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Abstract 

This review article puts forward the phenomena of chaotic oscillation in electrical power systems. The aim is to present some 

short summaries written by distinguished researchers in the field of chaotic oscillation in power systems. The reviewed papers 

are classified according to the phenomena that cause the chaotic oscillations in electrical power systems. Modern electrical 

power systems are evolving day by day from small networks toward large-scale grids. Electrical power systems are constituted 

of multiple inter-linked together elements, such as synchronous generators, transformers, transmission lines, linear and 

nonlinear loads, and many other devices. Most of these components are inherently nonlinear in nature rendering the whole 

electrical power system as a complex nonlinear network. Nonlinear systems can evolve very complex dynamics such as static 

and dynamic bifurcations and may also behave chaotically. Chaos in electrical power systems is very unwanted as it can drive 

system bus voltage to instability and can lead to voltage collapse and ultimately cause a general blackout. 
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NOMENCLATURE 

AVR  Automatic voltage regulator.  

CB    Cyclic-fold bifurcations. 

DOF   Degree of freedom. 

𝛥𝑓     Frequency difference.  

𝐺𝑊    Gigawatts. 

HB    Hopf bifurcations  

PD     Period-doubling  bifurcations.  

𝑃𝑚    Generator input mechanical power. 

PSD   Power spectral density.  

𝑄1    Reactive power. 

SMIB  Single-machine infinite-bus. 

SSR    Subsynchronous resonance. 

TB   Torus bifurcations. 

I.  INTRODUCTION 

Electrical power systems are the most sophisticated and 

important systems in modern society. They have immediate 

consequences for modernization, politics, economics, and 

society. Electrical power system service continuity and 

reliability is a broad research topic, in which power outages 

and cascade failure analysis play a critical role in creating the 

future of such systems and ensuring their stable and secure 

functioning.  

Modern electrical power grids are operated close to 

steady-state stability margin as energy demand develops, 

which can easily lead to a critical situation. Electric power 

systems are made up of a huge number of components that 

interact in nonlinear ways with each other. These 

components have a dynamical response that spans a wide 

variety of time scales. Each time-scale components have 

their own effects on the dynamical reactions of power 

systems. 

Many research works have been dedicated for enhancing 

a power system's ability to maintain steady-state and 

transient stability. The most crucial quantities in power 

systems to carefully control are voltage, frequency, and rotor 

angle of synchronous generating units in order to ensure 

power system stability. The frequency stability is 

immediately affected by the power imbalance between 

demand and generation, whereas the voltage is directly 

affected by the reactive power imbalance [1]. The rotor angle 

behavior is also indicative of the overall power system's 

stability and synchronism. If the power system experiences 

an unusual situation, such as an overload caused by a 

generator failure, sudden load reconnection, or transmission 

line tripping, frequency and voltage instabilities must be 

addressed immediately. If these abnormal conditions are not 

addressed promptly, the system will undergo cascading 

events that could result in a blackout [1], [2]. As a result, 

when a blackout in a power system occurs, the consequences 

might be far-reaching. 

Several blackouts of commercial power systems have 

occurred, leaving millions of customers stuck for hours 

without services. For example, on July 31, 2012, a power 
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outage lasted several hours, affecting roughly 700 million 

people in India's north and east due to a demand-generation 

imbalance when nearly 32 𝐺𝑊 of electricity was disrupted 

[3]. This blackout is the greatest power outage ever recorded 

in terms of the number of persons affected [2].  

The behavior of chaos in an electrical power system can 

manifest as abnormal oscillations under certain situations, 

posing a threat to the electrical grid's reliability and stability 

[4]. Chaos research is an important topic due to the nonlinear 

nature of power grids. This field is until now in its early 

stages. Where a lot of aspects need to be investigated. In 

power systems, chaotic occurrences are unavoidable, and it 

has an essential influence in the system's overall stability 

notion. [4]. Furthermore, the analysis of the chaos 

phenomenon opens up new avenues for modern control 

subjects in electrical power systems, and chaos research is 

projected to enrich smart grid development in the near future. 

This review article is organized as follows. In Section II, 

some useful definitions relevant to chaotic dynamics are 

restated and provided firstly. Then, a brief history of the first 

study that investigated the chaotic behavior in electrical 

power systems is given in this part. In continuation of the 

review, Section III discusses the chaos in single-machine 

infinite-bus (SMIB). Some directions on the effect of hard 

limit in the synchronous machine excitation system are 

reviewed in Section IV. Moreover, the noise-induced chaos 

in power systems, which have been previously reported in 

the literature, are summarized in Section V. Then the effect 

of active and reactive power of the load is presented in 

Section VI.  Furthermore, the mechanical power of the 

generator prime mover is discussed in Section VII. Time 

delay is unavoidable in power systems, chaos induced in 

power systems is discussed in Section VIII. In Section IX, 

some resonance phenomena problems between the electrical 

and mechanical components of power systems are presented.  

Then the resonance is revisited but due to the electric circuit 

of the transmission line and the saturated transformers is 

demonstrated in Section X. Finally, the review is concluded 

in Section XI. As per the best of the author's knowledge, this 

is the first review in this field of chaos in power systems, 

discuss this phenomenon in such a theme.  

II.  PRELIMINARIES DEFINITIONS AND CHARACTERISTICS 

A. Definition of Chaos 

Chaos is an aperiodic long-term behavior that occurs in a 

deterministic system that shows highly sensitive dependence 

on initial conditions. Chaos is often considered as noise as it 

has a noise-like appearance, but noise is random in nature 

whereas chaos is deterministic. The non-linear systems 

which show chaotic behavior are termed as chaotic systems 

[5]. Chaotic systems are highly sensitive to the initial 

conditions as they follow the butterfly effect which tells us 

that even a slight flapping of wings by a butterfly can cause 

a hurricane [6]. Chaotic behavior cannot be forecasted for the 

long term, but it may be predicted in the short term [7]. 

B. Characteristic of Chaos 

(1) Sensitivity to initial conditions:  

Chaos has a high sensitivity to the initial conditions. The 

initial conditions' small differences will produce vastly 

diverse outcomes. The butterfly effect is a classic example of 

small alterations in initial values leading to large disparities. 

(2) The randomness nature:  

The goal of research in chaos topic is to discover 

movement laws, which is intrinsically stochastic movement. 

Chaos is a sort of sequential movement that is far distinct 

from true random motion. Chaos uncertainty is not generated 

by external effects, but rather arises spontaneously, and this 

uncertainty is associated with specific styles. 

(3) Positive Lyapunov exponent:  

At least one Lyapunov exponent 𝜆 in a chaotic system. 

Should be positive. This existence of this  𝜆𝑖 > 0 can be used 

as a judgment for chaotic behavior in the power system. 

(4) The ergodicity:  

Chaotic motion is generally constrained within a confined 

region in phase space and the trajectories are never 

intersected or regenerated. It is a sophisticated action that 

differs from normal movements when the concept of 

certainty is investigated. The chaotic movements can not halt 

in a specific state over time, instead traversing all points in 

state space, and the patterns are typically structurally 

comparable. 

(5) The strange attractor:  

The attractor in a chaotic state is called a strange attractor 

which is associated with nonlinear system behavior. The 

strange attractor indicates the certainty, regularity, and order 

and in the motion, which is a crucial signal to show the 

distinction from true stochastic motion. The chaotic attractor, 

unlike other attractors, has a positive Lyapunov exponent, 

that can be considered as a key property. 

The study of power system chaos began in the early 1980s. 

N. Kopell, an American academic, studied chaotic 

movement on a specific surface of energy in swing equations 

modeling a three-machine power system with two degrees of 

freedom (2DOF). These models are used in the analysis of 

the stability of electrical power systems in the transient state 

[8].  The results demonstrated that the swing equations of a 

connected power system generate complex dynamics in the 

form of horseshoe chaos.   

III.  CHAOS IN SINGLE MACHINE INFINITE BUS (SMIB) 

Fig. 1 depicts a SMIB power system schematic diagram 

that is considered in this article. The synchronous generator 

“one” is shown in this diagram, delivering power to the 

infinite-bus “five” via the main transformer “two”, system 

tie line “three”, and impedance “four”.   
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Fig. 1 The configuration of the single-machine infinite-bus 

(SMIB) power system.  
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The mathematical model of this system can be described by 

swing equation and represented as follows: 

 

 
𝑥1̇ = 𝑥2;

𝑥2̇ = −𝑐𝑥2 − 𝛽 𝑠𝑖𝑛 𝑥1 + 𝑓 𝑠𝑖𝑛 ω 𝑡
 (1) 

where 

𝑥1 = θ, 𝑥2 = θ̇, 𝑐 = 𝐷/𝑀, 𝛽 = 𝑃𝑚𝑎𝑥/𝑀, 𝑓 = 𝐴/𝑀. 
 

The authors of  [9] in 1983  showed in analytical method, 

the existence of horseshoe-chaos in the SMIB electrical 

power system where an excitation system is included on this 

model. And they used singular perturbation techniques, to 

reduce the system order, and derive a 4-dimensional 

nonlinear model, based on the parameters perturbation from 

a near-integrable 2DOF Hamiltonian system. 

The existence of degenerate Hopf bifurcations in an 

electric power system has been investigated analytically 

using the Lyapunov-Schmidt theory and through simulation 

in the work of [10]. Then, to specify the degenerate Hopf 

bifurcation types, a qualitative method based on system 

trajectory data is proposed. 

One important task in performing bifurcation analysis on 

nonlinear systems from an engineering perspective, such as 

in electrical power systems, is investigating the mechanism 

that leads to the loss of stable equilibrium points owing to a 

bifurcation, as well as the system dynamical behaviors after 

the bifurcation. The nonlinear system state will develop in 

accordance with the system dynamics when a bifurcation 

occurs. After bifurcation, the dynamics specify if the system 

will be in a stable state or change to an unstable state, in 

addition to instability types [11]. 

In (2000) [12] a basic SMIB electrical power system 

model, Venkatasubramanian and his coworkers investigated 

the possibility of the occurrence of Hopf bifurcations. Their 

primary focus is on Hopf bifurcations nature if  subcritical or 

supercritical when process parameters change. They 

observed that the subcritical Hopf bifurcations are dominant.  

 
Fig. 2: The bifurcation diagram and the largest Lyapunov 

exponent with 𝑓  as bifurcation parameter. The system 

parameters are chosen as 𝛽 = 1, 𝑐 = 0.5 , and 𝜔 = 1 . 

Adapted from [13].  

IV.  HARD LIMIT INDUCED CHAOS IN POWER SYSTEM 

 In (1996) [14], a typical model of electrical power 

system exhibits a cascade of period-doubling bifurcations, 

which lead to continual chaotic oscillation.  Where the gain 

of the excitation system is made high which is common in 

industrial applications.  The between hard-limits interaction  

with system transients over a wide range of practical 

parameter values causes prolonged complex oscillations.  A 

simplified schematic diagram for an excitation system is 

shown in Fig. 3. 
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Fig. 3 Feedback excitation system adapted from [15]. 

 

 In [16] (1999) the existence  of a critical phenomenon in 

nonlinear models is described in this work, where four types 

of attractors coexist within a basic electrical power system 

namely a stable equilibrium, a stable limit cycle, and two 

strange attractors. Even though the model has a feasible 

stable equilibrium point, the results show that power system 

operation can become locked in sustained chaotic motion 

following a large disruption. 

 The presence of several attractors in a nonlinear 

dynamical system is critical because it implies that the 

physical system under examination may have various 

operating conditions. In industrial applications like the 

electric power system, stable fixed points are typically the 

usual operating situations. The existence of a stable limit 

cycle, a stable equilibrium point, and strange attractors in the 

same system implies that a power system transient may 

become stranded in one of the following states:  

a) Stable fixed point,  

b) Oscillations state, or 

c) Chaotic oscillation, totally dependent on the initial 

condition after disturbance. 

 It should be noted that the four types of attractors can be 

feasible practically, as a sustained oscillatory state would be 

considered transient by the protective relay equipment of the 

power system [16]. In the real world, protective relays are 

usually designed to avoid interfering with transient 

situations. Therefore, in general, the protective equipment 

cannot  act to stop power oscillation  due to both stable limit 

cycles and strange attractors. However, prolonged operation 

under these circumstances, even for a few minutes, could 

result in serious fault to important devices like generator 

rotor shafts. As a result, it's critical to recognize these 

unwanted oscillations when they arise  in the power system, 

and how the variation of process parameters results in 

oscillations, for instance as the variation in the output active 

power of the generator. Since chaotic oscillation generally as 

defined has a wide frequency spectrum, it can cause 
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unwanted transients  harmonic in generators, in other words, 

chaotic attractors are a critical problem to normal operation. 

V.  NOISE-INDUCED CHAOS IN POWER SYSTEM 

 In 2009 [13] numerically investigated the effect of 

Gaussian-white-noise on the dynamical behavior of 

electrical  power networks. The provided scheme is 

characterized by a SMIB power system and the values of its 

parameters are chosen such that the system is in a stable state. 

It has been observed that when the noise level σ increases, 

the power system shows an unstable state and falls into chaos 

phenomenon. These findings suggest that random noise can 

both trigger and intensify chaotic oscillation in the SMIB. 

Using the random Melnikov method and numerical 

simulation, [17] in (2014) investigated how noise-perturbed 

parameter influences the performance of electrical power 

systems. The investigated model is formulated as traditional 

SMIB power systems that work in a stable region far from 

chaotic nature and all parameters are deterministic. It has 

been observed in this article  that when the perturbations in 

parameter values are weak, there is no chaos oscillation. As 

the random variable ρ is raised in intensity, the dynamical 

model becomes unstable and then chaotic. These findings 

suggest that random parameters in power systems can both 

cause and promote chaos. 

 In (2010) [18] this work investigates how the noise-

perturbed phase (random phase) impacts the dynamical 

behavior of a basic power system operating in a stable state, 

and  away from chaotic behavior in case of no noise is exist. 

It is found that when the perturbation in phase is not strong, 

then there is no chaos in power systems. As the intensity of 

the disturbance σ grows, power systems become unstable and 

then chaotic. These results indicate that random phase can 

both cause and promote power systems' chaotic oscillation. 

In addition, the reasons  behind the random phase's effect are 

explored.  The nonautonomous system with phase 

perturbation can be considered as one of the simplest 

nonlinear systems displaying chaos phenomena. The 

perturbation disrupts the motion integrals and produces an 

unstable region in phase space.  If the Chirikov condition is 

met, the unstable region takes the form of a chaotic area with 

rapid diffusion [19]. 

VI.  LOAD INDUCED CHAOS IN POWER SYSTEM 

 In (1988)   [20], [21] considered a simple power system. 

The model is including a load bus connected to two generator 

buses. One of the generator buses has been defined as an 

infinite bus. While the second bus is characterized by the 

swing equation. A simple induction motor with a constant 

PQ load in parallel is used to mimic the load. Then load 

voltage and frequency are used as a simplified model of 

induction motor and provide the real and reactive power 

demands. The schematic model is shown in Fig. 4.  They 

show the existence of chaos due to load variation.  

0E m mE 

V 

23 1

M C

Dynamic Load
 

Fig. 4 A sample three-bus power system adapted from [22].  

 

 In (1993)  [23]  using computer simulations of a simple 

power system under a variety of loading circumstances, 

chaotic phenomena have been found. The authors studied the 

static (or local) bifurcation behavior of the power system 

under various loading conditions of reactive power. The 

following list summarizes the parameter values 𝑄1  linked 

with these four different types of bifurcations:  

a) When 𝑄1 = 10.9461, subcritical Hopf bifurcation.  

b) When 𝑄1 = 10.8859, period-doubling bifurcation.  

c) When 𝑄1 = 11.3776, period-doubling bifurcation.  

d) When 𝑄1 = 11.4066, subcritical Hopf bifurcation.  

e) When 𝑄1 = 11.4106, saddle node bifurcation.  
 

They focus their efforts and attention for 𝑄1 values, which 

are in the vicinity of the two period-doubling bifurcations. 

And found chaos when 𝑄1 = 11.377.  

VII.  MECHANICAL POWER INDUCED CHAOS IN POWER 

SYSTEM 

 K.G. Rajesh (1999) [24] investigated in an electrical  

power system model the existence of the bifurcations 

behavior. The dynamics of the generator are represented by 

a two-axis model where the field winding is considered to be 

on the 𝑑 −axis while the damper winding is represented on 

the 𝑞 −axis, as well as the excitation system. The  load model 

is characterize by a dynamic load. The behavior of the power 

system is examined through:  
  

a) The generator input power,  

b) Load bus active and reactive power,  

c) AVR voltage reference. 
  

 These variables are considered as bifurcation 

parameters. Model refinement is found to result in 

considerable qualitative changes in system behavior. It is 

shown that quasiperiodic dynamics result from a torus-

bifurcation. Moreover, as a consequence of cascades of 

period-doubling (PD) bifurcations, the system also can 

exhibit chaotic nature. 
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Fig. 5 Power system adapted from [25].  

 

 Z. Jing (2003) [26] analyzed an electrical power system 

including three buses. The input power to the generator (𝑃𝑚) 

considered as a bifurcation parameter, the system, due to 

includes nonlinear effects, has complicated dynamics that 

develop from static and dynamic bifurcations and lead to 

voltage collapse. The model analysis reveals different 

dynamical bifurcations types, including, cyclic-fold CB 

bifurcations, three Hopf bifurcations HB, period-doubling 

PD  bifurcations, torus bifurcations TB. Moreover, it exhibits 

complex behaviors including periodic motion, period-

doubling motions, quasi-periodic motions, phase-locked 

behavior. In addition to, two chaotic areas between two Hopf 

bifurcations, i.e. there are intermittency chaos and Hopf 

window.  

VIII.  TIME-DELAY INDUCED CHAOS IN POWER SYSTEM 

 Time delay is unavoidable in realistic applications and 

exists commonly in the power systems measurement and 

control loops. Time delays in power systems were previously 

tolerated within an acceptable margin since feedback 

controllers were constructed using local information [27]. 

However, in current times, power systems have grown in size 

and complexity, with generators connected over long 

distances by systematic tie lines and exciter inputs coming 

from distant buses.  Under such situations, the time-delay 

might range from tens to hundreds of milliseconds or more, 

resulting in unsatisfactory performance such as synchronism 

loss and power system instability. 

 M. Ling et al. in (2015) [28] explored the coexisting of 

attractors in a fourth-order time-delayed power system with 

various initial conditions for the first time. Using the analysis 

of bifurcation diagrams, Poincar´e maps, power spectral 

density PSD,  and  phase portraits, for varying  generator 

damping factors, mechanical power, the gain of the 

excitation system, and time delay. They revealed the 

characteristics of the time-delay in electrical power systems, 

including a discontinuous or jump bifurcation behavior. 

Furthermore, in the power system, the coexistence of two 

separate periodic trajectories and chaotic attractors with 

periodic orbits has been found. Therefore, the time delay can 

promote the system dynamics complexity, causing chaotic 

power oscillation and potentially voltage collapse. And 

voltage collapse may result in a blackout.   

 In (2005)  [29] investigate the effect of time-delay in 

feedback control of a SMIB electrical power system. They 

concluded that time-delay can trigger chaos phenomenon in 

the power system.  

IX.  SUBSYNCHRONOUS RESONANCE (SSR) INDUCED 

CHAOS IN POWER SYSTEM 

 Subsynchronous resonance or SSR is a phenomenon that 

occurs when a resonant situation exists between the  

transmission line and generation unit, resulting in an 

oscillation with frequencies lower than the power system's 

fundamental frequency (subsynchronous frequencies). This 

resonance phenomenon is  termed subsynchronous 

resonance [30], [31]. During this case, series compensation 

boosts the transmission line's power transfer capabilities. At 

some compensation levels, however, Hopf bifurcation is 

exhibited. In the event of a traditional compensation 

(variable series capacitor) method, the system then goes into 

chaos via a torus breakdown scenario. 

 In (2003, 2004, 2013)  [32]–[34], respectively, the 

scholars considered the first system of the IEEE second 

benchmark models of subsynchronous resonance, shown in 

Fig. 6. And the power system's stability when the 

compensation factor, defined as the ratio of the series 

capacitor's and inductor's reactances, is changed. In this 

article, the compensating factor is regarded as the bifurcation 

parameter. Results show that the system can exhibit chaotic 

oscillation due to SSR.  
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Fig. 6 Power system under study (System#1, IEEE second 

Benchmark Model of SSR).  

 

 In (2009, 2017)  [35], [36]  to explore the system's 

complicated dynamics, a bifurcation analysis is applied to 

the second system of the IEEE second benchmark model. It 

is addressed the scenario of ignoring the dynamics of both 

damper windings.  The results reveal that the operating point 

loses stability via Hopf bifurcation as the compensating 

factor (𝑋𝑐/𝑋𝐿) grows. Also, examined the effect of including 

damper windings to the generator's 𝑑 − and 𝑞 −axes. 

X.  FERRORESONANCE INDUCED CHAOS IN POWER 

SYSTEM 

 Ferroresonance is caused due to traversing capacitance 

line of the system with a nonlinear area of transformer 

saturation curve due to several configurations like circuit 

breaker failure,  line, and plant outage, voltage transformer 

connected to grading capacitor circuit breaker, and so on. 

The waveforms are distorted, and the frequency difference 

between two sites in the grid is increased.  The frequency 

difference 𝛥𝑓  causes a power oscillation with a swing 

frequency equal to 𝛥𝑓. The ferroresonance term was firstly 

coined in 1920 to characterize the phenomenon of two stable 

fundamental frequency operating points in a series capacitor 

circuit with a resistor, and nonlinear inductor. 
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 In (1994) B.A. Mork [37] for the first time, 

ferroresonance was studied from the perspective of nonlinear 

analysis and chaos theory. They indicate that single-phase 

switching or interrupting can cause ferroresonant  

undervoltages or overvoltages in cable-fed transformer 

setups. 

 In (1995) by S. Mozaffari  [38] a detailed study of 

numerous simulation findings, demonstrating that as losses 

drop and transformer magnetization nonlinearity rises the 

chance of chaos evolving.  The chaotic solution of the system 

was investigated by altering the transformer core losses and 

the value of the source voltage. 

 In (2013)   Radmanesh  [39] employed chaos theory, 

phase plan analysis, bifurcation, and time-waveforms 

simulation are used for investigating ferroresonance. A light 

load or no-loaded power transformer is included in the 

proposed power system. A single-value two-term 

polynomial is used to represent the transformer core's 

magnetization curve. The dynamic behavior of a transformer 

in the event of ferroresonance, as well as non-linearity in the 

core loss, has been investigated. Some modes of 

ferroresonance oscillation have been derived too.  

 In (2019) Rezaei [40], discussed the severity of 

ferroresonance in power systems and classified it into four 

types such as fundamental, harmonic, quasi-periodic, and 

chaotic  [41]. 

XI.  CONCLUSIONS  

 Different types of bifurcations and chaos phenomena, 

and a variety of electrical power systems configurations, 

have been reviewed in this paper. The work presented 

summaries of some articles by distinguished researchers in 

the field of nonlinear power system analysis. This review 

sheds light on the importance of studying the phenomenon 

of chaotic oscillation in power systems because it is one of 

the complex and extensive nonlinear systems. A set of causes 

of chaos were addressed, including limitation in the circuit 

of generators excitation, noise that is commonly present in 

electromechanical systems, changes in linear and non-linear 

loads, the effect of variations in the output power of the 

turbine unit providing the mechanical power to generators, 

and the effect of time delay in feedback systems.  

Furthermore, SSR and ferroresonance have been identified 

as two key contributors of chaotic oscillation in electrical 

power systems. This review gives vital information which is 

expected to advise new researchers and assist newcomers in 

seeing some of the most important results and gaining an 

appreciation of this broad topic. 
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