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Abstract - Control of Induction Motor (IM) is well known to be 
difficult owing to the fact the models of IM are highly nonlinear 
and time variant. In this paper, to achieve accurate control 
performance of rotor position control of IM, a new method is 
proposed by using adaptive inverse control (AIC) technique. In 
recent years, AIC is a very vivid field because of its advantages. 
It is quite different from the traditional control. AIC is actually 
an open loop control scheme and so in the AIC the instability 
problem cased by feedback control is avoided and the better 
dynamic performances can also be achieved. The model of IM is 
identified using adaptive filter as well as the inverse model of the 
IM, which was used as a controller. The significant of using the 
inverse of the IM dynamic as a controller is to makes the IM   
output response to converge to the reference input signal. To 
validate the performances of the proposed new control scheme, 
we provided a series of simulation results.  
 

I. INTRODUCTION 
Only separately excited DC motors were previously used in 
most high performance speed and/or position control   
applications since torque and motor flux could be controlled 
easily and independently. However, DC motors have 
basically two drawbacks, which are the existence of 
commutators and brushes. These two disadvantages implied 
not only periodic maintenance but also difficulty to work in 
dirty and explosive environments; difficulty that sometimes 
used to become in impossibility. On the other hand, induction 
motor is robust, easily maintained and reliable [1-3]. 
Moreover, because of the advances in power electronics and 
microprocessor, induction motor drives used in variable speed 
and position control have become more attractive in industrial 
processes such as robot manipulators, factory automations 
and transportation applications. However, it is known that the 
control of induction motor is relatively difficult compared    
to the kinds of motors, such as DC motors. In fact, the 
induction motor presents a complex nonlinear system with 
parametric variation. In the last few decades, abundant 
research and development efforts for induction motor control 
technology have been made [4-6]. Among them, the Field 
Oriented Control (FOC) or Vector Control (VC) is the most 
popular one. The FOC for induction motor was introduced for 
the first time by Blaschke in the early 1970s. The FOC 
technique guarantees the decoupling of torque and flux 
control commands of the induction motor, so makes the 
induction motor be controlled linearly as a separated excited 
DC motor [7-8]. However, the performance is sensitive to the 
variation of motor parameters, especially the rotor time 
constant, which varies with temperature and the saturation of 

the magnetizing inductance. To overcome the above problems 
and achieve accurate control performance of rotor position 
control of induction motor, a novel approach is proposed by 
using AIC technique. AIC is a novel approach which can 
make a plant track the input command signal with a controller 
whose transfer function approximate the inverse of the plant 
transfer function. Compared with traditional methods, AIC 
can achieve specified dynamic responses more easily and has 
better ability of disturbance rejection [9-11]. The key of AIC 
is how to construct inverse model of controlled system 
accurately.  
 
The organization of this paper is as follows. In section II, the 
basic concept of AIC is briefly reviewed. Section III the 
background of adaptive filter is briefly reviewed. Section IV 
introduces the induction motor model used in the work and 
the new proposed technique is discussed. Section V, presents 
some simulation results on an induction motor with the new 
proposed technique. The last section contains the conclusion.   
 

II. BASIC CONCEPT OF AIC 
AIC is a very novel control technique for the design and 
analysis in the industry process control system. AIC was 
named and proposed by professor Widrow in 1986 [9], which 
do not require a precise initial plant model. AIC technique 
has been successfully applied to a variety of control 
problems. The control philosophy is feed forward but 
feedback is present by means of the adaptation loop of the 
controller weights. AIC suggests a controller in serial with 
controlled plant, and the control of the plant dynamics can be 
achieved by preceding the plant with an adaptive controller 
whose transfer function approximates the inverse of that of 
the plant. The objective of this system is to cause the plant 
output to follow the command input. In AIC the coefficients 
of the controller are adaptively adjusted by an adaptive 
algorithm which is controlled by the input signal and the error 
signal. The structure of AIC consists of three main parts. 
First, adapt a plant model using adaptive system techniques. 
Second, need to calculate the inverse model of the plant 
model and at last the inverse model will serve as a controller 
to control the plant [9-11]. 
 
A. Adaptive system modelling  
Adaptive system modeling or identification had been widely 
applied in control system, communication, and signal 
processing. Figure 1 illustrates how this can be done with an 
adaptive filter. The unknown system (plant) is connected in 
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parallel with an adaptive filter; where the modelling signal 
applied simultaneously to the adaptive filter and unknown 
system. Three major issues are involved in adaptive system 
identification: The excitation signal, the filter structure, and 
the adaptation mechanism. The optimal model of the plant 
was obtained by adapting the weights or coefficients of an 
adaptive filter so that the mean square error between the 
output of the plant and adaptive filter output is minimized.  
 
 
 
 
 
 
 
 

 
 

Fig. 1 System identification using adaptive filtering  
 

B. Adaptive inverse plant modeling  
Adaptive filter technique is also used in modeling to calculate 
the inverse model of the plant. The plant generally has poles 
and zeros. The inverse of the plant therefore should have 
zeros and poles. This technique can be used to form the 
inverse model of minimum-phase plant as well as             
non-minimum-phase. For example, if the system under 
investigation is known to be minimum phase, that is, has all 
of its zeros inside the unit circle in the z-plane, then the 
inverse will be stable with all its poles inside the unit circle. 
When the plant is non-minimum-phase, then some of the 
poles of the inverse will be outside the unit circle and the 
inverse will be unstable. In the case of unstable plant, 
conventional feedback technique should be applied to 
stabilize it. Then the combination of the plant and its 
feedback stabilizer can be regarded as an equivalent stable 
plant [11]. The inverse of the plant model can be achieved by 
placing the adaptive filter at the same path with the plant as 
shown in Figure 2 below. The plant input is its command 
signal. The plant output is the input to adaptive filter.  
 
 
 
 
 
 

 
 
 
 
 

Fig. 2 Inverse plant model  
 

The adaptive algorithm attempts to make the cascade of the 
plant and adaptive inverse behave like a unit gain. This 
process is often called deconvolution [9].  

 
III. ADAPTIVE FILTERS 

Adaptive filters have received considerable attention by 
researchers over the past 25 years. As a result, many adaptive 

filter structures and adaptation algorithms have been 
developed during this period. The theory of adaptive filtering 
is fundamental to AIC. There are two fundamental types of 
digital filters: Finite Impulse Response (FIR) and Infinite 
Impulse Response (IIR). An important advantage of the FIR 
model of IIR model is that the FIR filters always stable. The 
FIR filter is also called an all zero system, because the weight   
vector only defines the zeros of the filter whereas the filter's 
poles all lie at the origin of the unit circle. Furthermore, an 
adaptive FIR filter is many times   preferred over an adaptive 
IIR filter due to its simplicity and robustness. The adaptive 
IIR filter generally provides better performance than FIR 
filter that has the same number of coefficients [12-13].  
 
The adaptive filter consists of two stages, filtering and 
adaptation. The filtering stage involves computation of output 
and generation of estimation error by comparing this output 
with the desired response. In the adaptive stage the tap weight 
vectors of the FIR filter are adjusted such that estimation 
error decreases with the each iteration. The key component of 
an adaptive filter is the adaptation algorithm, which is the 
method to determine the filter coefficients from the available 
data. The performance of these adaptive algorithms is highly 
dependent on their filter order and signal condition. 
Furthermore, the choice of an adaptive algorithm for any 
given application is determined by both costs of 
implementation and performance, with higher cost usually 
paid for improved performance. There are two different types 
of adaptation algorithms: a priori and a posteriori, which is 
based on the difference in coefficient updating methods. 
When the desired response is estimated using the previous 
coefficient matrix then it is called a priori. When the estimate 
is derived using the current coefficient matrix it is called a 
posteriori. We have used the a priori method for desired 
response prediction because it is more direct and easier to 
implement. For FIR adaptive filtering, the most widely 
adaptive algorithms for updating the filter weights are the 
Recursive Least Squares (RLS), and Least Mean Squares 
(LMS) or its normalized version.  
  
A. The LMS Algorithm  
The LMS algorithm, which was first proposed by Widrow 
and Hoff in 1960, is the most widely used adaptive filtering 
algorithm in practice [14]. The LMS algorithm belongs to the 
family of stochastic gradient linear adaptive filtering 
algorithm. It is called a stochastic gradient algorithm because 
it iterates each tap weight in the direction of the gradient of 
the squared magnitude of the error signal. Although in the 
subsequent four decades numerous alternative adaptive 
algorithms have been proposed, it is still one of the most 
efficient algorithms due to its simplicity of implementation, 
adaptation robustness, and low computational cost [12]. 
However, it suffers from a slow rate of convergence and high 
sensitivity to non stationary environments. Furthermore, its 
implementation requires the choice of an appropriate value 
for the step-size that affects the stability, steady-state mean 
square error (MSE), and convergence speed of the algorithm. 
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For the each iteration the three basic equations governing the 
operation of the LMS algorithm are listed as follows [15]:  

T T( ) ( n ) ( n ) ( n ) ( n )y n w u u w= =                 (1) 

e ( n ) = d ( n ) - y ( n )                                                            (2) 

( n + 1 ) (n ) 2 � e (n ) ( n )w w u= +                           (3) 
where u(n) is the input when time is n, w(n) is a weight 
vector, . w(n+1) is a update of w(n), e(n) is the error between 
desired signal d(n) and the filter output y(n), and � stands for 
step size that effects stability of adaptation and speed of 
convergence. Usually, the initial values in weight vector w(0) 
are set to zero. Selection of a suitable value for � is 
imperative to the performance of the LMS algorithm, if the 
value is too small the time the adaptive filter takes to 
converge on the optimal solution will be too long; if � is too 
large the adaptive filter becomes unstable and its output 
diverges [15-16]. 
  
B. The Normalized LMS (NLMS) Algorithm 
One of the primary disadvantages of the LMS algorithm       
is having a fixed � for the every iteration. One approach       
to overcome this limitation has been to use the NLMS 
algorithm [12]. The NLMS algorithm, an equally simple, but 
more robust variant of the LMS algorithm, exhibits a better 
balance between simplicity and performance than the LMS 
algorithm, and has been given more attention in real time 
applications. Furthermore, it possesses many advantages over 
the LMS algorithm; including having a faster convergence 
speed and providing for an automatic time-varying choice of 
the LMS step size parameter that affects the stability, and 
steady-state MSE. For the each iteration of the NLMS 
algorithm, the filter tap weights of the adaptive filter are 
updated according to the   following steps: 

T T( ) ( n ) ( n ) ( n ) ( n )y n w u u w= =                 (4) 

e ( n ) = d ( n ) -y ( n )                 (5) 

�
(n+1) ( ) 2 ( ) ( )

( ) ( )
w w n u n e nTu n u nγ

= +

+

                 (6) 

Where � is a small positive constant in order to avoid division 
by zero when the values of the input vector are zero or close 
to it, the instability due to division by zero is avoided. The 
parameter � is a constant step size value used to alter the 
convergence rate of the NLMS algorithm. Theoretically, it is 
within the range of 0<�<2 for stable adaptation, however a 
more practical step size for NLMS is always less one unity. 
 
C. The RLS Algorithm 
Compared to the LMS and NLMS algorithms, the RLS 
algorithm has the advantage of faster convergence and small 
steady state error but this comes at the cost of increasing the 
complexity. Hence, the RLS algorithm requires longer 
computation time as well as a higher sensitivity to numerical 
instability. These disadvantages make the RLS algorithm 
unsuitable when a large number of taps is required for 
modelling. To implement the RLS algorithm, the following 
steps are executed in the   following order [17].  

T T( ) ( n ) ( n ) ( n ) ( n )y n w u u w= =                 (7) 

e ( n ) = d ( n ) - y ( n )                 (8) 

( 1) ( ) ( )
(n) ( 1)

( ) ( 1) ( )

P n u n e n
w w n Tu n P n u nλ

−

= − +

+ −

                                (9) 

( 1) ( ) ( ) ( 1)
(n) ( 1) /

( ) ( 1) ( )

TP n u n u n P n
P P n Tu n P n u n

λ

λ

− −

= − −

+ −

� �
� �
� �

               (10) 

Where P(n) is the covariance matrix. The algorithm is 
initialized by setting P (0) = δI, where δ is a small positive 
constant number, and I is the identity matrix. The initial value 
P(0) can not be zero because it will remain zero. The 
parameter λ is a positive constant which is less than or equal 
to unity and generally has a value near 0.99. It is often 
referred to as the forgetting factor, as it controls the effective 
length of the memory of the algorithm [18]. 
 

IV. POSITION CONTROL OF IM 
In this section, we show the designed procedure for the rotor 
position control of induction motor system which is under the 
control by AIC. The position control goal is to force the rotor 

position rθ  to track the desired rotor position reference dθ . 

For the position control system, the mechanical equation of 
an induction motor drive can be represented as: 

T J B Te r r Lθ θ= + +
�� �                                                          (11)                  

Where J is the total mechanical moment inertia constant, B is 
the total damping coefficient, TL is the torque of external load 
disturbance, and Te denotes the electromagnetic torque. The 
Te can be defined as: 

23* * *

2

PLmT K i i ie qse qset dseLr
= =                                        (12)                  

Where Lr is the rotor inductance and Lm is the mutual 

inductance, P is the number of pole pairs, *
dse

*
qse   and  ii  

denote the torque and flux current commands. For induction 
motor modeling and inverse induction motor modeling we 
used the LMS, NLMS, and RLS algorithms. After the 
induction motor model is completed, the inverse of the 
induction motor modeling can be achieved by placing the 
adaptive filter at the same path with the induction motor 
model. After the controller is established, we can cascade it 
with the induction motor model to track the desired reference 
signal as shown in Figure 3. 
 
 
 
            

 
Fig. 3 adaptive Inverse control 

 
V. SIMULATION RESULTS 

To evaluate the effectiveness and performance of the new 
AIC technique, extensive computer simulation results are 
presented to compare the performance of the new proposed 
control strategy under different types of adaptive algorithms. 

  

 Controller 
Desired Signal 

 IM model 
Cascaded Output 
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The figure of merit that is used to observe convergence speed 
of adaptive filters is the MSE. The rating and parameters of 
the IM system under consideration are given in Appendix. 
The simulation is carried out based on the schemes shown in 
Figure 4. 
 

 
          

 (a) Identification of induction motor     
 

 

 
           

(b) Inverse model of induction motor     
 

 
           

(c) Speed control of induction motor  
 

Fig. 4 Simulation system setup 
 

A. The LMS Algorithm Simulation Results  
The FIR filter representing the induction motor modeled and 
inverse induction motor model has 64 taps with step size 
parameter value 0.01. The MSE learning curve is shown in 

Figure 5. The minimum mean square error (MMSE) obtained 
is -85.2dB, and the LMS algorithm has the slowest 
convergence time amongst the filtering learning algorithms 
considered. In order to verify the robustness of the LMS 
algorithm against measurement noise, Gaussian zero mean 
white noise with the variance of 10-3 was added to the output 
of the unknown system. The MSE learning curve is shown in 
Figure 6. The result shows that the convergence time more 
alters when the measurement noise is added. Figure 7 shows 
the induction motor tracking performance between desired 
and actual rotor position signals. Figure 8 shows the 
induction motor rotor position tracking error. The peak rotor 
position error between desired and actual rotor position 
signals is within the range    ± 0.117rad. 
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          Fig. 5 MSE learning curve     
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Fig. 6 MSE when noise added 
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Fig. 7 Rotor position signals 
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Fig. 8 Rotor position error 
                    
B. The NLMS Algorithm Simulation Results  
The FIR filter representing the induction motor modeled and 
inverse induction motor model has 64 taps with step size 
parameter value 0.1. The MSE learning curve is shown in 
Figure 9, which indicates a MMSE of about –80.1dB. This is 
figure shows that NLMS algorithm converges faster than 
standard LMS algorithm. In order to verify the robustness of 
the NLMS algorithm against measurement noise, Gaussian 
zero mean white noise with the variance of 10-3 was added to 
the output of the unknown system. The MSE learning curve   
is shown in Figure 10. Comparing Figure 6, and Figure 10,   
it is clear that the NLMS algorithm still converge faster than 
standard LMS algorithm when the measurement noise           
is added. The induction motor tracking performance between 
desired and actual rotor position signals is shown in       
Figure 11. Figure 12 shows the induction motor rotor position 
error. The peak rotor position error between desired and 
actual rotor position signals is within the range ±0.043rad. 
However, the NLMS shows better peak rotor position error 
compared to the LMS algorithm. 
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Fig. 9 MSE learning curve                  
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Fig. 10 MSE when noise added 
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            Fig. 11 Rotor position signals    
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Fig. 12 Rotor position error 

 
C. The RLS Algorithm Simulation Results  
The FIR filter representing the IM modeled and inverse IM 
model has 16 taps. A greater number of taps is not suitable, 
because the memory requirement for the algorithm grows 
approximately with the square of the number of taps. For the 
RLS algorithm we have initialized the P-matrix with δ=0.04 
in order to get fast initial convergence. Figure 13 shows the 
MSE learning curve when the forgetting factor is set to 
0.9999. Simulations show that the algorithm is sensitive to 
the choice of forgetting factor and it should be close to one. 
The RLS algorithm requires about 350 iterations to converge 
with a MMSE of about –71.1dB. Although, the RLS 
algorithm has the advantage of having a faster convergence 
rate than the conventional LMS and NLMS algorithms, which 
means that the RLS algorithm model more accurately than the 
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another two adaptive algorithms with fewer taps. In order to 
verify the robustness of the RLS algorithm against 
measurement noise, Gaussian zero mean white noise with the 
variance of 10-3 was added to the output of the unknown 
system. The MSE curve is shown in Figure 14. The result 
shows that the RLS algorithm is more robust than the other 
introduced adaptive algorithms and convergence time still 
better when the measurement noise is added. Figure 15 shows 
the induction motor tracking performance between desired 
and actual rotor position signals. The induction motor rotor 
position error is shown in Figure 16. The peak rotor position 
error between desired and actual rotor position signals is 
within the range ±0.019rad. Comparing Figures 8, 12, and 16, 
it is clear that the RLS produces smaller peak rotor position 
error than the standard LMS, and NLMS algorithms. 
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Fig. 13 MSE learning curve                
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Fig. 14 MSE when noise added 
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            Fig. 15 Rotor position signals                               
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Fig. 16 Rotor position error 

 
D. Results Comparison  
The results show that the RLS algorithm, by considering the 
convergence time and the accuracy of the converged model is 
superior to the other introduced adaptive algorithms. 
Comparing Figure 7, Figure 11, and Figure 15, it can be 
concluded that high precision rotor position tracking 
performance can be achieved using the three adaptive 
algorithms. However, the RLS algorithm gives smaller peak 
rotor position error compared to the standard LMS and 
NLMS algorithms. This means that the RLS algorithm can 
track the rotor position command more accurately than the 
conventional LMS and NLMS algorithms. Robustness of the 
three adaptive algorithms against measurement noise is also 
verified. All three types of adaptive algorithms exhibit small 
sensitive to the measurement noise. However, the RLS 
algorithm still gives better convergence time compared to the 
other introduced algorithms. 

 
VI. CONCLUSIONS 

In this paper, a new methodology AIC is submitted to design 
the rotor position control of induction motor. To validate the 
performances of the new proposed control technique, we 
provided a series of simulation results and a comparative 
study between the LMS, NLMS and the RLS adaptive 
algorithms. Simulation results show that the RLS algorithm 
shows better performance than the other two adaptive 
algorithms. 

 
VII. APPENDIX 

     Table I Electrical and mechanical parameters of the IM  
Parameters Values 

Number of phases 3 
Connection star 

Rated power  2.24 KW 

Line voltage 230V rms 
Line current  9 A rms 

Rated speed  1430 rpm 

Rated torque  14.96 Nm 
Rotor resistance, Rr  0.72 Ω 
Stator resistance, Rs 0.55 Ω 
Rotor inductance, Lr  0.068 H 
Stator inductance, Ls 0.068 H 
Magnetising inductance, Lm 0.063 H 

Moment of inertia, J  0.05 kg.m2 

Viscous friction coefficient, B  0.002 Nms-1 

Number of pole pairs 2 
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