
Received: 28 June 2021 Revised: 07 August 2021 Accepted: 10 August 2021

DOI: 10.37917/ijeee.17.2.8 Vol. 17| Issue 2| December 2021

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.
© 2021 The Authors. Published by Iraqi Journal for Electrical and Electronic Engineering by College of Engineering, University of Basrah.

https://doi.org/10.37917/ijeee.17.2.8 https://www.ijeee.edu.iq 58

Iraqi Journal for Electrical and Electronic Engineering
Original Article

 Open Access

Server Side Method to Detect and Prevent Stored XSS

Attack

Iman F. Khazal*, Mohammed A. Hussain

Department of Computer Science, Education College for Pure Science, University of Basrah, Basrah, Iraq

Correspondence

* Iman F. Khazal

Department of Computer Science,
Education College for Pure Science,

University of Basrah, Basrah, Iraq

Email: pgs2183@uobasrah.edu.iq

Abstract

Cross-Site Scripting (XSS) is one of the most common and dangerous attacks. The user is the target of an XSS attack, but the

attacker gains access to the user by exploiting an XSS vulnerability in a web application as Bridge. There are three types of

XSS attacks: Reflected, Stored, and Dom-based. This paper focuses on the Stored-XSS attack, which is the most dangerous of

the three. In Stored-XSS, the attacker injects a malicious script into the web application and saves it in the website repository.

The proposed method in this paper has been suggested to detect and prevent the Stored-XSS. The prevent Stored-XSS Server

(PSS) was proposed as a server to test and sanitize the input to web applications before saving it in the database. Any user input

must be checked to see if it contains a malicious script, and if so, the input must be sanitized and saved in the database instead

of the harmful input. The PSS is tested using a vulnerable open-source web application and succeeds in detection by

determining the harmful script within the input and prevent the attack by sterilized the input with an average time of 0.3 seconds.

KEYWORDS: Cross Site Scripting (XSS), Stored-XSS (persistent), Web application, Detecting XSS, Preventing XSS.

I. INTRODUCTION

Web applications are currently the best way to represent

data and provide various services to users via the web.

Banking or financial services, educational and news

websites, and social media channels are among the services

offered. Furthermore, the web application has become the

primary means of gathering information on any topic. As a

result, the use of web applications has increased, and it has

become more appealing to hackers, not just users. This vast

amount of sensitive data stored in web applications can be

stolen by hackers for a variety of reasons, including

monetary gain or spying [1]. The security issues are one of

the main dangers that information technology faces and their

application, Indicate the Measures Put in the place to

maintain them information system capabilities and services

from illegitimate access. malicious attack explore a computer

and technology-based system companies [2]. The XSS

(Cross-Site Script) attack is one of the most common security

issues in web applications.

The injection attack, XSS, is one of the most common web

application attacks. As a consequence of this attack, sensitive

data, cookies, and sessions have been stolen. The injection

attack is used, in which malicious scripts are injected into the

web application’s source code. This type of attack may occur

in any web application that does not use the encryption

method or verification of the validity of the input. Therefore,

the attacker exploits a vulnerability in the application to

launch XSS attacks by storing malicious scripts on the

website or deceiving the user with the URL injected by

malicious script [3].

This attack is aimed at the user rather than the application

(the user is the victim). XSS attacks are considered one of

the most dangerous approaches that exploit weaknesses in

web applications and are ranked second of the most

dangerous vulnerability and are considered critical with a

rate of approximately 38%. What is concerning, however, is

the low rate of solutions or treatment for this type of attack.

Furthermore, according to the Open Web Application

Security Project (OWASP) report, XSS attacks were ranked

seventh out of ten major security risks, while XSS was

ranked third in 2013. The severity of this attack is confirmed

by Imperva data, which is associated with XSS attacks that

exploited the greatest number of Web application

vulnerabilities in 2017. Indeed, the number of vulnerabilities

exploited by XSS has more than doubled since 2016.

According to Imperva prediction, it will be one of the most

common attacks in 2018 [4].

Cross-site script (XSS) attacks are carried out by injecting

malicious code into various types of interpreters in the user’s

browser, such as JavaScript, Flash, ActiveX, HTML,

VBScript, or any other client-side language. XSS is defined

as an attack on a specific website’s customers’ privacy that

http://ijeee.edu.iq/Papers/Vol17-Issue2/1570738755.pdf
http://ijeee.edu.iq/Papers/Vol17-Issue2/1570738755.pdf
mailto:pgs2183@uobasrah.edu.iq

Khazal & Hussain | 59

involves three parties (the (victim) client, the attacker, and

the web application). The goal is to steal or tamper with

customer data, which results in:

• Customer identity theft (this is called impersonation)

• Account takeover by stealing authentication information

• Changing customer settings

• Rejection the service by distorting the site

• Include phishing links

• Cookie file theft [5].

There are three types of XSS attacks: Stored (persistent)

XSS, Reflected (non-persistent) XSS, and Document Object

Model (DOM) XSS [4]. A reflected XSS attack is the most

common type. It is also known as a Type-1 XSS attack or a

non-persistent XSS attack. When a user (victim) clicks on a

link injected by a malicious script (which is commonly in

HTTP query parameters), the victim’s browser executes it

[6].

The Stored XSS, in which the malicious script is injected

inside the web application and saved in the database. When

a victim visits this site, the web application retrieves

information from the data set for display on the client’s

browser, and the malicious script is executed by the web

browser [7].

Dom-XSS occurs when an attacker embeds the malicious

script in a link and sends it to the client’s machine,

attempting to persuade him to click on it, resulting in the

client’s PC being hacked and the client becoming a victim. It

occurs on the client-side rather than the server, as in

(reflected and stored) XSS [8].

This paper focuses on stored XSS. It is regarded as the

most dangerous because it is stored on the website and can

harm any user who visits it. The most common is the

Reflected-XSS attack, which affects only one user who

clicks on the injected link. The DOM-XSS attack (also

known as Type 0) is a more complex and less common type

of XSS attack [4].

This paper proposes a method for detecting and preventing

stored-XSS attacks. The main idea is to test and sanitize any

user input to vulnerable web applications. First, examine the

input to see if it contains any script. Second, if a script is

detected, examine the inside script to see if it contains any

malicious functions. If the malicious function in the script is

detected in the user’s input, the user is the attacker, and the

input is the harmful input. Finally, prevent the malicious

script from being executed by sanitizing the input and saving

the sanitized input rather than the harmful input in the web

application’s database. The idea is distinguished by its clarity

and simplicity.

The proposed method is a server-side method. It is a

comprehensive method for protecting web application users

that do not rely on the practices or tools of a specific server-

side language. The method is not determined for specified

content and reduces a load of work on the client-side so as

not to affect the user’s browser performance. The

contributions are as follows:

• A proposed method for detecting and preventing stored

XSS attacks, which are the most dangerous type.

• The proposal is a server-side method for reducing the load

on the user’s browser. All processing operations of the

proposed method were completed without any additional

action on the browser’s work.

• PSS has been proposed to filter web application inputs to

prevent an attacker from injecting XSS payloads. Users with

PSS can enter web pages safely and the web applications can

avoid stored XSS attacks.

The paper is organized as follows: Section 2 presents the

background of stored XSS attacks and the scenario of it.

Section 3 related work. Section 4 discusses the proposed

method and provides a description of its architecture. Section

5 discusses experimental evaluation. Section 6 is for security

analysis. Finally, section 7 discusses the conclusion and

future work.

II. STORED XSS (PERSISTENT) ATTACK

 This type of XSS attack is the most dangerous because

the injection malicious script is stored in the web

application’s database and affects all users who visit the

injection page [9]. Since this malicious script is injected

directly into the vulnerable web page, it is referred to as

direct XSS [4]. In general, XSS attacks have three main

components: the website, the attacker, and the victim.

The website is the HTML page that the user has requested.

The attacker malicious user conducts the attack by exploiting

a vulnerability in the website and executing it in the victim’s

browser.

The victim is the ordinary user who visits the website

and uses his/her browser to request the page [10]. The

following is an example of a Stored XSS attack scenario:

1- The attacker exploits the vulnerability in the web

application and injects the malicious Script into the database

of the web application.

2- The victim accesses the web application and requests the

vulnerable web page.

3- The web application combines the HTTP response with a

malicious script and sends it to the victim’s browser.

4- The malicious script is executed by the victim’s browser,

which sends the victim’s sensitive information to the attacker

[11]. The Stored XSS scenario is depicted in Fig. 1.

Fig. 1 Stored XSS attack Scenario [10].

60 | Khazal & Hussain

III. RELATED WORK

Parvez et al. (2015) [7] made several recommendations to

improve the performance of black-box scanners in detecting

stored XSS and SQLI vulnerabilities. The black-box

technique is used for web vulnerability scanning. To analyze

the two testbeds, the authors use three black-box scanners

(WackoPicko and customize Scan-bed). In WackoPicko,

there are two stored-XSS vulnerabilities in two pages, one of

which requires login and the other which does not, and one

in comment fields on a page that requires authentication in

Scan-bed. Scanners can exploit the stored-XSS vulnerability

by logging in and visiting the vulnerability pages. Then,

inject the malicious code into the vulnerable field and submit

it to preview and confirm the submission. Afterward, detect

the stored-XSS by revisiting the injected pages and analyzing

the server response.

The three scanners in WackoPicko without login succeed

in all steps but are unable to analyze the response efficiently,

resulting in the failure to detect the stored-XSS. The scanners

failed to detect WackoPicko with login because the correct

attack vectors were not used. Only scanner2 in the scan-bed

can complete all scan steps and detect the stored-XSS. The

recommendation presented is to improve scanner

performance by increasing the use of the right attack vector

in the right statute. Scanners can work more efficiently when

they use login credentials. The limitation of this paper is that

it only improves on previous scanners and focuses on

detection rather than prevention of stored-XSS.

Rao et al. (2016) [12] present XBuster, a web browser

extension (Mozilla Firefox). XBuster parsed the HTTP

request to separate the JavaScript and HTML content and

saved them separately as substrings called contexts J and H,

respectively. The parameter is split into both contexts in two

passes. The first pass, scan from left to right to recognize the

first occurrence of “<” and then scan to the first occurrence

of “>”, all substrings between them define an H context.

When found, XBuster continues to examine the rest of the

parameter for the next occurrence of an H context. In the

second pass, recognizes J contexts in the substring before the

first occurrence of H context (if present), in the substring to

the right of the last H context, and between two H contexts.

In this method, the browser components are: The Network

Interface (NIC) is used to communicate with the server via

HTTP requests and responses. The HTML document is

analyzed by the Rendering Engine. For the XSS filter, there

is a point numbered 1 between the Network Interface and the

Rendering Engine. The JavaScript Interpreter is used to

analyze and execute JavaScript code. Another 2 point

between the Rendering Engine and the JavaScript Interpreter

is also for the XSS filter. The user interface contains all of

the browser’s components. The Browser Engine screens the

client’s activities and passes them on to the Rendering

Engine.

The HTTP response from the server is filtered by the

XBuster component (Point 1) to see if there is any HTML

injection. By attempting to find a match with each

component of H. When a match is found, all special

characters in the matching string are encoded. The modified

response is sent to the rendering engine for further

processing. (Point 2) examine for any JavaScript injection.

Before executing it by JavaScript Interpreter, first, check if

the response contains JavaScript ‘s’. If so, compare s with

elements in J; if any match, the special character in s is

encoded. This method reduces the user’s browser’s

performance.

Kaur et al. (2018) [13] presented a method for scanning

XSS attack vectors on cloud-based HTML5 web

applications. The method is divided into two routines:

“HTML5 Feature Injection” and “HTML5 Feature

Comparison” in feature injection phase, The web parser

parses the web application and sends the URL links to the

DOM Generator, which generates the corresponding DOM

tree, during feature injection. The JavaScript features are

extracted from the corresponding Dom tree. These features

are estimated by the Feature Estimation and Injection

component and then injected into the source code. The

injected features and source code are saved in the feature

repository.

The feature comparison phase operates in such a way that

the HTTP request is sent to the server and the browser

receives the corresponding HTTP Response. The HTML

Parser looks for hidden injection points and forwards them

to the JavaScript extractor component, which extracts the

necessary JavaScript code. This code is being sent to the

components “Feature computation and JavaScript Decoder.”

Feature Computation computes and sends the features of this

JavaScript code to the Feature comparator. These features

are then compared to those in the Feature Repository. If the

feature comparator or the Similarity indicator detects

malicious code, it forwards it to the sanitizer. The complexity

of this method is its many components, which include the

DOM Generator, Context Locator (this component works

with a corresponding specific algorithm to extract the HTML

context during feature extraction processing), Similarity

Indicator, Feature Estimator, and Sanitizer.

Taha et al. (2018) [14] proposed two methods for

preventing XSS attacks using PHP functions. The first

method is to use a regular expression to verify input entered

by the user into web forms. The second method is another

regular expression used to test and ensure that each input

may contain a malicious script, so that if the attacker injects

XSS script code in the information field, this malicious script

is removed and not allowed to execute. To prevent an XSS

attack, this method makes use of some built-in PHP

language. The main strategy of the algorithm in this method

is as follows: the AllowList regular expression list contains

the trusted inputs for validation. Another regular expression

list, DenyList, is used to determine whether the input

contains invalid data and to remove any potentially

suspicious characters, such as the start and end tags of HTML

“<>” and each text within it. The proposed checking has the

disadvantage of removing all executable code that contains a

special character.

The German Rodrguez et al. (2018) [15] proposed Cookie

Scout as an analytical method to prevent XSS attacks, which

is used as a tool by the Browser Exploitation Framework

(Beef). The idea is to examine the behaviour of the cookie

that is created when a user visits a website, as well as the

number of packets exchanged between the victim and the

Khazal & Hussain | 61

attacker. That is accomplished during the data collection

phase. The collected data is analyzed during the data analysis

phase. The collected data is saved as a variable in the cookie's

parameter in the user’s browser. These parameters include

the name of the cookies, the created site (the web page the

user visits), the creation date, the expiration date, command

execution, and traffic between the attacker and the victims.

This method’s algorithm consists of a set of operations and

conditions. The operations are as follows: each website

visited is scanned by the Site Explorer, any cookie created is

analyzed by the cookie analyzer to determine the number of

cookies created, Extract parameters, and Storage parameters.

If a cookie is an execution, the conditions are the difference

between the Creation and Expiration dates. If the cookie

name ends in “* .js”. If any of the conditions is not met, the

cookie’s reputation is reduced by 10. Finally, if the

reputation value falls below 70, the site is blocked. All

websites visited by the user are saved in the database, along

with their cookies and reputation level. The limitation of this

method reduces the browser’s performance.

This paper develops a server-side method for detecting

and preventing stored XSS attacks. It is a comprehensive

method for protecting web application users who do not rely

on the practices or tools of a specific server-side language.

The method does not prevent all scripts, but only those that

have been proven to be malicious, is simple, and reduces the

amount of work on the client-side so that it does not impair

the user’s browser performance.

IV. THE PROPOSED METHOD

This Section presents our method for detecting and

preventing Stored Cross-Site Script (Stored-XSS).

A. Overview

The proposed method is made up of three major

components: the user, the web application, and the Prevent

stored XSS Server PSS.

The user: the person who accesses the web application and

attempts to enter information into it. The malicious script

may be present in the input; if so, the user is the attacker.

Web application: any application on the web that is

presented to users and may contain the vulnerability of

stored-XSS.

PSS: The server has been suggested to sterilize the web

application’s input.

In summary, the proposed method works as follows:

when a user attempts to enter any input, whether normal or

harmful, it is automatically forwarded to PSS. PSS check that

input to see if it contains the malicious script. If the malicious

script is found in the input, the PSS detects it and prevents it

from being executed by sterilizing it. The sterilized input

(new input) is sent to the web application and stored in the

database. Refer to Fig. 2.

B. The proposed structure

When a user attempts to enter any input (such as his or her

name or a comment) into any web application, the input is

sent to PSS. The PSS examines the input to see if it contains

any scripts. This is accomplished by comparing the input to

a list of scripts (harmlist). When PSS detects a script,

examine it to see if it contains the malicious command. This

is accomplished by comparing the input to a set of keywords

(the malicious commands) (harmlist2). If there is a keyword

in the script, it is malicious, and PSS sanitizes the input by

deleting the malicious script. PSS sends sanitized input to the

web application as new input. Finally, the web application

stores the new input in the database and displays the outcome

to the user. The proposed structure is depicted in Fig. 3.

Fig. 2 the proposed method scenario.

Fig. 3 proposed server structure.

C. Prevent stored XSS Server PSS

The PSS is divided into two phases: setup phase and

input verification phase.

First: Setup phase

During this phase, the management page was created.

The setup phase consists of two steps:

1- Administrate step: include authentication and the creation

of the necessary lists.

62 | Khazal & Hussain

a- Authentication: This step determined which users were

authorized to manage the database (harmlists) based on their

username and password.

b- Harmlists creation: there are two lists

• Harmlist1 includes all scripts that the attacker may use

• Harmlist2 contains all keywords of malicious command

(function) that the attacker can use with the script.

The harmlist1 is created in the creation step and contains

two fields, the first for the script’s start and the second for

the script’s end. Harmlist2 has two fields: one for keywords

and another for the ASCII of these keywords. It should be

noted that the attacker may use ASCII instead of the

keyword.

2- Operation step: Create the update phase in this step to

perform any database modifications such as delete, insert,

or any other modifications.

Second: Testing Input phase

This phase depicts the work steps in PSS such as the

following:-

1- Enter the input (Get input) when the user enters input

into the web application and it is forwarded to PSS.

2- Check the input to see if it contains any scripts by

comparing the input to harmlist1.

a. If the input contains the start of script (start tag of script

function) such as <script>, , >,

…..etc.

c. If PSS finds the script, split the input from the beginning

to the end of the script and check if the contents of the

script contain any keywords (malicious function) by

comparing the splitting part of the input by harmlist2.

d. If PSS finds a keyword then the detected script is

malicious.

3- When PSS detects a malicious script, sanitize the input

by deleting the script and continuing to check the input

reminder.

4- If PSS detects no malicious script, send the input

unchanged; otherwise, send the sanitizer input as a web

application response.

5- Finally, the web application saves the response input in

a database and displays the result to the user.

V. EXPERIENTIAL EVALUATION

The evaluation is carried out with the assistance of a

desktop system equipped with a 1.6 GHz processor, 4 GB

RAM, and the Windows 10 operating system. The proposed

method’s detection and prevention of Stored XSS attacks

were tested on a test open-source web application (DVWA).

A PHP/MySQL web application that is damn vulnerable is

known as a Damn Vulnerable Web Application (DVWA).

The objective of DVWA is to test and analyze some of the

most common web weaknesses, with varying levels of

hardness (low, medium, and high levels), and with a simple,

clear interface [16]. This web application is vulnerable to a

variety of attacks, including SQL injection, XSS, and others.

It was created to assess the vulnerability of these attacks in

web applications. The localhost server-XAMPP was used for

the evaluation.

Following the establishment, the next step was to

configure the DVWA with low-level security and examine

the interface of stored-XSS, which contains two text fields

named “Name” and “message” that can be injected with an

XSS payload. The XSS payload was obtained from

(portswigger cheat-sheet) [17] and (Github XSS-payload-

list) [18]. The injection was performed by injecting a

malicious script into the input text and filtering the input with

PSS, resulting in the sterilized input being saved in the

DVWA database rather than the malicious input. The works

are reiterated at the median and high levels, and the PSS was

able to detect the injected script, sanitize the malicious input,

and replace it with a sanitizer input. The amount of time

required to check and clean the information has no bearing

on the speed with which the response can be recovered. Table

I shows the duration of the test for each level. The rate time

required to check the information is 0.3 seconds.

TABLE I

TIME OF RESPONSE FOR EACH LEVEL

DVWA

security

levels

XSS-payloads
Response

Time

Low

level

Name*<script>alert(document.cooki

e) </script>

0.56

second

Message*<script>alert(“XSS”)</scri

p>

0.04

second

Median

level

Name*<image src=xx onerror =

alert(1) >

0.44

second

Message*<script>alert(document.co

okie) </script>

0.13

second

High

level

Name* <ScRiPt> alert ("You have

been hacked") </ ScRiPt >

0.46

second

Message*<img src=nosource onerror

= alert (document.cookie)>

0.15

second

average response time
0.3

second

VI. SECURITY ANALYSIS

Theorem 1: PSS prevents Stored XSS in HTML injection.

Proof: Most previous methods attempted to prevent XSS

from exploiting vulnerabilities in web application pages and

injected HTML. This is accomplished by preventing all

special characters from being executed by encoding or

deleting them. Hence, the proposed PSS searches for these

characters as well as the special word that appeared with

these characters in the input. The input is compared to the

harmful list, which contains both the beginning and end of

tags (special character or special word). Following the

comparison, if any matching is found, an examination within

a tag is performed to determine whether or not the damage

has been proven, and the harmful tags are prevented from

being executed. Table II shows a sub-list of HTML tags that

can be used in XSS attacks [19]. These tags, as well as others,

are used in PSS harm lists.

PSS compares the input to harmlist1, which includes the

HTML tags. If the start of the tag exists, then look for the end

Khazal & Hussain | 63

tag; if it is found, this indicates the presence of a malicious

script in the input. Then, as explained later in Theorem 2, cat

the script part from the start tag to the end tag and examine

that part. If the harm has been proven, then remove all

predefined parts (detected malicious script). Deletion is the

sterilization process that is used to prevent attacks.

Theorem2: PSS prevents Stored XSS against JavaScript

injection.

Proof: PSS does not only find HTML tags, but also searches

and tests within these tags, as stated in Theorem 1, because

HTML alone does not prove the existence of XSS attacks,

but must also search for the harmful code that executes the

attacks. As a consequence, the attacker can use the text

between the beginning and end of each HTML tag in

comparison to another harmful list that contains the

keywords of all JavaScript Functions. When PSS finds a

match, the input is sterilized by removing all harmful code,

ensuring that the entry is free of malicious JavaScript. Table

III contains a list of JavaScript functions that may be used

with the HTML script for an XSS attack, as well as other

functions listed in the PSS harm list [20, 21, 22]. PRS and

PSS are both on the harm list.

PSS compares the cut-out part of the input (the text between

the start and end HTML tags) to the harmlist, first with

keywords and then with ASCII. Since an attacker may use

ASCII rather than keywords in XSS payloads, the ASCII

field in the harm list is critical. If any keywords or ASCII are

found in the script is harmful, PSS sanitizes the script by

deleting it.

Theorem 3: Proposed servers (PSS) detect Stored XSS

attacks.

Proof: Searching for HTML Tags and JavaScript Functions

is a technique for detecting the presence of XSS attacks. PSS

is unable to prevent the attack before conducting a script

search. The presence of the script does not prove the entry’s

riskiness. As a result, the PSS checks the script to see if there

are any potentially harmful functions. The processing of

search for HTML Tags and JavaScript Functions is a method

for detecting the presence of Stored-XSS attacks.

In addition to Theorems 1 and 2 already mentioned. First, to

prevent stored XSS attacks must be detected. The detection

method of stored XSS attacks is a search process for

malicious script (HTML tags and keywords). JavaScript

functions and HTML events can both be denoted by

keywords. As a result, the detection step is as follows:

1. If Input contains the script (searching in harmlist).

2. If the script is a detection, then check to see if it contains

keywords (searching in harmlist2).

Keywords could be JavaScript functions or HTML events, as

previously stated. Table III contains information on

Malicious JavaScript. Table IV shows HTML events [23].

The proposed server in harmlist2 uses these and other events

as keywords.

Theorem 4: the proposed method reduces the load on the

user’s browser.

Proof: To prevent stored XSS attacks from executing in the

user’s browser, the browser must perform some practice or

procedures to prevent these attacks. These procedures

include verifying each HTML page before allowing the user

to visit it. Also, check for vulnerabilities in web applications

to avoid entry with XSS payloads. PSS eliminates the need

for the browser to perform any verification or searching

methods. The verification corresponding to the proposed

method necessitates a collection of comparisons with many

lists; all of these lists and comparisons may take time, space,

and affect the web browser’s performance. Therefore, PSS is

given list storage space and performs comparisons away

from the user’s browser. The proposed servers required time

to complete the test and sterilize the input if it is confirmed

its injection and noted that it is not affected by the speed of

response as mentioned earlier in the experimental evaluation

section in Table I. As a result, there is no process in the

proposed method that affects browser performance, and the

browser does not perform any action or additional work that

affects its performance.

TABLE II

HTML TAGS [19].

HTML

tags
Meaning

Start

script

End

script

Encode

end in

the input

<audio

>

embedded

sound content
Audio

Audi

o
Audio

<body>
document's

body
Body

> >

<div>
section in a

document
div

Defines an

image
Img

<object

>

container for

an external

application

Object

<svg>
container for

SVG graphics
Svg

<iframe

>

An inline

frame
Iframe

<script

>

client-side script Script Script Script

TABLE III

LIST OF JAVASCRIPT FUNCTIONS [20, 21, 22].

JavaScript functions Meaning
Keywords

in PSS

getCookie() Cookie

access

Cookie
setCookie()

location.assign() Redirect to

attacker

site

Location
location.replace()

location.herf

AppName() Access to

web

browser

AppName

getUserAgent() UserAgent

document.write()
Document

content

Document document.getElementById,
Access to

id

document.getElementByNa

me

Access to

name

64 | Khazal & Hussain

TABLE IV

HTML EVENTS [23].

Windows

events

Mouse and keyboard

events
Other

onload

onunload

Onkeydown

onkeypress

onkeyup

onclick

ondbclick

onmousedown

onmousemove

onmouseup

Onerror

Onload

VII. CONCLUSION AND FUTURE WORK

In stored-XSS (persistent) attacks, also known as (direct

XSS), the malicious script is presented within the attacker’s

input in the vulnerable input field of a web application. The

malicious script is executed in the victim’s web browser,

resulting in damage outcomes such as the steal of session

data, access to sensitive data, or cookie theft. The injected

script is stored inside the vulnerable web page and harms all

users who visit the injection web page, making it one of the

most dangerous attacks. A method for detecting and

preventing the reflected-XSS attack was proposed.

The proposed method for resolving web application

vulnerabilities and filtering all user input by deleting all

scripts may cause harm. It also considers the time and cost of

storage and processing in relation to the user’s device. For

testing and sanitizing input, a general server called PSS has

been suggested. PSS is not intended for a specific type of

web service; rather, it can be used by any application to filter

its input. PSS has been proven to be successful by evaluating

it with a local server (XAMPP) and an open-source

application (DVWA), and various XSS payloads have been

used to inject the input. The PSS successfully detected the

damage in the input, sterilized it, and saved the safe input

rather than the harmful input.

Future plans include adding a second factor of

authentication to PSS. The possibility of facing the replay is

avoided by adding a random number to each request to PSS,

such as the date of sending. Merge the PSS with the

previously suggested server PRS for detecting and

preventing reflected XSS.

CONFLICT OF INTEREST

 The authors have no conflict of relevant interest to this

article.

REFERENCES

[1] A. Marashdiha, Z. Zaabaa, K. Suwaisb, N. Moda "Web

Application Security: An Investigation on Static Analysis

with other Algorithms to Detect Cross Site Scripting",

Procedia Computer Science, Vol. 161, pp. 1173-1181,

2019.

[2] Mustafa H. Alzuwaini, and Ali A. Yassin, "An Efficient

Mechanism to Prevent the Phishing Attacks", Iraqi Journal

for Electrical and Electronic Engineering, Vol. 17, Issue 1,

pp. 125-135, 2021.

[3] A. Marashdih, and Z. Zaaba. "Cross site scripting:

removing approaches in web application", Procedia

Computer Science, Vol. 124, pp. 647-655, 2017.

[4] Germán E. Rodríguez , J. Torres , P. Flores , D.

Benavides. "Cross-site scripting (XSS) attacks and

mitigation: A survey", Computer Networks, Vol. 166,

106960, 2020.

[5] S. Gupta & B. Gupta. "XSS-secure as a service for the

platforms of online social network-based multimedia web

applications in cloud”, Multimedia Tools and

Applications, Vol. 77, No. 4, pp. 4829-4861, 2018.

[6] C. Lv, L. Zhang, F. Zeng, and J. Zhang, "Adaptive

random testing for XSS vulnerability”, 2019 26th Asia-

Pacific Software Engineering Conference (APSEC).

IEEE, 2019.

[7] Parvez, Muhammad, P. Zavarsky, and N. Khoury.

"Analysis of effectiveness of black-box web application

scanners in detection of stored SQL injection and stored

XSS vulnerabilities”, 2015 10th International Conference

for Internet Technology and Secured Transactions

(ICITST). IEEE, 2015.

[8] S. Mahmoud, Marco Alfonse, M. Roushdy, A. Salem

“Detection of Cross Site Scripting Attacks Model with

Deep Transfer Learning”, 2020.

[9] Manaa, M. Ebady, and R. Hussein. "Preventing cross

site scripting attacks in websites”, Asian Journal of

Information Technology, Vol. 15, No. 6, pp. 797-804,

2018.

[10] XSS, A comprehensive tutorial on cross-site scripting,

Created by Jakob Kallin and Irene Lobo Valbuena, July

9th, 2016. Available from: https://excess-xss.com/ .

[11] S. Gupta, B. Gupta. "Cross-Site Scripting (XSS) attacks

and defense mechanisms: classification and state-of-the-

art”, International Journal of System Assurance

Engineering and Management, Vol. 8, No.1, pp. 512-530,

2017.

[12] K. Rao, N. Jain, N. Limaje, A. Gupta, M. Jain, and B.

Menezes. "Two for the price of one: A combined browser

defense against XSS and clickjacking”, 2016 International

Conference on Computing, Networking and

Communications (ICNC). IEEE, 2016.

[13] G. Kaur, B. Pande, A. Bhardwaj, G. Bhagat, and S.

Gupta "Efficient yet robust elimination of XSS attack

vectors from HTML5 web applications hosted on OSN-

based cloud platforms”, Procedia Computer Science, Vol.

125, pp. 669-675, 2018.

[14] Taha, T. Assad, and M.t Karabatak. "A proposed

approach for preventing cross-site scripting”, 2018 6th

International Symposium on Digital Forensic and Security

(ISDFS). IEEE, 2018.

[15] G. Rodrıguez, D. Benavides, J. Torres, P. Flores, and

W. Fuertes. "Cookie scout: An analytic model for

prevention of cross-site scripting (XSS) using a cookie

classifier”, International Conference on Information

Technology & Systems. Springer, Cham, 2018.

[16] GitHub. About damn vulnerable web application

(dvwa). Jun 3, 2021; Available from:

https://github.com/digininja/DVWA.

Khazal & Hussain | 65

[17] GitHub. Cross Site Scripting (XSS) Vulnerability

Payload List Fep 10, 2021; Available from:

https://github.com/payloadbox/xss-payload-list.

[18] PortSwigger. Cross-site scripting (XSS) cheat sheet. 19

Jan 2021; Available from: https://portswigger.net/web-

security/cross-site-scripting/cheat-sheet

[19] W3school, HTML Element Reference, 1999-2021,

available in:

https://www.w3schools.com/html/html_lists.asp

[20] S. Gupta, and B. Gupta. "CSSXC: Context-sensitive

sanitization framework for Web applications against XSS

vulnerabilities in cloud environments”, Procedia

Computer Science, Vol. 85, pp. 198-205, 2016.

[21] S. Gupta, and B. Gupta. "Enhanced XSS defensive

framework for web applications deployed in the virtual

machines of cloud computing environment”, Procedia

Technology, Vol. 24, pp. 1595-1602, 2016.

[22] A. Sivanesan, A. Mathur, and A. Javaid. "A Google

chromium browser extension for detecting XSS attack in

html5 based websites”, 2018 IEEE International

Conference on Electro/Information Technology (EIT).

IEEE, 2018.

[23] P. Chen, C. Min, J. Wang "Research and

Implementation of Cross-site Scripting Defense Method

Based on Moving Target Defense Technology”, 2018 5th

International Conference on Systems and Informatics

(ICSAI). IEEE, 2018.

	I. Introduction
	II. Stored XSS (persistent) Attack
	III. Related Work
	IV. The Proposed Method
	A. Overview
	B. The proposed structure
	C. Prevent stored XSS Server PSS

	V. Experiential Evaluation
	VI. Security Analysis
	VII. Conclusion and Future Work
	Conflict of Interest
	References

