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ABSTRACT

In recent years, symbolic analysis has become a well-cstablished technique in circuit analysis
and design. The symbolic expression of network characteristics offers convenience for
frequency response analysis, sensitivity computation, and fault diaguosis. The aim of the
paper is 1o present a method for symbolic analysis that depends on the use of the wavelel
transform (WT) as a tool to accelerate the solution of the problem as compared with the
numerical interpolation method that is based on the use ol the fast Fourier transform (FFT).
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LINTRODUCTION

It is obvious that the methods of symbaolic
analysis can be divided mainly into two
categories. These are the topological and
numerical methods [1]. Each one of these
methods has its own advantages and
disadvantages. For instance, in topological
methods  the number of eclements
represented  as symbols is large but the
circuits  that can be handled 1s small, while
in  numerical  methods, fairly large
networks can be handled but the number of
symbolic variables should not exceed 10.
The direct application of numerical
interpolation method can be used to solve
problems of system matrix size of 30 and
about 10 elements only represented as
variables beside the complex frequency “s”
[2.3]:

Many algorithms have been developed and
[rom these determinant and llow graph
methods appear (o be favoured in terms of
flexibility = and efficiency [3]. All
approaches  suffer  [rom  restrictions
inherent to the problem, the escalation of
computer time and memory requirements
with increase in circuit size. One serious
limitation of such methods, in practice, is
the  rapidly increasing amount of
computations required as the number of
symbols to be handled increases [3]. This
will, in fact, increase the time required to
solve the linear system equation of the
circuit.

The numerical interpolation method for
obtaining the symbolic- analysis suffers
from serious limitation in practice, which
is the rapidly increasing amount of
computations required as the number of
symbols to be handled increases. This, in
fact, reflects the amount of time required to
perform the analysis. For this reason, it is
useful to find an approach to minimize the
computations required by the numerical
interpolation as minimum as possible. The
usual numerical interpolation method is
based on the use ofthe FFT. One way to

reduce the computations required by the
numerical mnterpolation 1s to  search for a
transform  that will perform the required
task, besides minimizing the computations,
and hence, reduces the required lime to
perform the analysis as compared to the
FFT. As an example, the Hartly
Transform (HT) could be used to replace
the FFT for the symbolic analysis and a
comparison could be made between the HT
and the FFT to see which is better from the
poinl ol view ol reducing the required
computation, and hence the time of doing
the analysis. One other promising
transform that may replace the FFT is the
Wavelet Transform (WT) [4,5]. A new
approach to minimize the computations
and the time required is the nmenral
network approach to the interpolation
problem that allows to get the solution in a
real time [6].

The method proposed in this paper tries to
reduce the time required by the numerical
interpolation method lo solve the system
equation by using the wavelet transform.

2.NUMERICAL INTERPOLATION
METHOD FOR SYMBOLIC
ANALYSIS

Mumerical interpolation methods are based
on the theory and implementation of
numerical  methods  for  generating
symbolic functions of networks. They
seem (o have a lower computational cost
than other well-known symbelic analysis
algorithms such as a parameter extraction
method.

The following discussion will introduce the
idea of using interpolation in finding

network transfer functions using the
Discrete  Fourier  Transform (DFT)
[3,7.8.9]
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2.1 POLYNOMIAL INTERPOLATION

First, We find N+1 points by evaluating
the function:

Py(x)=detfA(x)] (1)
at Xp, Xi,.... xn where N is the maximum
power of x. Now, there are N+ distinct
points (%, vi=P, (x;)), i=0, 1, ...,N. Both x;
and y; may be real orcomplex numbers.
We wish to find the coefficients of the
polynomial:

A
Pi(x)= Zﬂﬂx" (2)

=il
such that the polynomial passes through
the given points.

Inserting x; into the polynomial (2), We
obtain the set of equations:

2 Ly
@, +Q, X, Fa@;%;, +ootdyX, =)
i=04,--,N
(3)

with unknowns ay, a,, az,....ay. Since there
are N+1 unknown coellicients and the
same number of equations, We can write
the matrix equation:

x a asa
i Xy Xy &, Yy

Ay Xy : Xy % ]
(4)
Or:
[x][4]=[r] (5)

The solution of (3) provides the unknown
cocfticients.

As we have the choice of seclecting the
points x;, the question arises as to what the
choice should be in order to obtain the best
possible result. It can be shown that the
mterpolation with real x1s, in general,
numerically unstable [7].

2.2 THE USE OF THE DISCRETE

FOURIER TRANSFORM IN
INTERPOLATION
We will derive this interpolation by

introducing first a special symbol for the

matrix X in (5):
X=[x"] (6)

where the index 1 and the exponent n run

from 0 to N. If We choose the sel of points

X; to be uniformly spaced on the unit circle
in the complex plane, then these points are

j2kn ,
x =1, x =exp sl=1 D N
il & I [_g'\'r + ll ¥
(7)
[ntroduce the substitution:
jir
W= ey, hd
pf==it - 8]
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Then:

And:

X=|w"| (10)
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It can be shown that [3]:

-1 = ! ‘.{w—ur’f

X' 11
N+ N+ (0

Where X~ denotes the transpose conjugate
matrix and [ runs from 0 to N,

The solution of (3) with the points defined
by (7) is:

A= XY=

N‘l > fw™ry (12)

or:

—m':
@ N+! Z‘“ (13)
n=0,12,..N.

The original polynomial in (2), evaluated
at x; , can be written as:

i ia w'™  (14)

n=l

Equation (13) and (14) represent the
solution of one another. They are called the
Discrete Fourier Transform (DFT) pair.

To improve the speed of the method, one
can use @ [ast alporithm in interpolation.
Algorithms that reduce the computational
cost of DFT are, in general called the Fast
Fourier Transform (FFT). The DFT has
been studied extensively. It can be
programmed in a very efficient way,
particularly when N+1=2"; m being a
positive integer. The number of operations
required in this case is m (N+1) [3,5].

3. THE USE OF THE WAVELET
TRANSFORM (WT)

In this section, the use of the Discrete
Wavelet  Transform (DWT) will be

illustrated. Before this, the DWT must be
briefly explained.

3.1 THE WAVELET TRANSFORM

Like the FFT, the Discrete Wavelet
Transform (DWT) is a fast linear operation
that operates on a data vector whose length
is an integer power of two, transforming it
into a numerically different vector of the
same length. Also, like the FFT, the WT is
invertible and in fact orthogonal, that is,
the inverse transform when viewed as a big
matrix, is simply the transpose of the
transform. Both FIFT and DWT, therefore,
can be viewed as a rotation in space, from
the input space (or time) domain, where
the basis functions are the unit vectors e;,
or Dirac delta functions in the continuum
limit, to a different domain. For the FFT,
this new domain has basis functions that
are the familiar sines and cosines. In the
wavelet domain, the basis functions are
somewhat more complicated and have the
fanciful names “mother functions” and
“wavelets™ [ 10].

Of course, there are an infinitely of
possible bases for function space, almost
all of them uninteresting. What makes the
wavelet basis  interesting is that, unlike
sines and cosines, individual wavelel
functions are quite localized in space;
simultancously, like sines and cosines.
individual wavelet functions are quite
localized in frequency or (more precisely)
characteristic scale. The particular kind of
dual localization achieved by wavelets-
renders large classes of funclions and
operators sparse, or sparse to some high
accuracy, when tansformed into the
wavelet domain. Analogously with the
Fourier ~domain, where a class of
computations, like convolutions, become
computail -~ iy fast, there isa large class
of computations (those that can take the
advantage  of sparsity) that become
computationally fast in the wavelet domain
[4,7,10].
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Unlike sines and cosines, which deline a
unique Fourier transform, there is no one
single unique setl of wavelets; in fact, there
are infinitely many possible sets. Roughly,
the different sets ol wavelets make
different tradc-ofts between  how
compactly they are localized in space and
how smooth they are.

1.2 DAUBECHIES WAVELET FILTER
COEFFICIENTS

A particular set of wavelets is specilied by
a particular set of numbers called wavelet
filter coefficients. Here, we will largely
restrict ourselves to wavelet filters in a
class discovered by Daubechies. This class
includes members ranging from highly
localized to highly smooth. The simplest
(and most localized) member, olien called
DAUB4, has only four coefficients, ¢y, ¢,
¢z, and ¢; [4,7,10].

Consider the following transformation
matrix acling on a column vector of data to
its right: '

i Yy L) o |
€ ey oy
'y vy v £a
€3 —#3 Py =Cp
1
ty Ep g
| iy & =g
cp Uy P
Lts ~=ra £y -y

Here, blank entries signity zeroes. Note the
structure of this matrix. The first row
generates  one component of the data
convoluted with the filter coefficients ¢y,
¢y, Ca, and c;. Likewise, the thied, fifth, and
other odd rows. If the even rows followed
this pattern offset by one, then matrix
would be a circulant, that is, an ordinary
convolution that could be done by FFT
methods, (Note how the last two rows
wrap around like convolutions with
periodic boundary conditions.) Instead of
convolution with ¢g,  ©), ¢z and ¢,

(T

however, the even rows perform a different
convolution, with coeflicients ¢s,-¢a, ¢,
and —cp. The action of the matrix, overall,
is thus to perform two related
convolutions, then to decimate each of
them by hall (throw away half the values),
and interleave the remaining halves.

It is useful to think of the filter ¢y, ¢, ¢3,
and ¢; as being a smoothing [ilter called H,
something like a moving average of four
points. Then, because of the minus sign,
the filter c3, -ca, ¢, and —¢y, call it G, is not
a smoothing filter. In fact, the ¢'s are
chosen so as to make G yield, insofar as
possible, a zero response to a sufficiently
smooth data vector. This is done by
requiring the sequence ¢;, -¢3, ¢, and -¢p to
have a certain number of wvanishing
moments. When this 1s the case for p
moments (starting with the zeroth), a set of’
wavelets is  said to  satisfy  an
“approximation condition ol order p”. This
result in the output of H, decimated by
half, accurately representing the data’s
“smooth™ information. The output of G.
also decimated is referred to as the data’s
“detail information [10].

For such a characterization to be useful, 1t
must be possible to reconstruct the original
data vector of length N from its N/2
smooth or s-components and its N/2 detail
or d-components. That is effected by
requiring the matrix (15) to be orthogonal,
so thal its inverse is just the transposed
matrix:

£y Cp ©y &3

LA Up £f ~4)

3 0 ‘o ey
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Now, since

ww'l=ww'=1 (17
where [ is the identity matrix, one sees
immediately that matrix (16) is the inverse
of matrix (15} if and only if the following

two equations hold:

2 F 1 2 1
ot ¥ T o P o o =1

(18)
c,c, +c;¢,=0
If additionally, we require the
approximation condition ol order p=2, then

two additional relations are required:

=1

et 0,0, =10

e +el e+ 19)

Equations (18) and (19) are 4 equations for
the 4 unknowns ¢y, ¢, ¢z, and ¢;, lirst
recognized and solved by Daubecheies.
The unique solution (up to a left-right
reversal) is:

(1+£/ e
_3- «f/
2 .

In fact, DAUB4 is only the most compact
of a sequence of wavelet sets: If we have
six coefficients instead of four, there would
be three orthogonality requirements in
equation (18) (with offsets of zero, two and
four), and we could require the vanishing
of p=3 moments in equation (19). In this
case, DAUBS, the solution coefficients can
also expressed in closed form;

(3+43)
_(1-+/3)

42

42
(20)

70

=r’1+~:‘ﬁ+d5+2»"ﬁ/
' 1632
5 =r5+ﬁ+3¢5+2ﬁ/
1642
=Hﬂ—2x-'rﬁ+21,|'5+i’vﬁ/
1642
i =|"HJ—.?~\-'E—2«.,I'J‘+JM/
1632
o (5 *'\'@—51?51-2\fﬁ/
4 Irjﬁ
; =H+«.I'E—1,"I5+2~Jﬁ)

16:42
(21)

For higher p, up to 10, Daubechies has
tabulated the coefficients numerically. The
number of coefficients increases by two
gach time p is increased by one.
33 THE DISCERTE WAVELET
TRANSFORM (DWT)

The DWT consists of applying a Wavelet
coelficient matrix like (15) hierarchically,
first to the full data vector of length N,
then o the “smooth” vector of length N/2
then to the “smooth?smooth” vector of
length N/4, and so on until only a trivial
number of “smooth?...? smooth”
components (usually 2) remain. The
procedure 1s somelimes called a pyramidal
aleorithm {or - Mallat’s  pyramid
algorithm), for obvious reasons. The output
of the DWT consists of  these remaining
components and  all  the “detail”
components that were accumulated along
the way. A diagram should make the
procedure clear :
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(22)

If the length of the data vector was a higher
power of two, there would be more stages
of applying (15) (or any other Wavelet
coefficients) and permuting. The end point
will always be a vector with two F's and a
hierarchy of B's, D’s, d’s, etc. Notice that
once d’s are generated, they simply
propagate through to all subsequent stages.

A value d; of any level is termed a
“Wavelet coefficient” of the original data
vector; the final walues V,, V: should
strictly  be  called  “mother-function
coefficients”, although the term “Wavelet
coefficients” is often used loosely for
both d’s and final V's. Since the full
procedure 1s

a composition of orthogonal lincar
operations, the whole DWT is itsell’ an
orthogonal linear operator.

To invert the DWT, one simply reverses
the procedure, starting with the smallest
level of the hierarchy and working (in eq.
(22)) from right to left. The inverse matrix
(16) is of course used instead of matrix

(15)

Procedures that embody the DWT and
IDWT (Inverse  Discrete  Wavelet
Transform) are available to be used later
for obtaining the symbolic analysis using
the Wavelet transform.

34 THE USE OF DWT FOR FAST
SOLUTION OF LINEAR SYSTEMS

One of the most interesting, and promising,
wavelet applications is linear algebra [10].
The basic idea is to think of integral
operator (that is, a large matrix) as a digital
image.  Suppose that the operator
compresses well under a two-dimensional
wavelet transform, ie., that a large
function of its wavelet coellicients are so
small as to be negligible. Then any system
involving the operator becomes a sparse
system in the wavelet basis, In other words,
to solve:
Ax=b (23)

we first wavelet-transform the operator A
and the right-hand side b by:

Asw.-Aw' |, b=W-b (24)
where W represents the one-dimensional
wavelet transform, then solve:

A-X=b (25)

which is a sparse system in the wavelel
basis, and hence, this property can be used
o solve this system in a faster way than
usual, by using methods for solving the
sparse systems, so that we can obtain the
resulls almost in a real-time manner,

Finally, transform to the answer by the
inverse wavelet transform:
x=W".5¥ (26)

The results will appear with a high

accuracy as compared with the use of other
transforms to perform the same task.

The method discussed above was
implemented and verified for solving
numerical linear systems in a fast way, It is
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&l

also adopted to solve the linear system that
will be obtained when performing the
symbolic analysis. The problem that will
arise is o do the above operations in a
symbolic way, and hence solving the linear
system  svmbolically as fast as possible.
This problem is overcome and applied to
solve the symbolic linear system to convert
it to a sparse symbolic system in the
wavelel basis. This system is then solved
using a method for solving the sparse
system symbolically also. This, in fact,
reduces the time required to obtain the
symbolic analysis as will be shown later.

3.5 THE WAVELET MATRICIES

As one can see from eq. (15), the W matrix
of dimension 4 x 4 is as shown below:

i ¢, £ i
€, ~—&p ¢ -
W= 27)
c, Cy Cy cy
| &, g . =]

Where ¢y, ¢, c3, and ¢y are the DAUB4
filter coefficients as explained previously.

Now, the W matrix of dimension 8= 8 is as
shown below:
[eg ¢ ep e & 8 8 o]

Cy =2 Ly =y

o o [ o C3 g o o
B o T i S SO -
[ & o o Cy ) s 0
o 8 8 0 e; -cp o -5y
03 o i il = i py &y
L e Ty i ) i ) [ =

Note the sparsity as the dimension of the
matrix  increases. The above matrix
contains 64 clements, 32 of them are zeros.
The W matrix of dimension 16x16
contains more zero entries in it and so on
for higher order of W matrices. This will
lead, when we use it to transform a linear
system, to obtain a sparse system that
makes its solution easier and faster. Table
| shows acomparison between the size of

the W matrices and the number of zeros
included in them.

Table | Comparison between the size of the W
matrices and the number of their zeros

[SIZEOF | TOTAL | TOTAL | SPARSITY
W NUMBE | NUMBER |  RATIO*
MATRI | ROF OF o
X ELEME | ZEROS
BT T
4X4 16 NONE 0
8X8 | o4 32 50
|
16X16 256 192 75
J2X32 fa24 896 855
G404 46196 _;&4 i 93175
T28X128 Taihd 13872 6.8 75 |
I

* Sputesity Hatie= (Total Moober of Seros) £ Totad Namber of
Elewents).

It was found that the number of zeros in
the W matnx for DAUB4 filter can be
found by the formula:

Z=D*-4D (29

where 7 is the number of zeros and D is
the dimension of the W matrix (D =4, 8,
16,...).

3.6 HARMONIC WAVELET
TRANSFORM

The wavelets studied so far have all been
derived with real coefficients. For.
example, N wavelet coefficients can be
computed by solving the N nonlinear
algebraic equations that define them, When
this is done, it turns out that the underlying
spectrum of a wavelet with N coeflicients
becomes more box-like as N increases.
This fact led to seek a wavelet w(x) whose
spectrum 1s exactly like "a box so that the
magnitude of its Fourier transform Wi{w) is
zero except for an oclave band ol
frequencies. The corresponding complex
wavelet is:
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THE DENOMINATOR IS:

e [Ej-l.:n' __Ejl.'::)
w(x) = ﬁh, D)

4. APPLICATION EXAMPLES

c; C G Cy Cs R1 Rs Ry Ry Rs
s°+

(Ry C. Ry R; C3 Cy Rs Cs +

Ry R: R; C; Ry Cp Cs Cy + By Fe
Cy Ri Co Cy Rs Cs + Rz C; By G5
Rs Cy Rs Cs + By Rz Ry C1 By Cs
Cs Cs+ By Ry C; Ry Cs C; Rs Cs
+ Ry Rs R, C; C; Cy Rs Ce + B;
Ro C, Ry C: C3 Bs Cs + Ry By G5

R, C3 Ci Rs Cs) s +

This section presents some examples ol
using the previously mentioned algorithm
that depends on the use of the DWT as
compared with the use of the FFT [rom the
point of view of reducing the amount of
calculations and hence the execution time.
The software required to perform this task
is  written using the language of the

MATLAB package. (Re C1 Ry C4 Rs Cs + Ra C2 R Gy

Rs CE + Ry B3 Rs Co C3 Cy+ Ry R
C, Ry C; Cz + Ry C1 Ry Rz Cy Cg
+Ry Ry Cp; Cy Rg Cs+ Ry Rp C3 Cy
B: Cs + Ry Rz Cz Rz Cs Cy + Ry

For the purpose of fair comparison, two
versions ol the symbolic analysis programs

were written, one uses the FFT (called
SAUFFT: Symbolic Analyzer Using Fast e . e Mok Sy e e
Fourier Transform) and the other uses the 5 R R Gy Oy By Cp Ty ©2 R
DWT (called SAUDWT: Symbolic Co: Bg . Ca ¥ BoCals i oBs bs ¥
Analyzer  Using Discrete  Wavelet By, By Sy Caitaed T S A
’l‘t'an;fmm} in numerical interpolation. Fa' Tt & BB GuBe e 4 B4
Also, the circuits were used in both By Sgdx by ©0 Ky Kasto By G
' ‘ o . + C; Ry Ri Cy Rs Cs + Ry C1 Ry
programs Lo pn:rlurml the symbolic amdllysm, Hi C. C1 % By Ha € Bi G5 Ci *Rs
ll}e resulls are obtained using a Pentium [I C, Ry Cs Rs Cs +R; Ry Ci Ry C3
MiCroprocessor }hat operates on 233 MHz Gk %GRy Ba CiBs O 4By 0 By
frequency and with 16 MB RAM memory. B By Cait o B G By O3 05 #
EXAMPLE 1: Consider the RC ladder f;i cf; 53R1+ SRR e M9y

circuit shown in Fig.1. It is desired to find
the voltage transfer function VF,/¥;. This Ry Ba €y O + Ri Ca Rely + Ry
circuil contains passive elements only with B By Ok Ou BN Ga ¥ Ry 0
10 symbolic variables. The description of 8. Oy & 0 BoBe Cot By B 0
the circuit was input to the program ina Ok By RyCy & + % € Re Gy +
SPICE-like format. R: Cs Ms Cs + Ry C; Bs Cs + Ry
Cz Rz Cs + Ry C; Ry Cg + C4 Ry
Ci + R2 Cy Rs C5 + C1 Ry Ra Gy +
The analysis of this circuit using program C, Ry Rz Cq + Ry C3 Rs C5 + C;
SAUDWT and SAUFFT yields the same Rz R3 Cy + Rg CL Ry Cs + C1 Ry
transfer function but with different times of R; C3 + Rz C; Ry Cz + Ry C3 Ry
execution. The result is as shown below: Cs + R Co R Cs + C3 Rz Rs Cs +
Ry R; Cz Cs + €1 Ry Rz Cs + Ry

THE NUMERATOR IS: C; R, C3; + R3 Cp Ry Cs + Ry Ry
1 C. C4 + Ry C; By Cy + By Ry Ca

a4 Ry Oy Bs Ce)n® &
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R, @ R R; R, B
(?—M}‘ 2 *"V\;‘ D W_@_JW i "V‘J" ® &
V;* C% CE:: -5T Ci_l_ Cj-_—: TV(:

Fig.I Circuit of example 1

+ C1 Ry
+ Ry Cs
+ By C»
s +'1

(C¢ Ry + Cs Rs + Ra C2
+ Ry Cy + R Cs + R1 Cs
+ R; C3 + Ry Cy + Rz Cs
+ Ry Cs + C3 Rz + Rz Ci)

TIME OF EXECUTION OF FROGRAM
SAUDWT:

TIME= 7 SECONDS.

TIME OF EXECUTION OF PROGRAM
SAUFFT:

| TIME=19 SECONDS.

EXAMPLE 2: Consider the circuit shown
in Fig2. The circuit contains eight
symbolic variables, which are C;, C1, G
.Ca » Bmls Em2 » Bm3, and gme, where the gn's
are the transconductances of the OTA (
Operational Transconductance Amplifier)
devices. The active devices are modeled
using the nullator-norator equivalent
circuit.

The analysis of this circuit using program
SAUDWT and SAUFFT yields the same
transfer [unction but with different times of
execution. The result is as shown below:

THE NUMERATOER IS..
Oml Gmz In3 Gmd

THE DENOMINATOR IS..

C, Cp C3 Cy 341‘ Cq Cz Cy Tnd 53
+ (Qn3 Gne C1 Cs + C1 C2 gma Guma)
b
=]

+ (Oes Omz Gm Cq + Ci Ound Yoz
Onz ) 8 + Gu3 9ol Fmz Tme

TIME OF EXECUTICN OF PROGRAM
SAUDWT:

TIME=4 SECONDS.

TIME OF EXECUTION OF PROGRAM
SAUFFT:

TIME=10 SECONDS.
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EXAMPLE 3: Consider the circuit shown
in Fig. 3. The circuit contains 11 symbolic
elements and 4 OPAMP’s (Operational
Amplifiers). Afler analyzing this circuit
using the two programs, the result was:
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THE NUMERATOR IS..

<Foo By RORe 5 Ba Ry Ci By s
Rig(Ry Ry Rs C2 R; R — Cz Ry Ry

Fig. 2 Circuit of example 2

R; Ry Rs) s-Ripy Ry Ry Bg Ry

THE DENCMINATOR IS..

R+ Rg Ry R5 C: R B3 C; R; 32

+ By Ry Ry Rs C3 Ry B3 5 + By Ry

R; Rg By

EXECUTION TIME:
PRGOGRAM ONE SAUDWT:
TIME=10 SECONDS.
PROGRAM TWO SAUFFT:
TIME=25 SECONDS.
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5. PERFORMANCE COMPARISON
BETWEEN THE FFT AND THE
DWT

Fig.4 shows a simple comparison between
the performance ofthe FFT and the DWT
for their use in the symbolic analysis. From
the figure, we can see that for small
number of symbolic wvariables, the
performance of the two transforms is
almost the same. At large number of
symbolic variables, however, the
difference becomes very clear between the
two transforms. Also, one can see that the
DWT continues in providing the analysis
for large number of symbolic variables -
with excellent time, while in FFT, the time
increases rapidly with © increasing the
symbolic variables and it fails at certain
number of symbolic variables to provide
the required results. It should be mentioned
that these results (those shown in Fig.4)
arc taken for acertain set of circuits
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and applied to programs SAUDWT and
SAUFFT for the purpose of fair
comparisen. Of course, not only the
number of symbolic elements affects the
required time of execution, but also the
configuration of the cireuit, that is the
number of nodes and branches. The figure
shows the results up to about 26 symbolic
variables and circuits with larger number
of variables can also be analyzed with the
program SAUDWT only.
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6. CONCLUDING COMMENTS

The application of wavelets is still new.
The subject is developing fast .and many
questions remain to be answered. For
example, What is the best choice of
wavelet to use for a particular problem?
How far does the
computational simplicity compensate for
its slow rate of decay in the x-domain
(proportional to x')? . For condition
monitoring, the DWT (using families of
orthogonal wavelets) will be competing
with time-frequency methods using the
Short-Time Fourier Transform (STFT) and
the Wigner-Ville distribution [4,10].
Orthogonal wavelets give fast algorithms
and there is no redundancy: N data points
give N wavelet amplitudes. Instead of a
signal’s mean-square being given by the

harmonic wavelet’'s °
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Fig.4 Comparison in the timing performance between
the DWT and the FFT transforms when used in the
symbolic analysis

area under its spectral density curve, mean-
square is given by the volume under a two-
dimensional wavelets surface with time (or
distance) as one axis and wavelet level (a
measure of frequency) as the other axis. In
contrast, the STFT and Wigner-Ville
methods provide redundant information
than would be needed to reconstruct the
signal  being  analyzed and the
computations take longer to complete [4].

Most of the usefulness of wavelets rests on
the fact that wavelet transforms can
usefully be severely fruncated, that is,
turned into sparse expansions. The case of
Fourier transforms is different: FFTsare
ordinarily used withoul (runcation, to
compute fast convolutions, for example.
This works because the ~convolution
operator is particularly simple in Fourier
basis [4,5,10].

Harmonic wavelels can be described by a
simple analytical formula, they are

compact in the frequency domain, and are
described by a complex function. Dilation
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wavelets cannol be expressed in functional
form, they arc compact in the x-domain.
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