block. While the engine torque, motor torque,
and generator torque are the outputs of this block and go
to the block of powertrain and vehicle dynamic.
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e The block of powertrain and vehicle dynamic:-This block
includes the dynamic equations that express the vehicle
and the powertrain, as the powertrain includes the engine,
motor, generator, batteries, and a planetary gear set.
Engine torque, motor torque, and generator torque are the
entries of this block that come from the control unit.
While the state variables are transmitted from this block
to the control unit, the outputs of this block are the vehicle
speed and the battery charge state.

I1l. DYNAMIC EQUATIONS OF A SERIES-PARALLEL HEV
AND FUEL FLOW RATE EQUATION

In general, the dynamic equations of the series-parallel
hybrid electric vehicle can be divided into:-

A. The Powertrain and Vehicle Dynamic Equations

In the planetary gear set, the rotational speed of the ring

gear w,, the sun gear wg and the carrier gear w, are

governed by the constraints of kinematic equality at all times
by the following relationship[12]:-

Rw, + Sws = (R + Sw, @

The rest of the abbreviations used in the equations are found

in Table I. The above equation can be written in terms of the

engine speed w, (rad/sec), the motor speed w,, (rad/sec),
and the engine speed w,(rad/sec).

Where:
We = We
Wy = Wb, 2
Ws = Wy

Then (1) becomes:
Rwm + Swy = (R + S)w, 3)
The another constraint of the kinematic equality between
the planetary gear set and the vehicle speed is that the
rotational speed of the ring gear is a function of the vehicle
speed and is represented by the following relationship:-

Vien = Tw(;_; , W = fdv:_:/h 4
TABLE |
LIST OF ABBREVIATIONS AND THEIR VALUE
Abbr. Definition Units
A¢ Vehicle frontal area 2.16m?
g Gravitational constant 9.81m/s?
p Air density 1.18kg/m?
Cq Drag coefficient 0.26
m Total mass of the vehicle 1200Kg
Vyeh Speed of the vehicle m/s
0 The slope of the road Oradians
(o Wheel rolling friction coefficient 0.01
Tork Friction brake torque Nm
S Number of teeth of the sun gear 30
R Number of teeth of the ring gear 78
fa Final gear ratio 13
T wheel radius 0.3m
Qpart Capacity of the battery 8.1A.h
Ppast Battery power watt
Rpqee | Internal resistance of the battery | 0.2460hm
Voc Battery voltage Volt
T, Engine torque Nm

T. Motor torque Nm
T Generator torque Nm

9

In the dynamic equations of powertrain and vehicle, the

following assumptions are made:-

1. The carrier inertia, the ring inertia, and the sun inertia are
neglected.

2. Only the longitudinal dynamics of the vehicle are
considered.

Thus, the dynamic equations of powertrain and vehicle

are[13]:

]e(’:)e =Te_F(R+S) (5)
Jy@g = FS+T, (6)
. ]md)m = Tm + FR — Tout (7)
m Vveh = {((Toutfd + Tbrk)/rw) - O'SpCdAvaZeh
—mg(f,cos@ + sinf)} (8)
From (1)-(8) we obtain:
d)m = d)ml - (bmz + (bm3 + d)mél- (9)

Wm1 = ((A1T)/(A1By — A3By))
Wmz = ((B;T,)/(A1B, — A;B3))
Wiz = ((Tg(A1B3 — A3B;))/(A1B, — A;B;))
Wma = (A1/(A1By — Asz){((_O-SPCdAfTMZ; wrzn)/f;)
—(mgfy) + (Tor/fa)}

(be = d)el + d)ez + (beS - (beél- - d)es (10)
wer = (T /A7)
Wep = ((A3Tg)/A1) = ((A2Ty)/(A1B; — A3By))
we3 = ((A2B,T.)/(A1(A1By — A;B3)))
Wes = (AzTg/A1)((A1B3 — A3B;)/(A1B, — A3B;))
Wes = (A2/(A1By — AZBZ){((_O'SpCdAfTM?; wan)/f;)

—(mgfy) + (Tpri/fa)}
Where:-
Ar=J.+((S+ R)/S)ng
Ay = —(RR+5)/5%)],
A;=(R+95)/S

By = Jm + (R*/S?)]g + (/fa)*m
B, = —R(S + R/S?)],
B; = —R/S

B. Battery Dynamic Equations

One of the most important parameters in the energy
management of hybrid electric vehicles is the battery state of
charge (SOC), which represents a measure of the remaining
electric energy in the battery, it is determined by[14]:

t
Q att™ I a d
S0C = batt thObtt(T)T (11)
batt
The battery current I,,;; can be found after solve this
equation[15]:
Pyate = Voclpare — Igatt Rpace (12)
Then

e
batt ZRbatt
The dynamic equation of the state of charge (SOC) can
be obtained by taking the time derivative of (11)[16]:

. Voc—[Voc?=4RpattPha
SOC:— battf"batt (13)

2RpattQbatt
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Where the battery power can also be expressed[17]:
Pyare = wgTg + i Ty (14)

After substitute (13) into (14), we get:-

2
Voc_\/Voc —4Rpatt(wgTg+ womTm)

S0C = - (15)
. 2RpattQbatt
From (1) we obtain:-
Wy = Azw, + Bywy,
Now substitute w, into (15)
. Voc—Voc?—4Rpq (((R+S)wc_5wr)T + wmTm)
SOC = — | SN T (16)

ZRpattQbatt
C. Fuel Flow Rate equation

Through the experimental data of the fuel flow rate obtained
by (http://www.transportation.anl.gov/pdfs/HV/2.pdf), a
mathematical relationship was formed between the fuel flow
rate on the one hand, and on the other side, both speed and
torque generated by the engine, by applying the multiple
linear regression analysis method[18]. Where this method is
used to form a mathematical model between a dependent
variable represented here by the fuel flow rate, and several
independent variables represented here by both the speed and
torque generated by the engine, as shown in (17).
mf=a+bw,+cT, a7
Where the least square method is used to estimate
coefficients of the regression, a,b,and c in (17). Fig.3
represents the mathematical relationship to express the fuel
flow rate in terms of both the rotational speed and the output
torgue of the engine, and it is noted in this figure that when
the rotational speed and torque of the engine are increased,
the fuel flow rate increases linearly.

Engine Speed
419822 (rad/s)
_—+387.251 (rad/s)
4-354.679 (rad/s)
322108 (rad’s)

Fuel flow rate (g/s)

20 30 40 50 60 0 80 90 100
Torque (N.m)

Fig.3: The fuel flow rate function

IV. MODEL PREDICTIVE CONTROL

The MPC algorithm is a process methodology (approach)
used to control dynamic constrained systems[19], which is
well suited to multivariate constrained operations. This
algorithm is considered a class of computer control
algorithms because it iteratively solves the optimization
problem of this algorithm at each sampling step in order to
find the optimal control input trajectory (manipulated
variables (MVs)) of the plant. To achieve the control
objectives on which this algorithm is built, it is formulated in
the form of an optimization problem, which includes the cost
function, which represents the objectives to be achieved by
the algorithm, where the cost function is subject to
predictions of the future behavior of the plant in addition to
the plant's physical constraints. The predictions of the future
behavior of the plant are obtained when using a process

model, which is a mathematical model that describes the
work of the plant, where the current measurements of the
plant at the moment of sampling, represented by the values
of state variables and optimal inputs (MVs), are used to
predict the future behavior of the plant during a finite time
interval called the prediction horizon. The prediction horizon
can be defined as the future in which the algorithm can see
the future behavior of the plant. At each sampling time, this
algorithm works to find a solution to the optimization
problem to obtain values of the optimal inputs trajectory,
where only the first value of this trajectory is applied to the
plant until the next sampling moment is reached. Because of
the formulation of this algorithm and its dependence on
process measurements at the moment of sampling to find the
optimal inputs trajectory, it is considered as an open-loop
controller [20].

Fig.4 shows the basic work of MPC, in which the MPC
algorithm, at each sampling step, re-solves the optimization
problem of open-loop control subject to system dynamics
and constraints. Where the measurements obtained from the
process model at current sampling time are used by the MPC
algorithm to predict the future dynamics behavior of the
plant y (¢]k) over a prediction horizon Tp . Result of
optimization problem solving is getting the optimal control
input trajectory u (¢Jk), where only the first value of this
trajectory is used to fed the next sampling step[21][22].

Past Future

Reference (- | k)

Output y (- |k)

Open loop control u (-] k)

Control Horizon

Prediction Horizon

Fig.4: Basic principle of MPC

Due to the large number of computations resulting from
predicting the behavior of system dynamics and solving the
optimization problem at each sampling step over the
prediction horizon, this definitely increases the demand for
computation. The computational complexity can be greatly
reduced by introducing a horizon called the control horizon
Tc which is less than the prediction horizon. Where after the
time interval of the control horizon Tc, the output of the
controller is constant, where the value of the output of the
controller is the value of the optimal control input at the
sampling step of the control horizon Tc¢, assuming that the

system has reached the steady-state[23], as shown in Fig.4.
If the predictions of the dynamic behavior of the plant
are obtained from the equations of the nonlinear model, then
the MPC in this case is called the Nonlinear Model Predictive
Control (NMPC). Therefore, nonlinear predictive model
control is an extension of linear predictive control
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[24].Where the standard NMPC algorithm procedures are as V.NMPC CONTROL STRATEGY FOR SERIES-
follows [20]:- PARALLEL HEV

o At each sampling step, use the current values of optimal
control inputs (MVs) and measure or estimate the current
values of the system state variables to use all these values to
predict the future behavior of the plant across the prediction
horizon. Calculate the open-loop optimal control from
solving the optimization problem that is subject to dynamics
of the system and constraints of the input and state over the
prediction horizonTp.

o Calculate the optimal control inputs trajectory by solving
the optimization problem, where the optimization problem is
the cost function subject to predictions of the future behavior
of the plant in addition to the physical constraints of the
plant.

e Implement the first part of the optimal control inputs
trajectory until the next sampling instant.

e Continue with step (1) when the next sampling step is
reached.

In the MPC algorithm, the prediction trajectories for the
state variables of the plant and the plant output are a linear
function of both the current state variable and the optimal
control input used in the current sampling step. Therefore,
the solution of the optimization problem deals with the
solvers that are efficient and high-performance. While the
NMPC algorithm, the prediction trajectories for the state
variables and outputs of the plant are a nonlinear function for
the current state variable and the optimal control input used
at the current sampling step. Thus the optimization problem
becomes a nonlinear optimization problem and also known
as nonlinear programming (NLP) problems, which needs a
different approach (solvers) than in the MPC algorithm and
where it is more computationally complex [25].

In NMPC the optimization problem is solved at every
sampling step, which is represented by the cost function and
the inequality and equality constraints as shown in below:-

v ] = FY (), U] (18)
Subject to the following inequality constraints:
Umin > Uk +J k) > upay, 0>j>Tc—1 (19)
ymin>y(k+j|k)>ymax11>j>TP (20)
In addition, the equality constraints:
x(k+j+1|k) = Flx(k +j |k),u(k + jlk)],
0>j>Tp—1, (21)
yke+jlk) =hlx(k+jlk)] , 1>j>T, (22)
Where:-
= x(k+1lk), u(k + 1|k) are the state variable and
optimal control input predicted at time k + 1 from

measurements of the process model at time k

respectively.

» U(k) and Y (k) are the optimal control inputs and
outputs predicted from the process measurements
of the model at time k respectively.

Uk) =

[ulkll),” ulk + 1K), ..., ulk + Te — 1[k)7] (23)
Y (k) =

Ly (klk)," y(e + 1K), ..., y(k + T [K)'] (24)

In this study, the NMPC control strategy, which is one of
the energy management strategies for hybrid electric
vehicles, was chosen, as this strategy works to accomplish
the tasks of the series-parallel HEV controller, and this
strategy is built by formulating the optimization problem and
solving it in one of the methods of mathematical
optimization. The optimization problem includes the cost
function subject to the nonlinear prediction model and
physical constraints of the vehicle, where the cost function
represents the objectives to be achieved by this strategy. In
this study, the non-linear MPC control block was chosen to
build and implement this strategy on the series-parallel HEV.
The following is explained how to build the cost function and
the non-linear MPC control

A. Formulation of the Optimization Problem for a Series-

Parallel HEV

The optimization problem includes the cost function that
represents the objectives to be achieved by the vehicle, and
the cost function is subject to the predictions of the plant
model that represents the equality constraints of the cost
function. These predictions are obtained through the
application of the mathematical model that describes the
work of the vehicle based on the current values of the state
variable and optimal control inputs (MVs) of the vehicle. The
cost function is also subject to the physical constraints of the
vehicle that represents the inequality constraints of the cost
function. In this study, the cost function of the series-parallel
HEV is formulated to minimize fuel consumption while
ensuring that the vehicle can move at the speed required by
the driver and maintain the state of the charge of the battery
at the desired value. The optimization problem of the series-
parallel HEV is shown in the following equations:-

vy ] = JIFGewllPdt (25)
Subject to
1. Equality constraints:
x = f(x,u)
26
{y =g(x,u) (26)
Where:-
W, Te
v,
X = (;)Tn:|7 u= Trn7 y: veh
[soc T, [SOC

are the vectors of state, control inputs and tracking outputs
respectively.
2. inequality constraints:
soCc™n < SOC < SOC™*
oM < w, < M
oM < @, < WNe* 27)
Temin < Te < Temax
o™ < Ty < Tp'™
Tgmm S Tg S Tgmax
erg}iln < Vveh = ﬂﬁx
Where the superscripts "min" and "max" denote the lower
and upper bounds of the parameters.
In (21) the integrand T'(x, w) is defined as:-
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Wy en (Vveh - VRef)
F(x,u) = Wsoc(SOC _SOCT)

Wi (mf)
WhereVg,r, SOC, are the required speed of the vehicle and
the desired value of the SOC respectively, wy_,,wsoc and
wp,r are penalty weights. While the fuel flow rate equation
(mf) is described in (13).
The cost function of the series-parallel HEV is formulated in
discrete-time form as:-

J = S (W (Veon (ke + i+ 1) = Vigr)” +
(Ws0c(SOC (k + i+ 1) — SOC,)? + (Wyp(mf (k + i +
DN?) (28)

Where: - i is represented sampling time.

B. Building NMPC control strategy for series-parallel

HEV by using the non-linear MPC control block

A series-parallel HEV model was created using MATLAB

whose controller was built based on the NMPC control

strategy using the non-linear MPC control block provided in
the MPC Toolbox in MATLAB SIMULINK®. This block is
based on calculating the optimal control trajectory over the
prediction horizon ( Tp ) by solving the nonlinear
optimization problem which includes the nonlinear objective
function subject to the nonlinear predictions of the future
behavior of the plant and physical constraints of the plant. To
implement this block, the number of the state variables,
inputs control, and outputs concerning the predictive model
of the plant is defined. In this study, the predictive model of

the plant contains [26]:-

e Three state variables, which are the engine speed w,
(rad/sec), motor speed w,, (rad/sec), and SOC.

e Three inputs, which are the engine torque T, (N.m),
motor torqueTs, (N.m), and generator torqueT, (N.m)

e Two outputs, which are Vehicle velocity (km/h), and
SOC.

After defining the number of variables related to the
predictive model of the series-parallel HEV the following
will be specified:-

1. The dynamic states functions (time derivative of state
functions) for a nonlinear prediction model, where the
dynamic state equations in this study are motor speed
Wy, (rad/sec), engine speed w, (rad/sec), and the state of
charge SOC of the battery as shown in (9), (10), and
(16) respectively. The computational efficiency of the
controller becomes better when using an analytical
Jacobian for dynamic states functions, and when not
using an analytical Jacobian, the controller calculates
the Jacobian by numerical perturbation. The Jacobian of
the state functions are[26]:-

on .. O
dxq O0xn,
a
fo=—f= : - ¢ |, and
0xq O0xn,
[o4A ... 94
2 |6u1 aunu|
Rf==|: i (29)
G
laul aunuJ

Where:-
f1 to f,,,are dynamic states functions of the model,
x110 x,, are states variables of the model,
u,t0 uy,,, are manipulated variables of the model.

2. The outputs functions for a nonlinear prediction model
are vehicle velocity (km/h) is defined by (4), and SOC
is represented by the third state variable. An analytical
Jacobian was also used to improve the efficiency of the
computational.

3. The non-linear MPC controller block needs to define a

cost function that represents the objectives for which
the controller is built or to be achieved by the controller.
The cost function of any study when using a nonlinear
MPC controller block can be represented by either
using the standard cost function that consists of four
terms where each term describes an aspect of the
controller performance as shown in the following
equation:-
Ik =1y R + Ju(zk) + Jau(zi) +Je(z)  (30)
Where the standard cost function terms are output
reference tracking J,(zk) , manipulated variable
tracking J,(zx) , manipulated variable move
suppressionj 4,,(zk), and constraint violation Jc(zj)
respectively. If the standard cost function cannot
represent the cost function of a particular study, a
function called the custom cost function can be built so
that it contains terms that are not present in the standard
cost function. Sometimes it is required to combine the
standard cost function and a custom cost function to
represent the control cost function. In this study, both
the standard cost function and the assigned cost
function are used to express the cost function of the
series-parallel HEV shown in (28) is expressed by
dividing it into two parts. The first part of the cost
function illustrates making the vehicle move at the
desired speed while maintaining the state of the charge
of the battery at the desired value, which is represented
by the first term of the standard cost function, which is
called output reference tracking. The rest of the terms
of the standard cost function are eliminated by making
the penalty weight zero for each of them. While the
second part of the cost function explains minimizing
fuel consumption as it is represented by the custom cost
function, which is the fuel flow rate equation (17).

4. Define the physical constraints of the system, which
consist of the standard bounds on states, inputs, and
outputs as shown in (27). While the equality and
inequality of custom constraints were not used in this
study.

After providing the previously mentioned requirements
for the design or construction of a nonlinear MPC control
block for the series-parallel HEV, this block calculates at
each sampling step the optimal control inputs (engine
torqueT,, motor torque T,,,, generator torqueTy). The optimal
control input is the solution of the nonlinear optimization
problem represented by the cost function (28) subject to (26)
and (26) but after formulating both (26) and (27) in the form
of a discrete time as shown in (21) and (22) respectively.
Where the nonlinear MPC controllers solve the nonlinear
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optimization problem using Sequential Quadratic
Programming Algorithm (SQP), the following is an
explanation of the SQP algorithm.

V1. SEQUENTIAL QUADRATIC PROGRAMMING
ALGORITHM (SQP)

The SQP algorithm is considered one of the most
important and successful methods for solving numerical
constrained nonlinear optimization problems[27].This
algorithm is based on forming the sub-problem of Quadratic
Programming (QP) at each main iteration and using the
resulting solution from this sub-problem to form the QP sub-
problem at the subsequent iteration[28], where Fig.5 shows
the flowchart of this algorithm. In general, this algorithm
transforms a constrained nonlinear optimization problem
into a series of successive iterations of quadratic
programming (QP) sub-problems[29]. The basis of this
algorithm is solving the nonlinear equations of the Karush-
Kuhn-Tucker (KKT) optimality conditions equation of the
constrained nonlinear optimization problems using Newton's
numerical methods to solve these equations. Where it was
found that this basis corresponds to solving the result of
generating the sub-problem of Quadratic Programming (QP)
iteratively, that is, at each iteration[27].

To implement the SQP algorithm for the following
constrained nonlinear optimization problem:-

Find x which minimizes F(x) (31)
Subject to

G(x)=0 i=1,..m)

G,(x)<0 (i=mg+1,...,m)

Where m, and m are the number of equality constraints and
number of constraints of the problem respectively. The
Quadratic Programming (QP) sub-problem of this problem
at k iteration is formulated as:-

ming ~ STB,.S + VF (x,)7'S (32)
VF(xk)TS+Gi(xk) =0 (l = 1,...,me)
VE(x)TS + Gi(x) <0 (i=mg+1,..,m)
Where S is search direction. As it is clear that the QP sub-
problem () needs to find B_k, which is positive definite the

approximate Hessian matrix of the Lagrangian function,
L(x,2) = F(x) + XiZq 4 - Gi(x) (33)

Where A; is the Lagrange multiplier. The QP sub-
problem also needs to make nonlinear constraints linear
using the Taylor series approximation.

In the non-linear MPC control block, the QP sub-problem
is solved using the active set strategy which needs an initial
guess feasible for the QP sub-problem to find the direction
of the search at the current iterationS, and in addition to
finding Lagrange multipliers4;, this solution contributes to
the formation of the next iteration as shown below[30][31]:-

Xi+1 = X + QS (34)

\ 4

A 4

Initial guess
feasible x4, k = 0

A 4

Calculate
VF (xi), VG (xy)

A 4

Update B, using
Eq(39)

A 4

Solve QP sub-
problem using
active set strategy

Convergen

Find a; that
achieves a
decrease the merit
function

A 4

Set
X1 = X + Sy

Fig.5: Flowchart of the SQP algorithm.
Where the step length parameter «,, is chosen in a way that
achieves a decrease in the following merit function[27]:-
Y(x) = F(x) +
Y (71 Gy () T g1 (i - max[0, Gy (x)]) (35)
Where ; is the penalty parameter:-
k)i Ai .
1= (Tesr); = max; {Ai,( Wit }(1 = 1,...,m) (36)

2
The initial values of the penalty parameters r;:-
_ NIVEGIl
T el 37)
As for B, it is updated at major iterations using the
Broyden Fletcher Goldfarb Shanno (BFGS) method as

shown in the following equation[27][30]:-
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T T,T
Bii1 = B + Z’i—zz - % (38)
Where
by = Xy 41 — xi (39)
Q. = (VF(xk+1) + XA 'VGi(xk+1)) - (VF(xk) +
™A VG (x)) (40)

Since the solution of a nonlinear optimization problem
has many solutions, it is difficult to find a solution to this
problem unless we start with guess points that fall within the
feasible solution regions that enable the SQP algorithm to
make the first iteration to solve the optimization problem. In
subsequent iterations, the predicted state variables and the
optimal control inputs (control interval) from the previous
step act as initial guesses for solving the optimization
problem at that iteration. This is why feedback is built for
this block, as shown in Fig.2. So when starting to solve a
series-parallel HEV optimization problem, the guess torque
values of the vehicle's energy converters are chosen and
these values should be determined within the possible
solution regions.

VII. SIMULATION RESULTS

The model of the series-parallel HEV with the
specifications mentioned in Table | was built and simulated
using the MATLAB / Simulink (2019b) environment. As
mentioned previously, this vehicle model consists of three
blocks. The first block values represent the reference values
or the values to be achieved by the outputs of this vehicle
model, where the New European Driving Cycle (NEDC) was
chosen to represent the required speed of the vehicle during
the vehicle's trip. As for the second reference value, it is the
SOC value, which represents the value required for the state
of charge of the batteries during this trip, as this value was
chosen to be 65% of the full value of the charging state of the
batteries. Where this SOC value allows the battery to store
the vehicle's Kkinetic energy captured from the vehicle's
deceleration, as well as the possibility to equip the motor
with electrical energy[32].

The second block, which represents the control unit of the
series-parallel HEV model, was created by MATLAB Model
Predictive Control toolbox using a nonlinear MPC controller
block. This block needs to specify the number of the state
variables, the manipulated variables, and the outputs where
in this study are 3, 2, and 3 respectively, it also needs to
specify the controller sample time, prediction horizon, and
control horizon are determined by the following values 0.1
sec, 10, and 5 respectively. When creating the Nonlinear
MPC controller block, a mathematical model to represent a
series-parallel HEV is required to predict the vehicle's future
behavior, where this model includes the engine speed w,
(rad/sec), motor speed w,, (rad/sec), and SOC are designated
as the state variables. While the engine torque T, (N.m),
motor torque T,,(N.m), and generator torque T, (N.m) are set
as manipulated variables (MVs), and each the vehicle
velocity (km/h) and SOC are the plant outputs.

To implement the Nonlinear MPC controller block needs
to define the state equations of the nonlinear plant model
(@, @, and SOC) which are (9), (10), and (16)

respectively, and also need to determine their Jacobian
equations using (29). Also, this block needs the output
equations of the nonlinear plant model (the vehicle velocity
and SOC) and their Jacobian equations are determined by the
following (29). In addition to setting the constraints for each
of the state variables, the manipulated variables (MVs), and
the output variables, as in (27). The second block also needs
the values of the manipulated variables from the previous
sampling step and the values of the state variables received
by the third block for the purpose of finding the optimal
torques values for each of the engine, motor, and generator
to apply them to the third block, which represents the vehicle
model (the powertrain and vehicle dynamic equations).

The aim of this simulation is to study the possibility of
making the vehicle drive the required speed and also make
the state of charge of the battery at the desired value, and that
this is all done with minimal fuel consumption To
accomplish this, we construct the objective function as
shown in (28), since the objective function is composed of
two parts where the first part of the objective function is
represented by the first part of the standard cost
function(30), which is called output reference tracking. In
order to implement this part, the reference values for each of
the outputs variables (vehicle speed and SOC) are received
from the first block and the weight coefficients of the output
variables are determined where the values 100 and 200 are
chosen for each of the weight coefficients for the output
variables (vehicle speed and SOC) respectively. As for the
second part of the objective function, it is the custom cost
function shown in (17).

After completing the simulation of the series-parallel HEV
model, the results obtained were good because the vehicle
control unit was able to achieve the desired objectives. Fig.6
shows the state variables are the engine speed w,, (rad/sec),
motor speed w,, (rad/sec), and SOC. where it is observed
that the state variable SOC changes between two values
(65.2%) and (64%) during the driving cycle and this is a good
result in tracking the desired value (65%), and this change is
considered a small, insignificant change. While the outputs
of the control unit are the optimal values of the manipulated
variables (MVs) (engine torque (Nm), motor torque (Nm),
and generator torque (Nm)) which are obtained by solving
the optimization problem (minimizing the cost function
subject to the nonlinear prediction model and physical
constraints of the vehicle). Where Fig.7 represents these

Engine speed

0 200 400 600 800 1000 1200
Motor speed

0 200 400 600 BOO 1000 1200
s0C

0 200 400 600 800 1000 1200
Time (seconds)

Fig.6: The state variables trajectory
these optimal values that are applied to the engine, motor,
and generator to drive the vehicle in order to achieve
tracking of each of the reference values of the vehicle speed
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and SOC as well as focus and attention to obtain the best
possible minimization in fuel consumption.

Engine torque

100 {
Z 50
0

0 200 400 600 800 1000 1200
Mator torque

0 200 400 600 80O 1000 1200

‘Generator torque

0 200 400 800 1000 1200

Fig.7: The trajectories of the optimal manipulated variables

It is noted that the tracking and dynamic response of the
reference speed of the series-parallel HEV is good as shown
in Fig.8, where the series-parallel HEV model was able to
travel 10.9 km and the total fuel used was 0.4482 liters during
the New European Driving Cycle (NEDC), and it is
considered a good result in terms of improving fuel
consumption. In the end, it can be said that a model of the
hybrid electric vehicle was able to achieve the objectives
required of it.

[— Vehicle Speed — Refference Speed|

120

100

Speed (km/h)

40

0 200 400 600 500 1000 1200
Time (seconds)

Fig.8: Series-parallel HEV speed by using NMPC strategy

VIIl. CONCLUSIONS

To implement the NMPC control strategy for power
management among the hybrid electric vehicle's energy
converters, the nonlinear optimization problem must first be
appropriately created, which includes the cost function
subject to the physical constraints of the vehicle and the
mathematical prediction model that is used to evaluate the
vehicle's future behavior based on the wvehicle's current
measurements which are state variables and control inputs.
In this study, this strategy improved the fuel consumption
and dynamic performance of the vehicle as well as
maintained the state of charge (SOC) of the battery at the
desired value, they are formulated in the cost function.
Secondly, this strategy solves the constrained nonlinear
optimization problem by using the SQP algorithm at each
sampling step to find the optimum values torque of the
engine, motor, and generator to provide the power required
to drive the vehicle. This strategy was able to achieve the
required objectives of making the vehicle go at the required
speed with the best fuel consumption, in addition to making
the value of the state of the charge of the battery at the desired
value. This indicates that the strategy was able to supply the
motor with electrical energy, either the generator or the
kinetic energy captured from the deceleration of the vehicle
so that the state of the charge remains close to the desired

value. Although this strategy makes many calculations, it
was able to implement all the optimization tasks required of
it well due to its ability to find the optimal operating points
for energy converters in this vehicle. It is possible to benefit
from this study by comparing the NMPC control strategy
with other energy management strategies for the same
vehicle, in addition to the possibility of using the
mathematical model equations for this vehicle in other
studies.
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