
Stable Robust Adaptive Control of Induction Motors with Unknown Parameters 

Ibrahim Fahad Jasim 
Electrical and Electronic Engineering Department 

College of Engineering, University of Kerbala 
Kerbala, Iraq 

E-mail: ibrahim.jasim@ieee.org 
  

Abstract—This paper presents a new strategy for controlling 
induction motors with unknown parameters. Using a simple 
linearized model of induction motors, we design robust adaptive 
controllers and unknown parameters update laws. The control 
design and parameters estimators are proved to have global 
stable performance against sudden load variations. All closed 
loop signals are guaranteed to be bounded. Simulations are 
performed to show the efficacy of the suggested scheme. 
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I. INTRODUCTION  
Induction motors are very popular in industrial and 

domestic applications. So, controlling this type of machines is 
a very important aspect to both control and power 
practitioners.  Early control schemes implementing decoupled 
control of machine flux and torque are exemplified by Field-
Oriented Control (FOC) as proposed by Blaschke [1] and 
Leonhard [2]. The main idea of the FOC is to resolve the 
stator current into two parts; one controls the torque 
production and the other controls the flux. Thus the torque and 
flux would be controlled independently. However complete 
decoupling was not yet achieved. In [3-5], feedback 
linearization was successfully used to obtain a complete 
decoupling of torque and flux control, opening up a new 
direction of controlling the induction motors that torque (with 
position and velocity) and flux can be controlled separately. 

The advent of control theory caused a significant impact 
on the induction motors control. Both adaptive control and 
sliding mode concept was used to control the induction motors 
with known parameters and promising results were obtained 
(see [6] and references therein). Moreover, adaptive fuzzy 
sliding mode control was successfully used to have a desirable 
position tracking error for induction motors [7] with unknown 
parameters. However, the technique described in [7] has the 
following drawbacks: 

1. The fuzzy approximator fitted to operate within a 
restricted region of operation. 

2. Only the subsystem corresponds to the torque is 
controlled. The flux remains uncontrolled. 

In this paper, we address the problem of controlling the 
induction motor with unknown parameters. Both decoupled 
subsystems of the induction motor are taken into account. The 

angular position, speed, and flux are controlled to follow a 
prescribed reference signals.  

The rest of the paper is organized as follows. In section 2, 
we present the control problem of the induction motor to be 
considered throughout this paper. The robust adaptive 
controllers and unknown parameters estimators are given in 
section3. Section 4 illustrates the simulation results and 
section 5 summarizes the concluding remarks.  

 

II. PROBLEM STATEMENT 
The mathematical model of a field oriented current 

command induction motor can be written as [4,8]: 

                                                                               (1.a) 

                                             (1.b) 

                                         (1.c) 

                                                           (1.d) 

With 

,   

Where  is the shaft angular displacement,  is the angular 
speed,  is the combined shaft and load inertia,  is the 
number of pole pair, and are the rotor resistance and 
inductance respectively,  is the motor mutual inductance,  
is the flux magnitude,  is the flux angle,  is the quadrature 
current component, and  is the direct axis current 
component.  

    Normally,  is used to estimated the current and (or) speed, 
and since it is an angle, then its value is always limited 
between and . So, it is always bounded and it rarely to 
be a control objective. 

The parameters , , , and  are assumed to be unknown. All 
states are assumed to be available for measurement.  

Now, let: 
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,  , , ,  

Then the model given in (1) can be rewritten as: 

                                                                                 (2.a) 

                                                    (2.b) 

                                                         (2.c) 

The objective of the paper is to derive robust adaptive control 
laws (for and ) and parameters update laws for , , , 
and  such that and  → , , and  

respectively as  provided that all closed loop signals are 
bounded. However, the following assumptions are needed to 
be satisfied: 

A1. All states and are assumed to be available for 
measurement. 

A2. All reference signals , , and are assumed to 
be bounded. 

A3. The parameters are bounded. 

III. ROBUST ADAPTIVE CONTROL DESIGN 
Before we present the main theorem of this paper, we define 
several concepts. Let: 

                                                                       (3.a) 

                                                                     (3.b) 

                                                                 (3.c) 

It is clear that the dynamic model given in (2) consists of two 
decoupled subsystems, say (2.a, 2.b) and (2.c). So, we shall 
define two sliding surfaces, say and , as shown below: 

                                   (4.a) 

                            

                                                                           (4.b) 

Taking the time derivative for (4.a) and (4.b), we obtain: 

 

                                        (5.a) 

                    

                                                             (5.b) 

Note: It was shown that the filtered errors given in (4.a) and 
(4.b) has the following properties: (i) the equations  
and  define time-varying hyperplanes in  and , 
on which the tracking errors , , and  decays ecponetially 
to zero. (ii) if and  with constant , then  

 for all . (iii) if  and , then will 

converge to  within a time constant   (see [9,10]). 

Define the parameters errors to be: 

                                                                       (6.a) 

                                                                       (6.b) 

                                                                       (6.c) 

                                                                       (6.d) 

Define also the modified filtered error: 

                                                          (7.a) 

                                                          (7.b) 

Theorem: For the induction motor given in (2) satisfying A1, 
A2 and A3, the controllers given in (8.a and 8.b) along with 
the parameters update laws (8.c, 8.d, 8.e, and 8.f) can 
guarantee global system stability and enhanced tracking 
performance. 

                   (8.a) 

                                   (8.b) 

                                                                     (8.c) 

                                                                      (8.d) 

                                                                   (8.e) 
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                                   (8.f) 

Proof: Consider the Lyapunov candidate: 

                                   (9) 

Taking the time derivative of (9), we obtain: 

                                                                                 (10) 

From (7.a and 7.b), we can easily conclude that: 

 

 

Using (5.a and 5.b), then (10) can be rewritten as: 

 

                      (11) 

Substituting (2.a, 2.b, and 2.c) into (11), then we obtain: 

 

 

                                                           (12) 

Using the controllers defined in (8.a and 8.b), then we obtain: 

 

                                                        

(13) 

After several simple mathematical manipulations for (13), we 
can obtain: 

 

 

                                             (14)  

Using the parameters updates laws given in (8.c, 8.d, 8.e, and 
8.f) and the relation given in (7.a and 7.b), we obtain: 

 

                                                                      (15) 

                                                              (16) 

Then  can satisfy inequality below: 

   (17) 

From (17), it is clear that and 
. Since are bounded and 
then  are also bounded. 

Using (5.a and 5.b), then we can easily conclude that 
which implies that . Since we have 

and , then as 
according to Barbalat’s lemma. This would force 

and  for converging to .                

IV. SIMULATION RESULTS 
    Simulations were carried out for an induction machine with 
the following parameters: 

Connection type is Y, voltage rating is 380 V, current rating is 
5 A, number of phase 3 ph, rated power is 2.2 kW, frequency 
is 50 Hz, rated speed is 1430 rpm,  is 1.7 , ,  is 0.34  , 

 is 3.5 , ,  is 0.31 ,  is 0.29 ,  is 
, and is . 

The position, velocity and flux reference signals are: 

,  

  

The load torque is assumed to be varying in a square wave 
fashion of 0.2 Hz frequency and peaks of +1 and -1. 
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     Figures 1, 2, and 3 show the position, velocity, and flux 
tracking performance. It is clear that excellent tracking 
performance was obtained for all three states, say , , and 

. As illustrated through the section 3and the theorem 
therein, all states errors would converge asymptotically to 
bounded region, say . The boundary of this region can be 
specified by the designer through choosing appropriate values 
for and which is done through trade-off. Smaller values 
of  would cause the regions to be smaller, however 
the convergence time would be increased. Similarly, smaller 
values of would cause smaller regions of , however 
chattering would be caused spurring high frequencies that may 
constitute a threat to the overall system stability [9,10]. In our 
design we used the values of and to be 0.01. For   and 

, we took the values of 1 and 0.1 respectively.   

   

Figure 1 A. Reference and actual angular position (in rad) B. Position 
tracking error (in rad) 

 

Figure 2 A. Reference and actual angular speed (in rad/sec) B. Speed 
tracking error (in rad/sec) 

 

 

Figure 3 A. Reference and actual flux (in web) B. Flux tracking error (in 
web) 
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Figure 4 A. Torque control action  B. Flux control action   

   Both control actions are given in Figure 4. Both control 
actions are functions of the signals that were proved to be 
bounded. So, both of the control actions would be bounded 
(See Figure 3 A and B).  The parameters , , , and  ere 
also proved to be bounded and as per checking Figure 5, it is 
clear that all the parameters estimated are bounded as proved 
in the paper main theorem. 

 

Figure 5 A. Estimation of  B. Estimation of  C. Estimation of  D. 
Estimation of  

V. CONCLUSION 
The control problem of induction motors with unknown 

parameters was addressed. Robust adaptive control laws were 
derived for both flux and torque dynamics. Estimators for the 
unknown parameters were also suggested. The suggested 
scheme was shown to have global stable performance with all 
closed loop signals guaranteed to be bounded. However, the 
control actions derived are of high initial values that may 
break the current constraints. So, future works should focus on 
deriving new control schemes that keeps the control actions to 
be within a prescribed bound in order to keep the currents 
constraint valid.   
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