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Abstract 

Smart Microgrid (MG) effectively contributes to supporting the electrical power systems as a whole and reducing the burden 

on the utility grid by the use of unconventional energy generation resources, in addition to backup Diesel Generators (DGs) for 

reliability increasing. In this paper, potential had been done on day-ahead scheduling of diesel generators and reducing the 

energy cost reached to the consumers side to side with renewable energy resources, where economical energy and cost-effective 

MG has been used based on optimization agent called Energy Management System (EMS). Improved Particle Swarm 

Optimization (IPSO) technique has been used as an optimization method to reduce fuel consumption and obtain the lowest 

energy cost as well as achieving the best performance to the energy system. Three scenarios are adopted to prove the efficiency 

of the proposed method. The first scenario uses a 24 hour time horizon to investigate the performance of the model, the second 

scenario uses two DGs and the third scenario depends on a 48-hour time horizon to validating the performance. The superiority 

of the proposed method is illustrated by comparing it with PSO and simulation results show using the proposed method can 

reducing the fuel demand and the energy cost by satisfying the user’s preference. 

KEYWORDS: Diesel Generators (DGs), Fuel consumption, Energy Management System (EMS), Improved Particle Swarm 

Optimization (IPSO), Renewable Energy Resources (RER).   

 

NOMENCLATURE 

𝐶𝑡
𝐷𝐺 Energy cost of DG at time slot t 

𝐶𝑑𝑒𝑔 Battery degradation cost 

𝐶𝑡
𝑔

 Energy cost of the grid at time slot t 

𝐸𝑏𝑎𝑡,𝑚𝑎𝑥  Maximum capacity of ESS 

ES Energy charged to the battery 

𝐸𝑡 Energy stored in ESS at time slot t 

𝐹𝑡 Fuel amount consumed at time slot t 

𝐺𝑡 Forecast irradiance at time slot t 

𝐺𝑠𝑡𝑐 Test of standard condition irradiance 

𝑘𝑐 Relative temperature coefficient 

𝑃𝑡
𝑐ℎ Rated power charged to ESS at time slot t 

𝑃𝑡
𝑐ℎ,𝑚𝑎𝑥

 
Maximum rated power charged to ESS at time 

slot t 

𝑃𝑡
𝑑𝑖𝑠 Rated power discharged from ESS at time slot t 

𝑃𝑡
𝑑𝑖𝑠,𝑚𝑎𝑥

 
Maximum rated power discharged from ESS at 

time slot t 

𝑃𝑡
𝐷𝐺  Power generated from DG at time slot t 

𝑃𝐷𝐺,𝑚𝑖𝑛  Minimum power allowed from DG 

𝑃𝑡
𝑔

 power generated from the grid at time slot t 

𝑃𝑡
𝑝𝑣

 PV power generated at time slot t 

𝑃𝑃𝑉
𝑚𝑎𝑥  PV system rating 

𝑃𝑃𝐶𝐶  Maximum allowed power from PCC 

𝑃𝐷𝐺,𝑟𝑎𝑡𝑒𝑑  Rated power of DG 

𝑃𝑡
𝑑𝑖𝑠,𝑙𝑜𝑎𝑑  Power flow from ESS to the user at time slot t 

𝑃𝑡
𝐷𝐺,𝑐ℎ  Charged power from DG to ESS at time slot t 

𝑃𝑡
𝐷𝐺,𝑔𝑟𝑖𝑑  Power flow from DG to the grid at time slot t 

𝑃𝑡
𝐷𝐺,𝑙𝑜𝑎𝑑  Power flow from DG to the users at time slot t 

𝑃𝑡
𝑔𝑟𝑖𝑑,𝑐ℎ  Power flow from the grid to ESS at time slot t 

𝑃𝑡
𝑔𝑟𝑖𝑑,𝑙𝑜𝑎𝑑  

Power flow from the grid to the users at time 

slot t 

𝑃𝑡
𝑝𝑣,𝑐ℎ  Power flow from PV to ESS at time slot t 

𝑃𝑡
𝑝𝑣,𝑔𝑟𝑖𝑑  Power flow from PV to the grid at time slot t 

𝑃𝑡
𝑝𝑣,𝑙𝑜𝑎𝑑  Power flow from PV to the users at time slot t 

𝑃𝑡
𝑑𝑖𝑠,𝑔𝑟𝑖𝑑  Power flow from ESS to the grid at time slot t 

𝑃𝐷𝐺  DG Power output 
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𝑃𝑔 Power purchase or sold from/to the grid 

𝑆𝑂𝐶𝑡 State of charge at time slot t 

𝑆𝑂𝐶𝑚𝑎𝑥  Maximum energy ratio saved in the battery 

𝑆𝑂𝐶𝑚𝑖𝑛 Minimum energy ratio saved in the battery 

T Time horizon 

𝑇𝑐 PV cell temperature 

𝑇𝑡 Ambient temperature forecast at time slot t 

𝑇𝑛𝑜𝑐 Nominal operating cell temperature 

𝑢𝑡
𝑐ℎ 

Logic variable to control the battery charging 

at time slot t 

𝑢𝑡
𝑑𝑖𝑠 

Logic variable to control the battery 

discharging at time slot t 

𝑥𝑛 
Factor of imposing a penalty for exceeding nth 

constraint 

𝑧𝑡 
Logic variable to control DG operation at time 

slot t 

𝛼𝐷𝐺 
Coefficients represent incline of fuel 

consumption curve of DG 

𝛽𝐷𝐺 
Coefficients represent interception of fuel 

consumption curve of DG 

𝜌𝑑𝑒𝑔 Battery degradation factor 

𝜂𝑐ℎ Efficiency of charging power 

𝜂𝑑𝑖𝑠 Efficiency of discharging power 

I.  INTRODUCTION 

The flexible architecture and large penetration of 

Renewable Energy Resources (RER) in Micro-grid (MG) 

encourage the adoption of these networks with a variety of 

operation and management strategies that differ from those 

of the conventional systems [1]. An MG is defined as a 

distribution, controllable, and low voltage network 

connected/disconnected with the utility grid at Point of 

Common Coupling (PCC) comprising RER and/or non-

RER, Energy Storage Systems (ESS), and responsive loads. 

MG can be set up in both two modes, grid-connected or 

islanded modes [2]. The power can be traded off between the 

utility grid and MG through PCC by importing and exporting 

under different energy tariffs. MG can also provide 

additional services like voltage support and regulation to the 

utility grid that a conventional end-user system cannot 

support [3]. From the users' point of view, MG regards as a 

cheap energy resource by the presence of RER and ESS, also 

participate in decreasing emissions due to reducing the fossil 

fuel energy resources dependence. Moreover, it can enhance 

the power quality by regulating the voltage and reducing its 

dips [4], [5], [6].The diversity of energy resources in the MG 

make it more secure, more economic, and sustainable than 

that relying on a unique technology resource, but the process 

of coordinating energy resources throughputs become 

complex and this issue is considered a challenge for energy 

control systems designers due to their differences in 

mechanics, response, and efficiencies [7]. The presence of 

RERs in the MG impacts the system operation, where the 

probabilistic nature of weather conditions like wind speed 

and sun irradiance make RERs power significantly fluctuate 

continuously. In addition to that, the hourly load behavior 

and energy price change from time to time greatly increase 

the complexity of the system modeling and controlling [8]. 

Usually, the MGs are installed in remote, rural, isolated areas 

or regions that are equipped with a limited level of electrical 

energy from the utility grid in addition to the uncertainty 

problems of several parameters and variables and other 

reasons associated with the unreliability of the supplying of 

RER, all these reasons lead to insufficient energy supplying 

and unreliability of its continuation. 

To enhance the MG operation and overcome the 

uncertainty problem of RER power generation and increase 

the reliability, the Diesel Generators (DGs) are incorporated 

in the MG. The DG is a reliable, dispatchable energy 

resource used to cover energy demand in times of power 

generation shortages or during times of high demand in order 

to prevent the load shedding and avoiding of customers 

preference effecting. Despite the intended benefit of the 

generator, the energy generated from it is considered 

expensive and costly due to its dependence on expensive fuel 

in addition to other factors such as maintenance, operating 

hours, starting up/ shutdown of operation. 

To exactly benefit from the DG and obtain energy at the 

lowest cost, scheduling of the DG operation with other 

energy resources such as PV must be made using EMS by 

specifying the hours of commitment and allocation of the 

diverse energy sources taking into account the effecting of 

other variables such as energy tariff, demand load… etc., 

thus the fuel consumption used is scheduled. 

For the sustainability of the generator’s work and its 

readiness for use at all times especially during peak and 

emergency times, there must be a permanent abundance of 

fuel in the fuel tanks, and this requires scheduling the use and 

purchasing fuel from suppliers. One of the methods of 

supplying and ensuring the availability of fuel for generators 

is the take or pay method. Take or pay method states that 

providing the fuel to the buyer by fixed quantities during 

periodic intervals of time determined between the supplier 

and the consumer according to an agreement signed between 

them, and this imposes on the users to consume all the 

supplied fuel within the specified time horizon in order to 

avoid the penalties and financial payments stipulated in the 

agreement or the accumulation of fuel otherwise, but this 

strategy is considered costly and useless, thus causes 

additional burdens on the operation of EMS whose main goal 

is to reduce the cost of energy generation in an optimal way. 

Significant efforts have been devoted in the field of the 

MG resources scheduling operations over the past years, as 

scheduling processes are divided into two parts, one part is 

related to scheduling the work of energy sources and the 

other part is related to fuel disbursement schedule. 

Scheduling the operation of energy resources of all kinds 

has taken a large space of scientific research. In [9], a 

dynamic optimal schedule technique for the MG in two 

modes, isolated and connected modes are proposed 

depending on dynamic programming and equal λ-algorithm 

to solve economic load dispatching problem for EMS so as 

to minimize the cost of fuel which is used in a micro-turbine 

generators and to maximize the profit of the MG in the 

connected mode, however, this paper did not discuss the 

constraints of energy at PCC and restrict the customers 



110   | Aklo & Rashid 

 

 

 
 

preferences, the same matter in the paper [10] and [11]where 

in [10] it is introduced a decentralized dispatch of power 

model and Distribution Network Operator (DNO) to 

coordinating the operation of multiple MGs by minimizing 

their operation costs while in [11] day-ahead scheduling of 

stochastic system in energy markets is proposed, this paper 

is present a chance-constrained stochastic programming the 

method with economic metrics to increase the reliability and 

obtain energy at a lowest cost from the energy market but 

without taking into account the PCC limitations.  

In [12] EMS of MG based on a rolling horizon method 

and mixed integer optimization is proposed. The control 

process of this work does not take into account the 

uncertainty of the system parameters unlike paper [13] in 

which the EMS takes a two-day-ahead forecast of RER and 

a two-day-ahead estimation for energy consumption 

depending on a neural network. 

In [14] day-ahead scheduling is presented for energy 

hubs with the aid of the Monte-Carlo method for scenario 

generation and fast forward selection way. The mathematical 

model is divided into two parts, first part represents the 

energy hub modeling with entire its energy resources and 

constraints while the second part is demand-side modeling, 

inelastic and elastic loads are isolated from the energy 

demand in order to properly use the shiftable/shavable 

features of the elastic loads, but this research restricts the user 

preferences in order to reduce peak demand without 

suggesting alternatives of generation, this problem treated in 

paper [15] that deals with the economic optimal operation 

problem of CHP by using chance-constrained programming 

to cover the randomness of RERs and other factors, but not 

cover the issue of fuel supply in order to ensure reliability. 

Reference [16] introduces a model that calculates the 

power system reliability by utilizing multi-scenario 

approaches to long-term unit commitment. The main 

constraint of the model is the loss-of-load-expectation 

(LOLE) to calculate the cost of the power supplying in the 

system. The disadvantage of this research is the lack of 

reliance on the short-term in calculating the cost of energy 

also The same matter in [17] and [18] that they use a 

stochastic constrained model in long-term, using multi-

scenario analyses by regarding generating resources and 

power failure in addition to load forecast errors but in [18] it 

is used a high wind penetration. 

The second part of the literature review is concerned with 

scheduling fuel of DGs. In [19] is proposed a practical 

adaptive method using pseudo fuel prices for fuel allocation 

and generator dispatching, however, the shortcoming of this 

research is the lack of dependence on realistic data in real-

time, while reference [20] presents the Lagrangian 

Relaxation approach for short term unit commitment 

optimization and scheduling in system consist of three types 

of generation units: fuel constrained, thermal and hydro also 

several techniques employed to analyze the unit commitment 

issue, one depend on Priority Lists Scheme in reference [21], 

other use Dynamic Programming that in [22]  and lastly 

Mixed Integer Programming is used in [23] but all these 

papers did not tackle the problem of uncertainty of main 

variables such as PV generation, energy price or nature of 

habitants habits. 

 The cost minimization approach for an MG is presented 

in [24], it is a short-term optimization of stochastic model in 

rural MG, which is proposed to minimize the fuel 

consumption and CO2 emission, at the same time improving 

the system quality and enabling activities of generating the 

community using Monte Carlo as an optimization 

methodology in order to deal with uncertainties in RER 

production and loads, but this work did not address the 

guarantee of fuel availability in the peak times. 

In this paper, a short-term and medium term optimization 

mechanism is proposed for PV-battery-diesel hybrid MG in 

the rural areas to supplying the fuel along the time horizon 

while EMS is presented to reduce fuel consumption, 

emission, and supplying energy to the end-user at the lowest 

cost. A day-ahead scheduling model and Improved Particle 

Swarm Optimization (IPSO) algorithm are introduced to 

achieve the objectives of the proposed system.  

Three scenarios have been proposed to validate the 

model's performance. The first scenario uses a 24 hour time 

horizon to investigate the performance of the model, the 

second scenario uses two DGs instead of one in the first, and 

the third scenario depends on 48-hour time horizon. 

According to the literature review, the essential 

contributions of this work are: 

 

 A proposed model has been introduced for fuel supplying 

and consumption, which can cope with RER and other 

variables uncertainties in the MG based on scheduling fuel 

consumption. The MG includes RER, ESS, the limited 

power of the grid at PCC, and EMS.  

 EMS employs IPSO as an optimization strategy to 

compute optimum day-ahead scheduling for RER and DG 

operation to find the lowest energy cost for the benefit of the 

end-users. The results of IPSO are compared with these 

obtained using PSO to show its superiority. 

 Life extending of ESS  by regulating charging/discharging 

in optimization process that depending on the load demand, 

the energy tariff, and RER generation, taking into account 

the times of charging and discharging along time horizon 

which leading to battery degradation life.  

 The case study that had been worked on is real data of two 

typical days in July, wherein this month the demand is high 

and the generation of PV is large also the energy tariff is 

disparate, thus these reasons make the EMS work in an 

obvious manner.  

 Three scenarios have been proposed depending on the 

time horizon and number of DG to validate the proposed 

system and evaluate the performance of the EMS. 

 

The remainder of this paper is structured as follows: 

Section II discusses the system architecture and formulation 

of control system also principles of Improved Particle Swarm 

Optimization. Section III describes the mathematical 

modeling and methodology and the objective function. 

Section IV presents and discusses the results, finally, the 

conclusion is summarized in section V. 
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II. PROBLEM FORMULATION 

A. System Architecture 

Figure 1 shows the system architecture, it consists of MG 

connected directly to the utility grid at PCC, the MG contains 

PV panels, ESS, DG, and residential loads. The MG has an 

EMS for power flow management between the MG 

components. The power flow between household loads and 

energy resources are in one direction and between the grid 

and MG resources in two directions (buying and selling) 

between the grid and MG, PV, ESS, and DG are owned by 

the government. The main purpose of ESS is to decrease 

energy cost and enhance reliability. The MG resources can 

supply the power to the users in order to prevent household 

load shedding and avoid their preferences affecting [25]. The 

EMS goal is to minimize the cost of energy by decreasing 

fuel consumption along the time horizon. The controller 

takes the optimal decisions and the amount of power is 

decided to be traded with the utility grid taking into account 

the limits of PCC and the constraints related to RERs and DG 

limits. 

The operation of EMS has been optimized by IPSO to 

meet the optimum operation of supplying electrical power to 

the customers in MG. The details of the optimization model 

are in the next sections. 

 
Fig. 1 MG Architecture.  

B.  Improved Particle Swarm Optimization (IPSO). 

Among the optimization technologies, Particle Swarm 

Optimization (PSO) has been used for the proposed EMS due 

to its high convergence speed, robustness, and simplicity. 

PSO is a model-based and evolutionary computation method 

algorithm to find the optimum solution, it uses swarm 

intelligence to find the solution. This technique was 

developed by imitating a flock of birds flying within any 

region looking for food. PSO explores to find the objective 

by doing a population-based random search [26]. The 

populations include potential solutions named particles, 

which are an image of birds in flocks. These particles are 

initialized randomly and fly freely through the multi-

directional search space. During the flight, the particles 

update their velocity and position depending on the best 

experience of each particle and all populations encountered 

on the current journey. 

As a result of the updating, the particle swarm will be 

steered toward the more promising region that has a high 

objective value, then more and more particles will be 

collected near the optimum point [27-28]. The equations 

below illustrate the mathematical concept of the principle 

explained above. 

 
𝑽𝒋(𝒊) = 𝑽𝒋(𝒊 − 𝟏) + 𝒄𝟏𝒓𝟏[𝑷𝒃𝒆𝒔𝒕,𝒋 − 𝑿𝒋(𝒊 − 𝟏)]

+𝒄𝟐𝒓𝟐[𝑮𝒃𝒆𝒔𝒕 − 𝑿𝒋(𝒊 − 𝟏)]; 𝒋 = 𝟏, 𝟐, … , 𝑵
  (1) 

 𝑿𝒋(𝒊) = 𝑿𝒋(𝒊 − 𝟏) + 𝑽𝒋(𝒊); 𝒋 = 𝟏, 𝟐, … , 𝑵 (2) 

Equation (1) represents the jth particle velocity in the ith 

iteration, while (2) indicates the position of the jth particle 

in ith iteration, where c1 is the individual learning rates and 

c2 is social learning rates, while r1 and r2 are the distributed 

random numbers specified between 0 and 1. N refers to the 

number of particles and Pbestj is the best historical value of 

xj(i) that has the largest objective function in the current 

iteration. Gbest is the best historical value of all particles 

from past until current iteration that has the largest objective 

function value in all previous iterations. 

The velocities of particles in PSO are accumulated 

rapidly and this leads to jumping to the maximum point of 

the objective function. To overcome this problem a factor is 

added to decelerate the velocity of the particle and enabling 

it to converge more efficiently, this factor is called the inertia 

term,w, and traditional PSO becomes IPSO. The value of,w, 

is usually confined between 0.4 and 0.9 during the iteration 

progresses. The jth modified particle velocity is 

demonstrated as: 

 

 
𝑉𝑗(𝑖) = 𝑤𝑉𝑗(𝑖 − 1) + 𝑐1𝑟1[𝑃best ,𝑗 − 𝑋𝑗(𝑖 − 1)]

+𝑐2𝑟2[𝐺best − 𝑋𝑗(𝑖 − 1)]; 𝑗 = 1,2, … , 𝑁
 (3) 

 

Equation (3) shows a higher value of,w, support global 

point and a lower value support a local point. Thus a 

maximum value of w leads to makes PSO seek new regions 
taking into account no much local optima, thus leads to 

failure in finding the true optimum point. A proposed 

solution to this problem is by making balance between the 

two local and global optima, this achieved by make,w, 

decrease by a linear relation with the iteration number as seen 

in (4) [29]: 

 𝑤(𝑖) = 𝑤𝑚𝑎𝑥 − (
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝑖𝑚𝑎𝑥
) 𝑖 (4) 

wmax and wmin is the maximum and minimum value of  

inertia weights respectively, imax is the maximum iteration 

number used in the algorithm. 

III. MATHEMATICAL MODELING AND PROBLEM 

FORMULATION 

A. Mathematical modeling of system components 

EMS accepts the data from all components and PCC to 

obtain grid energy price and the capacity of lines 

information. The MG is placed in the connected mode, while 

the objective function goal is to minimize the entire 

operation cost associated with the energy cost of 

buying/selling power from/to the grid, fuel consumption and 

Household Loads 

𝑃𝑡
𝑝𝑣,𝑔𝑟𝑖𝑑  

𝐺𝑟𝑖𝑑  

𝑃𝐶𝐶 

𝑃𝑡
𝑔𝑟𝑖𝑑,𝑙𝑜𝑎𝑑  

𝑃𝑡
𝐷𝐺,𝑙𝑜𝑎𝑑  

𝑃𝑡
𝑝𝑣,𝑙𝑜𝑎𝑑  

𝑃𝑡
𝐷𝐺,𝑔𝑟𝑖𝑑  

DG EMS PV 

𝑃𝑡
𝐷𝐺,𝑐ℎ  

𝑃𝑡
𝑝𝑣,𝑐ℎ  

𝑃𝑡
𝑑𝑖𝑠,𝑙𝑜𝑎𝑑 

𝑃𝑡
𝑔𝑟𝑖𝑑,𝑐ℎ  

ESS 

𝑃𝑡
𝑑𝑖𝑠,𝑔𝑟𝑖𝑑 
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cost, battery degradation cost, and cost/benefit of 

purchasing/selling power from/to the utility grid, as shown 

in (5), (6) and (7). 

 𝑚𝑖𝑛 ∑ 𝐶𝑡
𝑔

(𝑃𝑡
𝑔

)𝑡∈𝑇 + 𝐶𝐷𝐺(𝑃𝑡
𝐷𝐺) + 𝐶𝑑𝑒𝑔   ∀𝑡 ∈ 𝑇  (5) 

 𝐶𝐷𝐺 = (
𝐹∗𝐶𝑓

𝑃𝑡
𝐷𝐺 ) + 𝑀𝑐                      ∀𝑡 ∈ 𝑇  (6) 

 𝐶𝑑𝑒𝑔 = 𝜌𝑑𝑒𝑔(|𝑆𝑂𝐶𝑡 − 𝑆𝑂𝐶𝑡−1|)       ∀𝑡 ∈ 𝑇 (7) 

The cost of trading off power between the utility grid and 

MG at time slot t is represented in the first term of the 

objective function (5), where the tariff of power changes 

from slot to slot at PCC, the second term in (5) is the DG 

power cost at each time slot t, the DG power cost relying on 

fuel price and maintenance cost as shown in (6), it also 

depends on the dispatched power from the DG, where at the 

high generation the price becomes lower, while the third term 

in (5) is the cost of ESS degradation due to frequent charging 

or discharging process as seen in (7) where the change 

between the two battery processes leads to life degradation 

[30]. 

The main goal of this work that must be performed is to 

minimize the overall cost of the energy at each time slot by 

increase the relying on RERs and decreasing the DG 

operation as possible. For this objective, the variables of 

optimization (Decisions) are become battery 

charging/discharging orders and the DG operations order. 

EMS uses IPSO to dispatching the operation of resources to 

meet load requirements and fuel consuming minimize. The 

mathematical modeling of the MG is divided into four parts 

as demonstrated below. 

 

1) Photovoltaic panels 
The power generated using the PV panels based on 

environmental and structural factors like the irradiance 

intensity, PV panel temperature Tc or ambient temperature as 

shown in (8) and (9) [31]: 

 𝑇𝑐 = 𝑇𝑡 +
𝐺𝑡

800
(𝑇𝑛𝑜𝑐 − 20)             ∀𝑡 ∈ 𝑇 (8) 

where Tnoc is the nominal cell temperature. The PV 

generation can then be computed in (9): 

 𝑃𝑡
𝑝𝑣

=
𝐺(𝑡)

𝐺𝑠𝑡𝑐
𝑃𝑃𝑉

𝑚𝑎𝑥(1 + 𝑘𝑐(𝑇𝑐 − 𝑇𝑠𝑡𝑐)𝜂𝑀𝑃𝑃  ∀𝑡 ∈ 𝑇 (9) 

G(t): forecast irradiance, Gstc: standard test condition 

irradiance, kc: relative temperature coefficient. 

2) ESS model 

The main purpose of using the ESS system is to store the 

excess energy from RERs and other resources and thus 

compensate for the energy shortage during periods of lack of 

supplying power to the load. The ESS is modeled as (10) 

[32], [33]: 

 𝐸𝑡 = 𝐸𝑡 + 𝛥𝑇 ∗ 𝑃𝑡
𝑐ℎ ∗ 𝜂𝑐ℎ ∗ 𝑢𝑡

𝑐ℎ −
𝛥𝑇×𝑃𝑡

𝑑𝑖𝑠

𝜂𝑑𝑖𝑠 ∗

𝑢𝑡
𝑑𝑖𝑠               ∀𝑡 ∈ 𝑇                                                           (10) 

 

Where ut
ch and ut

dis are a variables to control battery 

charging/discharging, as derived in (11) and (12). 

 𝒖𝒕
𝒄𝒉 = −𝒂𝒄𝒕𝒊𝒐𝒏𝟏 ∗ (𝟏 − 𝒂𝒄𝒕𝒊𝒐𝒏𝟏)/𝟐    ∀𝒕 ∈ 𝑻 (11) 

 𝒖𝒕
𝒅𝒊𝒔 = 𝒂𝒄𝒕𝒊𝒐𝒏𝟏 ∗ (𝟏 + 𝒂𝒄𝒕𝒊𝒐𝒏𝟏)/𝟐     ∀𝒕 ∈ 𝑻 (12) 

The ratio between the instantaneous capacity of ESS bank 

and overall capacity is named State of Charge (SOC), it 

regards from an essential variable that must be controlled, 

and it represents the time slot energy of the battery and its 

mathematical modeling shown in (13). 

 𝑺𝑶𝑪 =
𝑬𝒕

𝑬𝒃𝒂𝒕,𝒎𝒂𝒙
               ∀𝒕 ∈ 𝑻 (13) 

3) Diesel Generator model 
The goal of the DG is to supply the necessary energy demand 

when the RER cannot meet the load demand. The fuel 

consumption at each time slot is based on the dispatched 

power from the generator and rated power, the mathematical 

model is shown in (14): 

 𝑭𝒕 = 𝜶𝑫𝑮 ∗ 𝑷𝒕
𝑫𝑮 + 𝜷𝑫𝑮 ∗ 𝑷𝑫𝑮,𝒓𝒂𝒕𝒆𝒅        ∀𝒕 ∈ 𝑻 (14) 

αDG and βDG  are factor represent the incline and 

interception of the fuel consumption curve, its typical values 

equal are 0.246 l/KWh and 0.815 l/KWh respectively [34-

36]. 

4) Utility grid 

In this work, the power flow through the PCC point from 

the utility grid to MG is appointed within a certain limit as a 

result of the scarcity of energy supplied to remote areas. PCC 

is a power switch that is used to jointing the MG system to 

the main grid. 

B. System components constraints  

The constraints related to the controller of the system are 

listed in below: 

- Power balance constraints. 

- Energy capacity constraints. 

- Operational constraints. 

   The power balance constraint is the algebraic sum of 

generated power from all MG resources [37]. The balance 

equation of generation and consumption is shown in (15). 

 𝑷𝒕
𝑳 − 𝑷𝒕

𝒈
− 𝑷𝒕

𝒑𝒗
− 𝑷𝒕

𝑫𝑮 − 𝑷𝒕
𝒅𝒊𝒔 + 𝑷𝒕

𝒄𝒉 = 𝟎     ∀𝒕 ∈ 𝑻 (15) 

Pt
g is the utility grid power, the positive sign means 

buying power from the utility grid and negative sign means 

selling while zero means no power trading off.  

The PCC constraint included in (16) shows the upper 

limit of allowed power that must not exceed across PCC. 

 𝑷𝒕
𝒈

≤ 𝑷𝑷𝑪𝑪                           ∀𝒕 ∈ 𝑻 (16) 

The DG constraints are depicted in (17) and (18). 

Equation (17) illustrates the upper and lower bounds of the 

generated power output of DG, k is set to 0.35 according to 

the manufacturers' instructions. Equation (18) is a logic 

variable that describes the status of DG operation. 

 𝒛𝒕. 𝒌. 𝑷𝑫𝑮,𝒓𝒂𝒕𝒆𝒅 ≤ 𝑷𝒕
𝑫𝑮 ≤ 𝒛𝒕. 𝑷𝒕

𝑫𝑮,𝒓𝒂𝒕𝒆𝒅      ∀𝒕 ∈ 𝑻 (17) 

 𝒛𝒕 = {
𝟏    𝑫𝑮 is on 

𝟎     DG is off 
                               ∀𝒕 ∈ 𝑻 (18) 

Constraints of ESS are listed in (19), (20), (21), and (22). 

(19) and (20) explain the maximum and minimum bounds of 

ESS rated power in both charging and discharging cases, (21) 

shows the allowable percentage ratio of ESS capacity limits, 

and (22) shows the control variables constraint in order to 
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avoid charging/discharging at same time slot, its value ‘0’ or 

‘1’ as seen in (23). 

 𝟎 ≤ 𝑷𝒕
𝒄𝒉 ≤ 𝒖𝒕

𝒄𝒉. 𝑷𝒕
𝒄𝒉,𝒎𝒂𝒙                 ∀𝒕 ∈ 𝑻 (19) 

 𝟎 ≤ 𝑷𝒕
𝒅𝒊𝒔 ≤ 𝒖𝒕

𝒅𝒊𝒔. 𝑷𝒕
𝒅𝒊𝒔,𝒎𝒂𝒙             ∀𝒕 ∈ 𝑻 (20) 

 𝑺𝑶𝑪𝒎𝒊𝒏 ≤ 𝑺𝑶𝑪𝒕 ≤ 𝑺𝑶𝑪𝒎𝒂𝒙       ∀𝒕 ∈ 𝑻 (21) 

 𝟎 ≤ 𝒖𝒕
𝒄𝒉 + 𝒖𝒕

𝒅𝒊𝒔 ≤ 𝟏                       ∀𝒕 ∈ 𝑻 (22) 

 𝒖𝒕
𝒄𝒉, 𝒖𝒕

𝒅𝒊𝒔 ∈ {𝟎, 𝟏}                            ∀𝒕 ∈ 𝑻 (23) 

IV. SIMULATION RESULTS AND ANALYSIS 

The simulation has been achieved on an MG consists of 

a PV array contain 300 panels, DG, and ESS. DG rated 

power is computed by consideration of the historical 

maximum load profile. ESS is connected to PCC, PV, and 

DG on the first side and the loads on the second side as 

demonstrated in Fig. 1, in which the surplus power of PV can 

be used to charge the ESS, moreover, the low-cost power of 

grid can inject into the ESS at optimal time slot, all of these 

charging processes based on balance equation (15). Table I 

shows the details of the parameters and variables of the 

proposed system. 

In this paper, there are three scenarios have been adopted 

to validating the optimization method and check the 

performance based on three factors, time horizon factor, 

number of DG factor and DG rated power factor, these 

scenarios are: 

1.  Use 24 hour time horizon and one DG of 1000 KW rated 

power. 

2. Use 24 hour time horizon and two DGs each one of 500 

KW rated power. 

3. Use 48 hour time horizon and one DG of 1000 KW rated 

power. 

A. First scenario  

A typical day of optimized data has been taken, the 

demand load, PV array energy generation, and energy tariff 

profiles of utility grid are described in Fig. 2, Fig. 3, and Fig. 

4, respectively. EMS has been optimized by IPSO, which the 

decided actions are shown in Fig. 5. From the actions, it is 

noted that the DG work at the minimum border that is 

constrained in (17), and charging actions occur at a time slot 

in which the energy tariff of the utility grid is cheap or when 

there is surplus DG power during working in the minimum 

boundary. The schedule of energy tradeoff between MG and 

the utility grid is shown in Fig. 6. The utility grid energy 

supplied to the MG is constrained by a specified limit at 

PCC, in this paper, it must not pass 1.5 MW. It is seen from 

the figure that the upper limit is reached nearly at peak times 

(11-23) hours and there is no power sold to the utility grid 

along the time horizon. 

Figure 7 illustrates the SOC of ESS, it is noted that ESS 

is charged at the first hours of the day in which the energy 

tariff of utility grid is low while discharge in peak times of 

high energy tariff, at the same time, it is observed that there 

is no violation of the restrictions on the battery capacity, 

whether by charging or discharging, where the highest 

percentage of filling the battery is 87% at time slot 14 and 

the lowest percentage is 20% at time slots 21,22 and 24. 

TABLE I 

MG Parameters Details 

CBESS 

SOCmin 

(%) 

SOCmax 

(%) 
ut

ch,max 

(KWh) 

ut
dis,max 

 (KWh) 

20 90 250 250 

Emax 

(kw) 
ηch 
(%) 

ηdis 
(%) 

ρdeg 
($/MW) 

2500 0.9 0.9 100 

DG 

PDG,min
t 

(KWh) 

PDG,rated
t 

(KWh) 

αDG 

(l/KWh) 

βDG 

(l/KW) 

350 1000 0.246 0.08145 

Fmax 

(Liter) 
Cf 

($/l) 
  

2250 0.75   

PV 

Pmax
PV 

(w) 

Tnoc 

(CO) 
Gstc 

(w/m2) 

Tstc 

(CO) 

200 44.5 1000 25 

Kc 
(%/Co) 

ηMPP 
(%) 

  

0.43 90   

PCC 
PPCC,max 

(MW) 
   

1.5    

 

The hourly cost of required energy along the time horizon 

is different from region to region depending on several 

factors, such as time of use, energy tariff, DG usage, or PV 

availability. Fig. 8 shows the hourly cost along the time 

horizon. From the figure, it is noted that the high energy cost 

appears in the time slots in which the DG is in the run state 

(slots 14, 16, 18, 19, 20, and 21 see Fig. 5). 

This lead to make hourly energy cost high because the 

rest of the demand load in the time slots of the DG operation 

is lower than the minimum operation boundary of DG, for an 

instant, the need for energy from the generator at hour 14 is 

approximately 50 KW (regarding PCC constraint), in such 

case, it is obliged to run the generator at the minimum 

generation limit (350 KW), the same thing done on other 

slots. 

In this case, the rest of the DG power is either used to 

supply the demand or to charge the ESS, thus the energy cost 

becomes high. 

To overcome the effects of this problem and reduce the 

extra cost resulting from operating the DG at the minimum 

limit, it resorts to the second scenario which adopts the use 

of two generators. 

 
Fig. 2 Demand load profile. 
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Fig. 3 PV generation profile. 

 

 
Fig. 4 Energy tariff profile. 

 

 
Fig. 5 EMS Actions. (A) is DG actions, (B) is ESS actions. 

 

 
Fig. 6 Energy purchased from the utility grid. 

 

Finally, the power balancing of this scenario is shown in 

Fig. 9, the negative sign of power in the curve represents the 

amount of charged energy to ESS from sources which pass 

the red curve (demand load), wherein the slot 5 and 6, the 

battery is charged from the utility grid (black bar) and solar 

(green bar) while in slot 14 it is charged from solar only. 

 

 
Fig. 7 State of charge in the ESS. 

 

 
Fig. 8 Hourly cost of energy. 

 
Fig. 9 The distribution of energy generation. 

 

B. Second Scenario  

In this scenario, the same parameters and variables have 

been used except the generator number. It is used two smaller 

generators with identical rated power equal to the half of 

rated power of the generator in the first scenario for each one 

(500 KW). 

The goal of this operation is to decrease fuel consumption 

as will be explained. EMS has been optimized by IPSO, and 

it will make the decision as shown in Fig. 10. In comparison 

with the decisions taken in the first scenario, it is noted that 

there is a difference in the generating capacity of the DGs, as 

it is observed that the operating capacity of the DG in the 

second scenario is 1525 KW, while 2100 KW in the first 

scenario with a difference of 575 KW, therefore it is clear 

from the decisions of the second scenario not to run the 

second DG.  
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As compared with the first scenario, it is noted that the 

need at the same time slot requires drawing a small capacity 

from the DG and this requires operating the DGs in both 

scenarios at the minimum limit, but in the first scenario the 

minimum limit is greater than the minimum limit in the 

second scenario, Here, the difference tends to favor the 

second scenario and therefore we do not need to operate the 

second DG.As a result of this operation, the fuel consumed 

in the first scenario is 1005 L and 624 L in the second 

scenario with a difference of 381 L and thus the average 

energy cost per hour in the second scenario becomes less 

than in the second scenario.  

Fig.11 illustrates the comparison between the two 

scenarios in term of energy cost. Table II shows the ratio 

error of the factors in the two scenarios. Figure 12 shows the 

hourly cost of power that purchased from the utility grid for 

the two scenarios, which there is a cost juxtaposition in the 

two scenarios.  

 
Fig. 10 EMS Actions. (A) DG1 actions, (B) DG2 actions 

(C) ESS actions. 
 

 
Fig. 11 Hourly energy cost of the two scenarios. 

 

TABLE II  

Comparison between first and second scenarios. 

Comparison factor 
First 

scenario 

Second 

scenario 

Error 

(%) 

Fuel consumption 

(L) 
1005 624 37.6% 

Daily cost 

($) 
2129 1912 10.2% 

Hourly cost 

($) 
88.7 79.7 10.15% 

         

 

Fig. 13 shows the cost of energy drawn from the 

generators, it is noted that there is a clear difference in the 

cost of the two scenarios because the cost in the second 

scenario is much lower than in the first scenario due to the 

use of small-sized generators. 

Table III illustrates the details of the energy cost for the 

DGs and utility grid in the two scenarios according (5). 

 

 
Fig. 12 Hourly cost of utility grid in the two scenarios. 

 

 
Fig. 13 Hourly cost of DGs in the two scenarios. 

 

TABLE III  

Average Hourly Cost in the Two Scenarios ($) 

Energy source 
1st 

scenario 

2nd 

scenario 
Error 

Utility grid  53.22 54.8 1.6 

DG 31.56 19.5 12 

 Battery degradation 3.92 5.4 1.5 

Total 88.7 79.7 9 

 

C. Third Scenario  

In this scenario, the data of two days has been used as 

shown in Fig. 14, Fig. 15, and Fig. 16 that represent load, 

solar power, and energy tariff, respectively. In the case of 

optimizing the EMS by IPSO, the decisions of the DG 

running are made as shown in Fig. 17(A). 

Fig. 17(B) shows DG decisions of the two days when 

they optimized separately (24-hour time horizon). It can be 

concluded from the case of running the DG in the two 

horizons that EMS running the DG many times with a more 

percentage of operation in the 48-hour time horizon than in 
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the 24 hour time horizon, where the total operating hours in 

the long time horizon amounted to 15 hours with a total 

generation of 7678 KW and in the short time horizon 13 

hours with a total generation of 5215 KW. According to this 

statistic, the energy cost in the longer time horizon is rise 

larger than in the shorter time horizon as shown in Fig. 18. 

 

 
Fig. 14 Demand load profile in the two horizon. 

 

 
Fig. 15 PV generation profile in the two horizon. 

 

 
Fig. 16 Energy cost profile in the two horizon. 

 

Table IV contains the details about the amount of 

consumed fuel in the two horizons. It is clear from the table 

there is a large difference in fuel consumption between the 

two horizons, it is noted in the table that the consumed fuel 

on the long horizon is 3111 L and in the short horizon is 2342 

L thus the difference is 769 L. This difference makes the 

average hourly cost high as shown in Fig. 18, where the 

average in the long horizon is 129 $ while in the short 

horizon is 112 $. It is noted from the third scenario that the 

cost of energy and the amount of fuel consumed is higher 

than if the time horizon is shorter, and the reason for this is 

the length of the time horizon which affects the forecast of 

decisions. 

The length of the time horizon may affect the 

optimization results. This impacts the accuracy of decision-

making and increases the uncertainties of the system, thus 

increasing fuel expenditures and energy tariffs as shown in 

the previous section. 

 

 
Fig. 17 DG Actions. (A) 48-hour of the two days together, 

(B) 24-hour horizon of the two days separately. 
 

 
Fig. 18 Hourly energy cost of the two horizon. 

 

To illustrate the superiority of IPSO over PSO, the results 

of the first scenario has been compared with these obtained 

using PSO. Fig. 19 shows EMS behavior using the two 

methods. It is noted from the results that there is less 

dependence on the utility grid power for the second method, 

as well as the use of the DG with a higher power than in 

IPSO, this leads to an increase in the average cost, as is clear 

in Fig. 20, where the daily total cost using PSO is 2454$ and 

this cost is relatively large compared to the total cost for the 

proposed method which is 2129$. Table V shows the energy 

cost comparison in the case of using the IPSO method or the 

PSO method. 

 

TABLE IV  

Error Ratio of Comparison Factors (48-Hour). 

Comparison 

factor 

48-hour 

horizon 

24- hour 

horizon 

Error 

(%) 

    

Fuel consumption 

(L) 
3111 2342 24.7% 

Average daily cost 

($) 
6207 5373 13.4% 

Hourly cost 

($) 
129 112 13.2% 
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Fig. 19 Comparison between EMS behaviors using IPSO and PSO  (A) The utility grid power   (B) Battery power   (C) DG 

power   (D) SOC. 

 

 
 

Fig. 19 Energy cost using IPSO and PSO   (A) Energy cost of using each resource   (B) Hourly cost  

 

TABLE V  

Energy cost comparison using IPSO and PSO ($). 

Energy source IPSO PSO 

Utility grid  53.22 51.4 

DG 31.56 42 

 Battery degradation 3.92 8.85 

Total 88.7 102.25 

V. CONCLUSIONS 

In this work, it is proposed a day-ahead scheduling 

technique for DGs in MG consist of the utility grid, DG, PV, 

and ESS in which the operation is optimized by IPSO to 

minimize the fuel consumption. The method adopted in this 

work depends on three scenarios, the first is scheduling using 

one generator, the second is scheduling using two smaller 

generators, and the third is suggesting a longer time horizon. 

It noticed from these scenarios that the second scenario give 

the best result in term of fuel consumption and energy cost, 
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where the DG in the first scenario is forced to run at times to 

cover a small part of the energy, which represents a small 

part of the minimum operating limit of DG, and this leads to 

an increase in energy cost because the cost of energy 

produced from the DG is considered high due to the high cost 

of fuel. This problem was overcome in the second scenario 

by using two DGs with a lower capacity and with a total rate 

equal to that of the DG used in the first scenario, where it 

was noted that there is a large difference in fuel consumption, 

as explained, which results in a lower production cost.  

To reduce the times of supplying fuel to the MG from 

suppliers, it was proposed to increase the time horizon for 

fuel scheduling by optimizing the operation of energy 

resources every two consecutive days, which is what was 

suggested in the third scenario. By comparing the results 

obtained from the proposed time horizon (48-hour) with the 

results of the shorter horizon (24-hour), it became clear that 

there is a significant difference in terms of the number of 

times the DG is run and the amount of fuel consumption. The 

reason for this is due to the length of the time horizon, which 

leads to increased unreliability and the accumulation of data 

on the optimizer, and this leads to the failure in taking 

decisions correctly, as was explained in the previous 

sections. In addition, the results show that the use of the IPSO 

method is superior to using traditional PSO to optimize the 

EMS of MG. 
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