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Abstract 

Searchable encryption (SE) is an interesting tool that enables clients to outsource their encrypted data into external cloud 

servers with unlimited storage and computing power and gives them the ability to search their data without decryption. The 

current solutions of SE support single-keyword search making them impractical in real-world scenarios. In this paper, we 

design and implement a multi-keyword similarity search scheme over encrypted data by using locality-sensitive hashing 

functions and Bloom filter. The proposed scheme can recover common spelling mistakes and enjoys enhanced security 

properties such as hiding the access and search patterns but with costly latency. To support similarity search, we utilize an 

efficient bi-gram-based method for keyword transformation. Such a method improves the search results accuracy. Our scheme 

employs two non-colluding servers to break the correlation between search queries and search results. Experiments using real-

world data illustrate that our scheme is practically efficient, secure, and retains high accuracy. 
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I.  INTRODUCTION 

     Due to the appealing services provided by cloud 

computing, clients and even business are encouraged to 

upload their private data (health records, e-mails, private 

accounts, bank, and financial accounts) into the cloud servers 

for lowering the storage and computing costs at local 

devices. However, cloud servers, are usually assumed as 

untrusted entities. So, private data should be encrypted 

before being uploaded to preserve data confidentiality. 

However, this treatment disables the majority of data 

management services such as searching and indexing. To 

solve this problem, researchers have developed searchable 

encryption (SE) schemes that enable clients to search their 

encrypted data at the server-side without the need for 

decryption. Search operation should protect the privacy of 

data and even the search queries as they may contain private 

keywords. 

SE schemes work by generating a searchable index I from 

the entire file collection. Such index could be either forward 

index, which builds a separate index for each file a reverse 

index that maps each keyword w within file collection with 

the set of file identifiers (IDs) whose corresponding files 

include w. Data owner uploads the encrypted file collection 

along with the encrypted index into the remote server. 

During the search, a client provides a keyword (or even 

multi-keywords) and generates a search token by using a 

secret key. Such a token is used by the server to search the 

encrypted index to find the matched identifiers without 

revealing the keywords of neither the file collection nor the 

query. For efficiency purposes, the majority of SE schemes 

leak the access pattern (the search results) and the search 

pattern (whether or not some keyword is searched before) to 

the cloud server. However, some studies have illustrated that 

such leakage may leak the client queries when combined 

with some background knowledge [1].  

The earlier SE schemes support only a single keyword search 

(e.g., [2-5]), which returns too many items with only a few 

relevant items.    The first SE scheme was proposed by Song 

et al. [2], which used two layers to encrypt each keyword of 

a textual file. During the search, the encrypted file is scanned 

sequentially to find matching. Goh [3] has built a forward 

index (as a Bloom filter) for each file. This means that search 

time is linear to the number of files. Curtmola et al.’s scheme 

[4] is considered one of the most efficient SE schemes, where 

the reverse index is used to improve search complexity into 

sublinear search (proportional to the number of files that 
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share a keyword). Chang et al.’s scheme [5] has the same 

search complexity of [3] but with a better security definition. 

However, these schemes do not support the ranked search. 

The schemes of [17, 18] have addressed the ranked search 

problem, where the frequencies of keywords are considered 

during the search. Unfortunately, these two schemes still 

support only a single keyword search. Later, many SE 

schemes have been proposed to support multi-keyword 

search (e.g., [6-8]), where queries incorporate several 

keywords and results are refined and returned according to 

their relevance scores. However, all of the above-mentioned 

schemes support only exact search, where no files are 

returned when incorrect (misspelled) keywords are provided. 

Thus, several schemes have been proposed to support fuzzy 

search (e.g., [9-12]), that handle the spelling errors in 

searched keywords. For instance, the solution of [9, 10] 

builds a keyword dictionary for each indexing keyword. For 

example, the dictionary of keyword “car” within edit 

distance 1 is {car, *car, c*a, ca*}.  However, this method 

supports only a single keyword search at the expense of more 

storage costs.   

 

Wang et al. [13] proposed the first scheme (we called it 

MKFS) to solve the problem of multi-keyword similarity 

search over encrypted data without the need for a predefined 

dictionary. In MKFS, each file (and query) is indexed as a 

Bloom filter (binary vector). Such index is constructed by 

extracting the keyword set of that file and hashing those 

keywords several times to determine the bit locations that 

will be set to one. Keywords are transformed into a bi-gram 

vector to be hashed using LSH functions. Under such a 

setting the similarity between two files will be captured by 

applying the inner product for their corresponding Bloom 

filters. Since LSH functions are used, the misspelled 

keywords are mapped into the same locations of the correct 

keyword with a high chance. The most important property of 

MKFS was ignoring the need for a predefined dictionary. 

However, this scheme suffers from many problems.  From a 

security perspective, it leaks the access and the search 

patterns, which lead to disaster consequences on the data 

security [1, 14, 15]. In addition, this scheme loss the ability 

to match the keywords of the same roots such as “compute” 

and “computing”. Finally, MKFS does not consider the 

weight of keywords during ranking.  

 

In this work, we propose a multi-keyword similarity search 

over encrypted data that recover the problems of MKFS. Our 

proposed scheme uses the same index of MKFS but it enjoys 

a better security level, where it hides both search and access 

patterns along with protecting file confidentiality and query 

privacy. To do so, we encrypt each file vector (and query 

vector) by using the homomorphic encryption method. 

Furthermore, our two-server solution hides the search pattern 

leakage which is common in the literature. In this work, we 

do not consider the security of the actual files as the can be 

protected using any secure cryptographic method like AES.  

Our contributions can be summarized as follows: 

1) A secure scheme is proposed and implemented that 

supports multi-keyword similarity search. 

2) Each keyword is converted to its root before being 

indexed. This contributes to reduce the number of 

distinct keywords in the file and thus reducing the cost 

of building the indexes. Furthermore, stemmed 

keywords have higher chance to be matched. 

3) Returned results are ranked using the term frequency 

(TF) of each keyword. Thus, relevant files to the 

provided query will have large scores. 

4) The proposed scheme ensures high-security guarantees 

by exploiting Paillier encryption [16] to encrypt file and 

query vectors.  

5) The accuracy and efficiency of our proposed scheme 

were investigated by experimental results on real data 

set.  

The remaining sections for this paper are: Section II reviews 

the most relevant works. Section III describes problem 

formulation. Section IV presents the theoretical background 

for techniques used within the paper. Section V describes our 

proposed scheme, discussion. Section VI describes security 

analysis. Section VII reports performance comparison and 

experimental results. Section VIII draws the paper 

conclusion. 

II. RELATED WORKS 

Related works on SSE schemes can be divided into the 

following topics. 

A. Multi-keyword search 

    The single keyword search has limited usability. Cao et al. 

[19] proposed the first scheme that supports multi-keyword 

ranking search. They used a vector space model to describe 

files as numerical vectors and adopt the "coordinate 

matching" similarity measure to evaluate the relevance 

between files and query. The relevance scores are captured 

by calculating the inner product between files and query 

vectors. The search results are ranked by these relevance 

scores. The main drawback of Cao et al.’s scheme is its 

efficiency, where files are described as very long vectors. 

Sun et al. [20] improve the work of [19], where a tree data 

structure is used to store the searchable index. They used 

term-frequency, vector space model, and cosine similarity 

for search ranking. Li et al. [21] exploit the access time of 

each keyword to enhance the ranking method. However, 

these aforementioned schemes only support multi-keyword 

ranking search for exact keywords. In contrast, our scheme 

can handle misspelled keywords. 

B.  Fuzzy keyword ranked search 

    The previously mentioned schemes support exact keyword 

search (i.e., results are returned just when the same keywords 

are provided), and hence such schemes fail if typos keywords 

are searched for. To solve this problem, li et al. [9] 

considered the first scheme that supports fuzzy keyword 

search. Particularly, they used a wildcard technique to obtain 

the keyword fuzzy sets, which list all the possible forms of 
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the given keyword. This scheme takes a lot of storage. li et 

al. [10] solve this drawback by using the gram method to 

obtain smaller keyword fuzzy sets. Wang et al. [11] also used 

wildcard with edit distance to support fuzzy search but using 

the tree data structure. Kuzu et al. [12] used the minhash 

technique to construct an efficient reverse index. These 

schemes only support a single keyword ranking search. 

Later, the Bloom filter is used in [13, 22] to improve the 

search and storage efficiency. Furthermore, such schemes 

utilized LSH to insert the fuzzy set of each keyword in the 

Bloom filter. Wang et al. [23] use a score table to support 

fuzzy ranking search. Fu et al. [24] enhance the accuracy of 

Wang et al.’s scheme [13]. In their work, keywords are 

transformed by using uni-gram vectors. Semantic search was 

introduced by Moataz et al. [25] and Fu et al. [26], where 

keywords are extended by their semantic forms.  

 

III. PROBLEM FORMULATION 

In this section, we formalize the problem of multi-keyword 

similarity ranked search over encrypted data. Table 1 collects 

the notations that are used within this paper. 

 

A. System model 

Our proposed scheme (which is illustrated in Figure 1) 

consists of four different entities: data owner, data user, file 

server, and search server. The two servers are assumed to be 

non-colluding servers and both servers constitute the cloud 

server. The cloud server has huge storage service and 

unlimited computational power. The reason behind using 

two servers is to cut the link between queries and the 

matching file identifiers, which hides the search pattern. 

 

1)  Data owner (DO): a party that has 𝑛 textual files 𝐹 =

( 𝑓1, 𝑓2, … , 𝑓𝑛) . DO is assumed to not has sufficient 

storage so DO outsources his data to the cloud server. 

DO encrypts his data to get the encrypted collection 𝐶 =

( 𝑐1, 𝑐2, … , 𝑐𝑛) and outsource 𝐶 to the cloud server. Do 

also constructs from 𝐹  a searchable index 𝐼  that is 

outsourced also to the cloud server to enable an efficient 

search. In this work, we consider the forward index 

setting, where each file has its own index. Thus, 𝐼 is the 

union of the file indexes.  

2) Data Users (DU): An entity (authorized entity) that has 

query 𝑞  of multi-keywords, DU generates the search 

token T from 𝑞 using a secret key, then sends 𝑇 to the 

search server SS. The latter measures the similarity 

scores with the help of file server FS and return the 

ranked scores to FS, who forwards their corresponding 

files to DU.  

3) Search server (SS): This server stores index I. When it 

receives the search token 𝑇 from DU, it computes the 

encrypted similarity scores between 𝑇 and all files and 

sends the encrypted scores to the file server FS. 

4) File server (FS).  This server stores the encrypted 

collection 𝐶  and helps SS to compute the encrypted 

similarity scores. FS decrypts the scores and sends them 

back to DO, who correlate each score with its proper file 

identifier and selects only the best 𝑘  matching 

identifiers. DO asks FS to download the actual files in 

another round.  

TABLE 1  

COMMON NOTATIONS 

Symbols Descriptions 

𝑊 The keyword set, 𝑊 = {𝑤1, … , 𝑤𝑚}  

𝑚 The number of keywords 

𝐹 The file collection, 𝐹 = {𝑓1, … , 𝑓𝑛} 

𝑛 The number of files in 𝐹 

𝐶 The encrypted file collection, 𝐶 =
{𝑐1, … , 𝑐𝑛} 

𝐼 Searchable index 

𝑝𝑘𝑝 Public key for encryption 

𝑠𝑘𝑝 Private key for decryption 

𝑞𝑖 ith query in the query set. 

𝑇 The search trapdoor of keywords 

𝑘 Number of returned files 

𝐵𝐹(𝑓) The Bloom filter of file 𝑓 

⟦𝐵𝐹(𝑓)⟧ The  encrypted Bloom filter 

𝛾 Bloom filter size 

𝑙 Number of hash functions 
PPT Probabilistic polynomial time 

 

 
 

Fig. 1: The system model 

B. Security Model 

In this paper, we follows the same model of [24, 27, 28], 

which propose that both DO and DU are trusted parties. 

However, SS and FS are assumed to be “honest-but-curious” 

servers as in [3, 9, 23]. This means that they honestly perform 

search and ranking operations but try to obtain some 

additional sensitive information through the received 

messages. Therefore, the file collection, index, and queries 

should be encrypted before outsourcing to servers. 
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Additionally, we consider that the two involved servers there 

are non-collusion, as adopted by most previous solutions 

[28-30].       

C. Design Goals 

     Our scheme is designed to achieve the following goals: 

1) Multi-Keyword similarity search: The primary goal of 

our scheme is to search with multi-keyword misspelled 

queries. For instance, “netward securaty” should return 

a file that includes “network security”. 

2) No predefined dictionary: Our scheme does not require 

any keyword dictionary in contrast to many previous 

works [4, 9, 20].  

3) Support ranking results: Our scheme should return the 

top 𝑘-relevant files. 

4) Result efficiency and accuracy: Our scheme should 

obtain the results of a similarity search as efficiently and 

accurately as possible.  

5) Security requirements: our design prevents the 

adversary servers from getting useful information about 

the files, indexes, and search queries. The security 

requirements are defined as follows: 

A. Index confidentiality and query privacy:  The index 

representation of files and queries should protect 

the underlying keywords from the cloud server.  

B. Search pattern privacy (unlinkability): when two 

search queries 𝑞1 , 𝑞2 are issued by users then the 

cloud server should not deduce that such queries 

include common keywords.  

C. Access pattern privacy: when search results (file 

identifiers) are known only to the owner of the 

query, we say that the searchable scheme supports 

access pattern privacy. This means that the cloud 

server, should not learn the search results. 

IV. BACKGROUND 

This section describes briefly the techniques employed in 

this work. 

 

1) Keyword stripping: stripping [31, 32] is a technique 

that aims to reduce the variant forms of a given 

keyword into a fixed form. A stemming technique 

for English, for the keywords “searches”, 

“searched”, and “searching” would be “search”. 

Information retrieval systems adopt widely this 

technique to enhance search efficiency. 
2) Bloom Filter (BF): Bloom filter is an efficient data 

structure used for storing elements and checking their 

membership. It is used to represent a set of elements as 

𝛾-bit vector of zero elements. To represent a set 𝑆 =

 {𝑠1, … , 𝑠𝑔} in BF, we use l independent hash functions 

from 𝐻 =  {ℎ𝑖  | ℎ𝑖 ∶  𝑆 →  [1, 𝛾], 1 ≤  𝑖 ≤  𝑙}, and BF 

inserts an element 𝑠 ∈  𝑆  by setting  the 𝑙   positions 

ℎ𝑖  of the vector BF to 1. To check if an element 𝑠’ is in 

𝑆, we check all the bits at positions {ℎ𝑖(𝑠’), 1 ≤  𝑖 ≤

 𝑙 }. The 𝑠’ is present in 𝑆 if all bits at these positions are 

1. However, in some probability, there is a false positive, 

in this case 𝑠’ seems to be in 𝑆 but indeed it is not. False 

positive occurs since each position may be set to 1 by 

some other elements. However, the rate of false positive 

of 𝛾 -bit BF is nearly (𝑙 − ⅇ
−

𝑙𝑔

𝛾 )𝑙 . The optimal rate of 

false positive is 1/2𝑙, where l = 
𝛾

𝑔
 · ln2. 

3) Locality-Sensitive Hashing (LSH): LSH is a hashing 

algorithm used within the nearest neighbor search [33, 

34]. An LSH function uses a set of hash functions to 

hash data items s.t close items produces with high 

probability the same outputs. LSH uses a hash function 

family 𝐻 which is (𝑟1, 𝑟2, 𝑝1, 𝑝2)-sensitive that holds:  

       if   𝑑𝑖𝑠𝑡(𝑠, 𝑡)  ≤  𝑟1;  𝑃𝑟 [ℎ(𝑠)  =  ℎ(𝑡)]  ≥  𝑝1   (1)  

       if   𝑑𝑖𝑠𝑡(𝑠, 𝑡)  ≥  𝑟2;  𝑃𝑟 [ℎ(𝑠)  =  ℎ(𝑡)]  ≤  𝑝2   (2)  

where 𝑑𝑖𝑠𝑡(𝑠, 𝑡) is the distance metric between the two 

points, 𝑟1, 𝑟2 are two distances defined by users, and 𝑝1, 

𝑝2  are two properties s.t 𝑝1 > 𝑝2 .  Particularly, we 

employed the p-stable LSH function which hash the 

vector 𝑣 as follows: 

ℎ𝑎,𝑏(𝑣) =  [
𝑎⋅𝑣+𝑏

ω
]                 (3) 

 

Where a is a numerical vector, 𝑏 ∈ [0, ω]  and ω  are 

fixed constants. 

4) Homomorphic Encryption: We use homomorphic 

encryption to perform certain computations on 

ciphertexts. Particularity, we utilized Paillier 

cryptosystem [16], which provides the following 

homomorphic properties on field ZN: 

𝐸(𝑎 +  𝑏)  =  𝐸(𝑎)  ·  𝐸(𝑏) 𝑚𝑜𝑑 𝑁2 

𝐸(𝑎𝑏)  =  𝐸(𝑎)𝑏 𝑚𝑜𝑑 𝑁2 

Paillier encryption is secure against chosen-plaintext 

attack (CPA) and its security is proved under the 

assumption of decisional composite residuosity [16]. 

Paillier cryptosystem uses the public key 𝑝𝑘𝑝  =  (𝑁 =

 𝑝𝑞, 𝑔) for encryption, where 𝑔 = 𝑁 + 1, and 𝑝 and 𝑞 

are two primes of equivalent length chosen randomly 

and independently, and uses the private key 𝑠𝑘𝑝 =

(𝜙(𝑁), 𝜙(𝑁)−1 𝑚𝑜𝑑 𝑁) for decryption, where 𝜙(𝑁) =
(𝑝 − 1)(𝑞 − 1) , And 𝜙(𝑁)−1 stands for the modular 

multiplicative inverse. The encryption of the message 

𝑥 ∈ 𝑍𝑁 is denoted by ⟦𝑥⟧, which is computed as ⟦𝑥⟧ =

 𝑔𝑥  . 𝑟𝑁  𝑚𝑜𝑑 𝑁2  for some random 𝑟 ∈  𝑍𝑁
∗  . A 

ciphertext is decrypted as 

x=𝐿(⟦𝑥⟧𝜙(𝑁) 𝑚𝑜𝑑 𝑁2 ). 𝜙(𝑁)−1  𝑚𝑜𝑑 𝑁 , where  L(u) 

= 
𝑢−1

𝑁
 . 

V. THE PROPOSED SCHEME 

This section presents our construction for multi-keyword 

similarity search over encrypted data. 
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A. Overview 

Our scheme builds a searchable index for each file 𝑓. This 

index represents all the keywords of  𝑓, and it is represented 

as a 𝛾-bit Bloom filter (BF). To build the file index, we first 

extract each distinct keyword 𝑤  in 𝑓  and convert it into a 

single vector. Then we use several functions to map this 

vector. Hash values determine the positions of  BF that will 

be set to one. However, traditional hash functions are 

suitable only with exact keywords. Our scheme is designed 

to capture similar keywords, thus we replace standard hash 

functions with LSH functions that has the ability to hash 

similar keywords into the same positions. To enhance 

ranking functionality, we store the keyword frequency at 

each computed position. For protecting privacy, we uses 

Paillier encryption to encrypt the elements of BF before 

uploading it to the cloud server. Search queries are generated 

and encrypted in the same way of the document files. During 

search we measure the secure inner product between two 

encrypted vectors. To solve this challenging problem, we 

used a secure protocol with two-not colluding servers. The 

main steps of this scheme are explained as follows. 

B. Basic steps of the proposed scheme 

Figure 2 illustrates the basic steps of the proposed scheme. 

Notice that encryption steps are omitted for clarity purposes.  

 

 
Fig. 2: The main steps of our scheme. 

1) Feature Extraction: Suppose we have the file  , we 

extract indexing keywords from the file 𝑓 . Let 

{𝑤1, … , 𝑤𝑧} be the set of distinct keywords in 𝑓. 

2) Stemming Algorithm: We perform Porter algorithm [31] 

to transform each keyword into its original form.  

3) Keywords transformation: Keywords are transformed 

from string type into bigram vector representation in 

order to be used by the LSH functions. Bigram vector is 

generated for each keyword as bellow. First, we extract 

a bigram set from keyword w. This set contains all the 

adjacent two letters existed in the keyword. For 

example, a keyword “secrecy” has the bigram set {se, 

ec, cr, re, ec, cy}. Then a bigram set is represented as a 

262-bit long vector. If the bigram appears in the bigram 

set of a given keyword, the relevant coordinate in the 

bigram vector will be set to one. Otherwise, it will be 

zero. This representation is unaffected by misspelling 

location. Furthermore, it is also unconcerned about 

which letter was misspelled. For example, “sacrecy”, 

“swcrecy”, and “secresy” will be hashed to a bigram 

vector that varies by some elements from the main 

vector. Under this setting, misspelled keywords still be 

expressed in a vector that is very similar to the right one. 

This representation is stable, inclusive, and enables the 

application of LSH functions.  

4) Bloom filter construction: In this step, the bigram 

vectors of distinct keywords of 𝑓  are mapped into a 

single Bloom filter 𝐵𝐹(𝑓) that represents the index of 

𝑓 .  Traditional Bloom filters utilize standard hash 

functions. In this paper, we use l LSH functions instead. 

LSH functions ensure that that "close" vectors will 

produce, with high probability, the same output. To 

construct the 𝐵𝐹(𝑓), we first define 𝑙  LSH functions 

which use bigram vectors as input and hash them several 

times. Then we initialize an 𝛾-zero bit 𝐵𝐹(𝑓).  Each 

bigram vector is hashed l times, so that the 

corresponding locations in the 𝐵𝐹(𝑓) are set 1. In this 

way, misspelled keywords are mapped to identical 

locations in 𝐵𝐹(𝑓) . Hence, the similarity keyword 

search can be realized. For example (as illustrated in Fig. 

2.), a misspelled keyword “securite” is mapped into the 

same output of the proper keyword “security” so, during 

the search process, a match can be realized. Thus, the 

key to applying similarity search is to use LSH functions 

to build a Bloom filter index for each file. The index 

𝐵𝐹(𝑞) of query file 𝑞 is also constructed in the same 

way.  

5) File matching: As shown in Figure 2, a Bloom filter 

represents files and queries as vectors. Hence, a 

similarity score between file and query can be achieved 

by computing a simple inner product between their 

corresponding vectors. If a file contains the query 

keywords, then both corresponding vectors will share 1 

at the same locations, so a high value will be assigned to 

the matching score.  

6) Ranking improvement: To guarantee that the results 

meet the user's requirements well, term frequency 

𝑡𝑓 (keyword frequency) is used to represent the 

relevance of files.  To do so, we set the locations of 

Bloom filer, which are determined by hash functions, to 

the 𝑡𝑓  of the corresponding keyword. If multiple 

keywords are mapped to identical locations, we store the 

average of their term frequencies. Hence, if a particular 

file includes a large number of keywords from the 

provided query, then it will receive a great chance to be 

included in the best matching results. If two files have 

the same keywords, the file with the highest matching 

score will appear first in the returned results.  

7) Index protection. Bloom filter hides the underlying 

keywords and their frequencies but such filters are 

constructed in a deterministic procedure. A 
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deterministic process discloses the search pattern. 

Specifically, the server can figure out if the same query 

vector has been queried previously. Moreover, because 

the  file indexes (Bloom filters) are stored at the server 

in plaintext, the server can reveal the files’ identifiers 

that are similar to the queried file, this is the access 

pattern.  To hide this leakage, we encrypt the Bloom 

filters before being uploaded to the cloud server. 

However, because the server should perform a similarity 

search, the encryption should be homomorphic 

encryption since it enables performing some arithmetic 

operation without the need for decryption. We use the 

Paillier cryptosystem [16] as the instance of 

homomorphic encryption to protect both the file index 

and query index. Recall that the similarity between two 

encrypted vectors is computed using their inner product. 

Hence, the server should produce the encrypted score by 

utilizing the inner product among ciphertext  vectors. 

Observe that, the inner product between two numerical 

vectors is the addition of the sub-multiplications 

corresponding to the coordinates of the two involved 

vectors.  The secure multiplication of two numbers is 

denoted by ⟦𝑥𝑦⟧ 𝑚𝑜𝑑 𝑁2.  However, the multiplication 

of two encrypted numbers is not supported by the 

homomorphic properties of Paillier encryption and 

hence such an operation requires special treatment.  To 

perform the secure multiplication, we use a second 

server that has access to the Paillier private key. This 

second server is assumed not to collude with the first 

server and hence it does not need to be trusted. The first 

server utilizes the homomorphic addition property to 

mask the two multiplication numbers by using random 

numbers. The masked results are moved to the second 

server who decrypts the received numbers, multiplies 

the masked number, and then encrypts the result. The 

first server homomorphically subtracts the random 

numbers and obtains the result of encrypted 

multiplication. Algorithm 1 illustrates how to multiply 

two encrypted numbers. 

Algorithm 1 Secure Multiplication (⟦𝑥. 𝑦⟧) 

SS:  

Input: 𝑥, 𝑦  
Output: 𝑥′, 𝑦′ 
     pick random 𝑛1, 𝑛2 𝑚𝑜𝑑 𝑁 

     𝑥′ =  ⟦𝑥⟧   ×  ⟦𝑛1⟧  =   ⟦𝑥 + 𝑛1⟧ 

     𝑦′ =  ⟦𝑦⟧  ×  ⟦𝑛2⟧   =  ⟦𝑦 + 𝑛2⟧ 

     send 𝑥′, 𝑦′ to FS 

FS: 

Input: 𝑥′, 𝑦′   
Output: ℎ′ 
       𝐷ⅇ𝑐(𝑥′)  =  𝑥 + 𝑛1 

           𝐷ⅇ𝑐(𝑦′)  =  𝑦 + 𝑛2 

    ℎ =  𝐷ⅇ𝑐(𝑥′)  ×  𝐷ⅇ𝑐(𝑦′) 𝑚𝑜𝑑 𝑁 

                            ℎ =  𝑥𝑦 +  𝑦𝑛1  +  𝑥𝑛2  +  𝑛1 𝑛2 𝑚𝑜𝑑 𝑁 

    ℎ′ =  ⟦ℎ⟧ 

    send ℎ′ to SS 

SS: 

Input: ℎ′   
Output: ⟦𝑥. 𝑦⟧ 

    ⟦𝑥. 𝑦⟧  =  ℎ′ ×  ⟦𝑥⟧𝑁−𝑛2  ×  ⟦𝑦⟧𝑁−𝑛2  
×  ⟦𝑟1𝑟2⟧𝑁−1 𝑚𝑜𝑑 𝑁2 

The dot product can be estimated by using a secure 

multiplication algorithm between the encrypted numbers of 

Bloom filters and then perform homomorphic additions on 

the partial results. All items of the Bloom filters are protected 

using the method of Paillier encryption, with 𝑝𝑘𝑝  as 

⟦𝐵𝐹(𝑓)⟧  = (⟦𝐵𝐹(𝑓)[1]⟧, … , ⟦𝐵𝐹(𝑓)[𝛾]⟧). The secure dot 

product is calculated as: 

 

⟦𝑠ⅇ𝑐𝑢𝑟ⅇ𝐷𝑃 (𝐵𝐹(𝑓𝑖), 𝐵𝐹(𝑓𝑗))⟧ = ∑ ⟦(𝐵𝐹(𝑓𝑖)[𝑝]). (𝐵𝐹(𝑓𝑗)[𝑝])⟧
𝛾
𝑝=1 (4) 

 

Consider the encrypted Bloom filters 𝐵𝐹 =
 {⟦𝐵𝐹(𝑓1)⟧, . . . , ⟦𝐵𝐹(𝑓𝑛)⟧}  and a query Bloom filter 

⟦𝐵𝐹(𝑞)⟧,  the search server computes the encrypted dot 

product between the file query and each other file. 

Calculating dot products entails the computation of secure 

multiplication between encrypted Bloom filters, which is 

carried out with the help of the file server. The search server 

permutes the encrypted scores by using a random 

permutation 𝜋 provided by the search user. This permutation 

conceals the relation between the similarity scores and the 

real file identifiers from the file server. Since a random 
permutation is provided by the user for each query, the file 

server is not able to perform any possible inference attack. 

The permuted encrypted scores are then uploaded to the file 

server, which uses the private key to decrypt them and send 

them back to the user. The user performs the inverse of the 

permutation to get the actual file identifiers with the 

maximum dot product. Algorithm 2 shows the secure 

similarity search. 

 Algorithm 2 Secure similarity Search  
SS: 

Input: ⟦𝐵𝐹(𝑓1)⟧, … , ⟦𝐵𝐹(𝑓𝑛)⟧ : 𝑛 encrypted Bloom filters 

- ⟦𝐵𝐹(𝑞))⟧ : query Bloom filter, 𝜋 : random 

permutation   

- for each  ⟦𝐵𝐹(𝑓𝑖)⟧  ∈  𝐵𝐹 do   

o ⟦𝑑𝑜𝑡⟧  =  ⟦0⟧  
o for 𝑗 =  1 𝑡𝑜  𝜆 do  

                             ⟦𝑑𝑜𝑡⟧  =  ⟦𝑑𝑜𝑡⟧. 
                      ⟦𝑠ⅇ𝑐𝑢𝑟ⅇ𝐷𝑃(𝐵𝐹(𝑓𝑖), 𝐵𝐹(𝑞))⟧  

o ⟦𝑆𝑐𝑜𝑟ⅇ𝑠[𝑖]⟧ =  ⟦𝑑𝑜𝑡⟧ 

- Permute  { ⟦𝑆𝑐𝑜𝑟ⅇ𝑠[1]⟧, … , ⟦𝑆𝑐𝑜𝑟ⅇ𝑠[𝑛]⟧}  with 

random permutation 𝜋 and send the result to FS 

FS:  

Input: permuted encrypted scores 

-  Decrypt Scores  and send the results to the user 

DU:  

- Perform the inverse permutation 𝜋 on the similarity 

scores to associate them with their actual identifiers 

- Sort the scores to get file identifiers with maximum 

dot product.  
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C. Scheme Details  

This section shows more details for our scheme. Our scheme 

is based on public key based encryption and it is composed 

of four PPT algorithms: 

• KeyGen(λ): This algorithm receives the security parameter 

λ, and outputs public key 𝑝𝑘𝑝  for Paillier encryption  and 

private key 𝑠𝑘𝑝 for Paillier decryption. 

• IndexConstruction (𝑓, 𝑝𝑘𝑝 , 𝑙, 𝛾): This algorithm is run by 

the data owner to build the encrypted Bloom filter ⟦𝐵𝐹(𝑓)⟧ 

for the file 𝑓,  This algorithm uses 𝑙  LSH hash functions 

ℎ: {0,1}262
→ {0,1}𝛾 to hash the keywords of 𝑓  and builds 

𝐵𝐹(𝑓), then it encrypts 𝐵𝐹(𝑓) by 𝑝𝑘𝑝 to get  ⟦𝐵𝐹(𝑓)⟧ = 

( ⟦𝐵𝐹(𝑓)[1]⟧, … , ⟦𝐵𝐹(𝑓)[𝛾]⟧ ) . Note that, since Paillier 

encryption is semantically secure, the encryption of the same 

numbers will produce with high probability (almost 1) a 

unique ciphertext. 

• TokenGeneration (𝑞, 𝑝𝑘𝑝, 𝑙, 𝛾): This algorithm is run by 

the authorized user, who knows the value of 𝑝𝑘𝑝, to generate 

the search token ⟦𝐵𝐹(𝑞)⟧ = (⟦𝐵𝐹(𝑞)[1]⟧, … , ⟦𝐵𝐹(𝑞)[𝛾]⟧)  

for the file 𝑞 as the same way for generating the encrypted 

Bloom filters. 

• SecureSearch (⟦𝐵𝐹(𝑞)⟧, ⟦𝐵𝐹⟧, 𝜋 ): This protocol is run 

between  the SS and the FS to answer the search token 

⟦𝐵𝐹(𝑞)⟧ as explained in Algorithm 2.  

Discussions. When a file 𝑓 appears in the search results for 

a given query 𝑞, this means that the keywords of that file 

match the keywords of 𝑞. If the keywords of 𝑞 are a subset 

of the keywords of 𝑓, then 𝑓 should be included in the result 

set. This is because keywords of both files will set 1 to the 

same positions of the corresponding Bloom filters as we use 

the same l hash functions for all files. So the inner product 

between 𝑞  and 𝑓  will be a higher value. Hence, the file 𝑓 

appears in the result set.  When keyword 𝑤 of 𝑞 is slightly 

different from the word 𝑤 of 𝑓 (i.e., 𝑑(𝑤’, 𝑤)  ≤  𝑟1, where 

𝑟1 is a threshold defined in LSH), our scheme also can return 

𝑓 with high probability. File 𝑓 will be included in the results 

when for all the 𝑖 = 1, … , 𝑙, we have ℎ𝑖(𝑤)  =  ℎ𝑖(𝑤′).  A 

missing case happens only when 𝑑(𝑤’, 𝑤)  ≤  𝑟1  but 

ℎ𝑖(𝑤)  ≠  ℎ𝑖(𝑤′). Observe that when  𝑑(𝑤’, 𝑤) >  𝑟1, then 

there is a low probability for hashing the two keywords in the 

same positons. 

Now suppose that keyword 𝑤  in 𝑓  matches with one 

keyword of  𝑞  but 𝑑(𝑝, 𝑞)  >  𝑟2 , this case is called false 

positive and it is introduced to our scheme due to the use of 

𝐵𝐹(𝑓) and the locality sensitive hashing method. Notice that 

the false positive rate of a Bloom filter of size 𝛾 that stores n 

elements by using 𝑙 hash functions is (1 − 1
𝑚⁄  )𝑙𝑛. While 

𝑝2
𝑙 is the false positive introduced by LSH. 

 

Dynamic scheme.  Our scheme generates a separate index 

for each file, so to add new files, we only need to generate 

their own indexes and upload them to the search server. 

Removing files is trivial.  

VI. SECURITY ANALYSIS 

In this section, we discuss the security properties of our 

proposed scheme. Recall that the actual files are encrypted 

and uploaded to the file server. However, such files are 

usually encrypted using and CPA-encryption method that 

does not reveal any information to the server beyond the 

number of files and their actual sizes. Thus we do not 

consider the leakage of actual files on our discussion about 

the security of the proposed scheme. We consider only the 

security of the index and search queries. 

During our scheme, the index of files and search queries are 

generated in a similar way, so the argument about file 

confidentiality and query privacy will be identical.  

Bloom filter representation provides file confidentiality. 

Since all files are mapped into a fixed bloom vector. Recall 

that file keywords are transformed into bi-gram vectors and 

hashed several times by using secret LSH hash functions to 

determine the locations at which keywords’ frequencies are 

stored. The only leaked information to the server is 

numerical vectors. This leakage is true in the case of 

unencrypted vectors. However, all vectors (Bloom filters) 

are encrypted in our scheme before being outsourced. Thus 

no information is leaked about files or queries.      

Our proposed scheme supports also the privacy of search and 

access patterns. This is because; each element of the Bloom 

filter is encrypted with the Paillier encryption scheme which 

is a semantically secure encryption method. This ensures that 

SS is not able to distinguish each element from a random 

number. Therefore, the server will not be able to notice 

whether two queries are generated from identical keywords, 

thus the privacy of the search pattern is preserved. In the 

encrypted Bloom filters, the search server deals only with 

encrypted values so the similarity scores do not reveal 

anything to SS. In this case, SS will not be able to know the 

access pattern. Recall that FS owns a copy from Paillier 

private key and so it can compute the actual score values, but 

since those scores are permuted by the SS randomly,  FS 

losses the ability to know the access pattern. 

VII. PERFORMANCE EVALUATION 

In this section, we test the performance of our proposed 

scheme. We implement our scheme with a real-data 

collection from Wikipedia articles. Particularly, we picked 

100 articles; with each page we selected also its nine history 

versions. Therefore, we have in total a collection of  

 1000 files. To get better results, we first preprocess the files 

using some methods from the literature of information 

retrieval: stop words removal, lower case transformation, 

and keywords stemming (specifically, we adopt Porter 

algorithm [31]). In our collection, there are 4733 keywords, 

with an average 102 keywords per file. For LSH we use 𝑙 =
 30 hash functions and set γ = 700 for Bloom filter size. 

Experiments were executed on a PC of 1.6 GH Intel corei5 

CPU, and 8 GB running on 64-bits Windows 10. Code was 

written by JAVA programming language. For handling big 

numbers we used  BigNumber Java library. The security 

parameter is set to1024-bits, which is the standard value for 

current cryptographic applications [35]. The underlying 

representation method of  our scheme is compared with two 

famous state-of-the-art method: Term vector (TV) of [36], 

enhanced term vector (ETV) [37],  and Simhash of [38].  
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1) Efficiency measurement 

We measure the time cost and communication overhead of 

our proposed scheme. Figure 3 reports the elapsed time for 

constructing encrypted Bloom filters for the entire collection 

when the size γ varies between 100 to 1000. Obviously, the 

execution time grows linearly as the value of  γ increases. 

Search tokens take the same time as they construct in the 

same manner. 
 

 
Fig. 3: Encrypted Bloom filter construction time. 

 

2) Secure search 

In this experiment, we measure the time cost that is required 

by our scheme to search the outsourced files. Figure 4 

illustrates the CPU running time for searching the entire 

collection with variable values of Bloom filter sizes. It is easy 

to see that, longer Bloom filters entail immediately more 

search time. 

 

 
Fig. 4: Search time. 

 

3) Accuracy investigation 

The accuracy of results is investigated in terms of precision 

metric. Notice that, our scheme finds the top-𝑘 relevant file 

instead of finding all the relevant documents. Thus, we 

consider precision metric only without recall metric. When 

the set of relevant files is dented by 𝐴, and the set of retrieved 

files is denoted by 𝐵 , then |𝐴 ∩ 𝐵| |𝐵|⁄  stands for the 

precision of results.  In this experiment,  each article is used 

as a query, the set 𝐴 is those files in the same history of the 

query. The value of returned files 𝑘 ∈ {5, … ,15} controls the 

size of 𝐵. Figure 5 shows the effect of the number  of LSH 

hash functions 𝑙  on the precision for the variable size of 

Bloom filters. Notice that more LSH functions cause to get 

variable positions in the generated Bloom filter, which leads 

to retrieve fewer non-relevant files, and hence obtain higher 

precision. Notice that the accuracy of results not lower than 

40% under all settings. 

 

 
Fig. 5: Precision of results. 

 

Figure 6 compares the average accuracy of our scheme 

against various schemes.  The value of x-axes varies for 

different 𝑘 values. The values of γ and 𝑙 are set to 700 and 

35, respectively. We set the binary vector of Simhash method 

to 64. Notice that the accuracy of all schemes decreases with 

large 𝑘 values. Term vector method shows the best accuracy 

since it describes files with the classical way in the 

information retrieval arena. Our scheme lowers the 

effectiveness of results to enhance efficiency. The method of 

Simhash utilizes shorter vectors to represent files so it 

demonstrates the lowest accuracy. 

 

 
Fig. 6: accuracy comparison. 

What remains to test the ability of our scheme to handle the 

misspelled keywords in the provided search query. In this 

experiment, we select a number of keywords from the query 

file and replace the occurrence of each selected keyword with 

its modified version. Figure 7 demonstrates the effect of 

fuzzy keywords on accuracy. In this experiment, we return 

only 5 files (i.e. k=5). Notice that, in all schemes, when more 

fuzzy keywords are provided less accuracy is obtained. 

Notice that our proposed method to transform file keywords 

gives our scheme the advantage over the competitor schemes 

to recover the misspelled keywords. 
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Fig. 7: Effect of misspelled keywords. 

VIII. CONCLUSION 

In this paper, we investigate the challenging problem of 

multi-keyword similarity ranked search over the encrypted 

cloud data. We introduced several innovative designs that are 

integrated to solve this problem efficiently. Our scheme 

adopts LSH functions in the Bloom filters to describe files 

and search queries. Concretely, we utilize a good keyword 

transformation method and applied stemming on file 

keywords. With these techniques, the proposed scheme can 

handle efficiently more misspelling mistakes. Our scheme 

enjoys enhanced security protection, where access and 

search patterns are protected. To do so, file vectors are 

encrypted with Paillier cryptosystem that has interesting 

homomorphic properties. Additionally, our proposed scheme 

takes keywords’ frequencies into its consideration to support 

better ranking. Finally, we provide thorough security 

analyses and investigate performance by carrying out several 

experiments on real-world data set, which indicate that the 

proposed scheme is secure and suitable for practical usage. 
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