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Abstract— In this paper, explicit model predictive controller is 
applied to an inverted pendulum apparatus. Explicit solutions 
to constrained linear model predictive controller can be 
computed by solving multi-parametric quadratic programs. 
The solution is a piecewise affine function, which can be 
evaluated at each sample to obtain the optimal control law. The 
on-line computation effort is restricted to a table-lookup. This 
admits implementation on low cost hardware at high sampling 
frequencies in real-time systems with high reliability and low 
software complexity. This is useful for systems with limited 
power and CPU resources. 
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I.  INTRODUCTION  
The Inverted Pendulum is a classical example of how the 

use of control may be employed to stabilize an inherently 
unstable system. The Inverted pendulum system represents 
also an accurate model for pitch and yaw behaviors of a 
flying rocket and can be used as a benchmark for many 
control methodologies. The Segway PT is a two wheeled (in 
parallel), self-balancing vehicle that transports a single person 
which uses the properties of the inverted pendulum, [1]. 

Model predictive control (MPC), also referred to as 
moving horizon control or receding horizon control, has 
become an attractive feedback strategy, especially for linear 
or nonlinear systems subject to input and state constraints. In 
general, linear and nonlinear MPC are distinguished. Linear 
MPC refers to a family of MPC schemes in which linear 
models are used to predict the system dynamics, even though 
the dynamics of the closed loop system is nonlinear due to the 
presence of constraints. Linear MPC approaches have found 
successful applications, especially in the process industries 

The success of MPC is due to the fact that it is perhaps the 
most general way of posing the control problem in the time 
domain. The use of a finite-horizon strategy allows the 
explicit handling of process and operational constraints by the 

MPC, [2]. 

The strengths of MPC lie mainly in its handling of 
constraints and its relative simplicity. Commonly, a quadratic 
performance measure over a finite prediction horizon is 
employed. Problems of this type are easily translated into a 
quadratic program. 

Standard predictive control involves solving the 
optimization problem at every sampling instant, based on the 
value of the current state vector. For this reason, MPC has 
been traditionally labeled as a technology for slow processes. 
The complexity still is prohibitive for fast plants and low-end 
embedded computers. Microcontroller and computer 
technology are progressively advancing the computation 
speed, but still solving optimization problem on line prevents 
the application of MPC in many contexts. Another limitation 
is software certification issues. The code implementing the 
solver might generate concerns due to software certification 
issues, a problem which is particularly acute in safety critical 
applications. 

A remedy for these limitations is to use explicit model 
predictive control. In [3, 4] it was recognized that the 
constrained linear MPC problem can be posed as a multi-
parametric quadratic program (mp-QP), when the state is 
viewed as a parameter to the problem. It was shown that the 
control input, which is the solution of the mp-QP, has an 
explicit representation as a piecewise linear state feedback on 
a polyhedral partition of the state space. The mp-QP 
algorithm is developed to compute this function, [5-7]. For a 
given range of operating condition, explicit MPC solves the 
optimization problem off-line. By exploiting multi-parametric 
programming techniques, explicit MPC computes the optimal 
control action off-line as an explicit function of the state 
vector. Such a function is piecewise affine, so that the MPC 
maps into a lookup table of linear gains. 

Disturbance rejection is another topic in predictive control 
that requires special consideration in low-level control 
applications, [8].  
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This paper presents an application of an explicit model 
predictive controller on an inverted pendulum, a process that 
is unstable and non-minimum phase. 

The outline of the paper is as follows: The following 
section describes the explicit model predictive controller. 
Section III presents the inverted pendulum process.   Section 
IV details tuning procedure and performance of the closed 
loop system. Section V provides experimental results. 

II. EXPLICIT MODEL PREDICTIVE CONTROLLER 
In this paper, the process to be controlled can be described 

by a discrete-time, deterministic linear state space model, that 
is 

� �  �  �  kBukAxkx ���1 � �> �

� �  �  kCxky � � �? �

where �  nkx @� , �  mku @�  and �  pky @�  are the state, 
input and output variable. Also, mnA "@� , mnB "@� , 

npC "@�  and �  BA,  is a controllable pair. It is assumed that 
a full measurement of the state �  kx  is available at the 
current time k.  

If we now consider the regulator problem, that is, the 
problem of driving the state vector to the origin, the 
traditional MPC solves the following optimization problem 
for the current  �  kx : 
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U
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with the cost function given by: 
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umO��  is the optimization vector and  OB  is polyhedral. 

kikx |�  denotes the predicted state vector at time ik � , 
obtained by applying the input sequence 1,, ��ikk uu �  to 
model described by (1) and (2) starting from the state �  kx . 

pO  is prediction horizon, and uO  is control horizon, and Q, 
P and R are square, symmetric and positive definite matrices.  

The final cost matrix P may be taken as the solution of 
the discrete-time algebraic Riccati equation: 

� �  �  QPBARPBBPBAPAAP
TT

T
TT ���� �1 � �F �

With the assumption that no constraints are active for  
Ok ' , this corresponds to an infinite horizon LQ criterion, 

and the MPC is stabilizing. 

By substituting  
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problem (3) becomes a quadratic program: 
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subject to:  
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where H, F, Y, G, W, E are easily obtained from Q, R, and 
(3)–(5). Assuming that 0�H  the problem is strictly convex, 
and the Karush-Kuhn-Tucker conditions (KKT) are 
sufficient conditions for optimality, giving a unique solution 

*U  for (3). By ensuring that Q and R are positive semi-
definite and positive definite, respectively, the assumption  

0�H  is indeed satisfied. 

Further, by defining �  kFxHUz 1: ��� , sz @� ,  

umOs � , the optimization problem (3) is transformed into 
the following equivalent problem: 
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subject to: 
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� �  kSxWGz �� � �>> �

where �  �  �  �  �  �  �  kxFFHYkxkxVkxV TT
z

1

2
1*:* ���� ,

TFGHES 1: ��� ,   ssH "@� , sqG "@� , 1"@� qW , 
nqS "@�  and q is the number of inequalities. The vector 

�  kx  is the current state, which can be treated as a vector of 
parameters.  

It has been shown in [3, 4] that the optimization problem 
(10) is a multi-parametric quadratic program (mp-QP) and its 
solution can be found in an explicit form �  �  kxzz ** �  as a 
PWL function of �  kx  defined over a polyhedral partition of 
the parameter space. Algorithms for iteratively constructing a 
polyhedral partition of the state space and computing the 
PWL solution are given in [4-7].  

III. PROCESS DESCRIPTION 
The rotary pendulum module consists of a flat arm which 

is instrumented with a sensor at one end such that the sensor 
shaft is aligned with the longitudinal axis of the arm. A 
fixture is supplied to attach the pendulum to the sensor shaft. 
The opposite end of the arm is designed to be mounted on a 
rotary servo plant resulting in a horizontally rotating arm 
with a pendulum at the end.  

The system is identified and linearized around the origin. 
As the internal model, the following model is used.  

� �  �  �  kBukAxkx ���1 � �>? �

� �  �  kCxky � � �>A �

where  
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State 8  is arm angle and �  is pendulum angle. A 
sampling period sT  of 10ms is used. The open loop system is 
unstable. 

 

IV. REAL-TIME PERFORMANCE OF EXPLICIT MPC 
In the remainder of this paper we consider the application 

of MPC to an inverted pendulum apparatus shown in Fig. 1. 

A. Constraints 
There are physical limits on the control input and the arm 

position, which correspond to constraints on the supply 
current to the motor and the angle of the arm, respectively.  

The input to the motor is constrained to lie between  
�  1212 ��� ku  (volts) and the arm position must lie 

between 11 ��� 8  (rad). 

 

 
Figure 1.  Inverted pendulum and controller. 

B. Design of controller 
We would like the state �  kx  to be at the origin, which 

corresponds to the arm position at the null position, the 
pendulum angle of 0 radians (i.e. upright), the arm not 
moving and the pendulum not rotating. Furthermore, we 
would like to be economical with control action and thus 
penalize input movements. This objective can be described 
in terms of the cost function in Eq. (9) via the choices 

� �  rRqqqqdiagQ �� ,,,, 4321 � �>C �

Since it is important that the pendulum angle is zero, 2q  
receives a high value. It is less important, but not 
insignificant, that the arm position is zero, so 1q  has the next 
highest value. Arm velocity and pendulum angular velocity 
are not so important, so 3q   and 4q  receive zero value. For 
the experimental results shown in Section V this corresponds 
to 

� 1.0,0,0,5,1 4321 ����� rqqqq � �>E �

Both prediction horizon pO  and control horizon uO  
have been established based on the assumptions that large 
values lead to increased computational effort and short 
values produce short-sighted control policy. The value of 
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� 50�pO � �>F �

was selected for the prediction horizon. For the control 
horizon the value of 

� 4�uO � �>G �

has been taken. The control horizon is established not too 
long, to prevent computational complexity, and also not too 
short, to prevent an inefficient control and to provide a 
sufficient number of degrees of freedom. 

V. RESULTS 
The experimental results from applying the explicit 

model predictive controller described above to the inverted 
pendulum shown in Fig. 1 are provided in this section. The 
quadratic programming is used to solve the optimization 
problem. All plots in this section show data recorded from 
the physical apparatus by the PC and data acquisition 
hardware.  

The initial position of the arm is in the null position and 
the pendulum tip is down (in the stable position). First the 
swing up controller is switched on and changes the position 
of the pendulum to upright position [9, 10]. Then the explicit 
model predictive controller is switched on and keeps the 
pendulum upward and rejects the disturbances.    

To gauge the utility of the explicit model predictive 
controller, a large disturbance was manually applied to the 
pendulum tip while it was in the upright position. Fig. 2 
shows the response of pendulum angle to this disturbance. 
The response of arm angle is depicted in Fig. 3. The output 
signal of the explicit model predictive controller which is 
applied to DC motor is depicted in Fig. 4.   

 

 
Figure 2.  Pendulum angle. 

 
Figure 3.  Arm angle. 

 

 
Figure 4.  Output signal of the explicit model predictive controller which is 

applied to DC motor. 

 

 
Figure 5.  Regions. 
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Note that the arm position and input obey their respective 
limits. If the disturbance amplitude is increased, the solution 
of the multi parametric quadratic program may be infeasible. 
This is the most important limitation of hard constraint 
model predictive control. A classical solution to this problem 
is soft constraint profile, which is out of the scope of this 
paper. Note also that friction is the most important nonlinear 
dynamic of the system which creates the limit cycle [11]. 
Fig. 2 and Fig. 3 show that there is stable oscillation around 
the equilibrium point.  

VI. CONCLUSION 
This paper presents the application of explicit model 

predictive control to an inverted pendulum apparatus. While 
the good performance of MPC for this application may be of 
independent interest, the key point is that a reasonably 
challenging control problem can be dealt with via MPC in 
realtime on a modest hardware platform at a 100Hz sample 
rate. MPC can reject the manual disturbance of the pendulum 
angle. Friction is the most important nonlinear dynamic of the 
system which creates the limit cycle. 
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