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Abstract 

The ability of the human brain to communicate with its environment has become a reality through the use of a Brain-Computer 

Interface (BCI)-based mechanism. Electroencephalography (EEG) has gained popularity as a non-invasive way of brain 

connection. Traditionally, the devices were used in clinical settings to detect various brain diseases. However, as technology 

advances, companies such as Emotiv and NeuroSky are developing low-cost, easily portable EEG-based consumer-grade 

devices that can be used in various application domains such as gaming, education. This article discusses the parts in which 

the EEG has been applied and how it has proven beneficial for those with severe motor disorders, rehabilitation, and as a form 

of communicating with the outside world. This article examines the use of the SVM, k-NN, and decision tree algorithms to 

classify EEG signals. To minimize the complexity of the data, maximum overlap discrete wavelet transform (MODWT) is used 

to extract EEG features. The mean inside each window sample is calculated using the Sliding Window Technique. The vector 

machine (SVM), k-Nearest Neighbor, and optimize decision tree load the feature vectors. 

KEYWORDS: EEG, BCI, Motor imagery, MODWT, SVM, k-NN, Decision Tree, EMOTIV EPOC+ 

 

I.  INTRODUCTION 

The last two decades have seen a rise in research on Brain-

Computer Interface (BCI) applications[1]. Nowadays, MI 

EEG-based BCI is a promising technology due to its 

enormous domain in both medical and non-medical 

implementations. The MI task is accomplished by imagining 

performing a specific task without actually performing it [2]. 

The widely used MI tasks in researches are the imaginations 

of the right hand, left hand, right foot, left foot, both feet, and 

tongue; many other tasks are also under research like those 

movements related to the elbow, fists, and fingers [3]. The 

MI-based BCI application involves clarification of the EEG 

signals and the determination of responses to those signals in 

real-time. Usually, analyzing EEG signals encountered the 

curse of dimensionality problem. People with neurological 

disease may find trouble in walking, speaking, and writing 

due to the lack of functioning of the motor control. Brain-

computer interface (BCI) technology can help them to back 

to the quality of normal life[4]. A BCI application is 

described as the process of recording the brain’s 

electroencephalogram (EEG) activity. After noise is 

removed from the recorded data, characteristics are retrieved 

and identified to perform a preset action (such as opening or 

shutting an artificial arm) [5]. Due to the vast size of the EEG 

data (1 second of EEG data may contain up to 250-time 

samples), feature extraction is required as the initial phase of 

the EEG classifier. The extraction of features is necessary 

since most classifiers perform matrix operations, and when a 

matrix is vast, it is referred to as an ill-conditioned matrix. 

The inverse of these matrices has significant numerical 

mistakes [6]. As a result, data compression is required. 

Typically, typical electroencephalographic characteristics 

are retrieved in time or frequency bands. The classifier’s 

second stage is divided into two phases: training and 

recognition. In the training step, offline classification 

algorithms are trained using EEG data sets of known 

classifications [7], [8]. The unclassified EEG data is then 

sent into the classifier, which decides (determining which 

class the EEG samples belong to). The classification decision 

is subsequently communicated to the implementing 

hardware, which takes the appropriate action (moving an 

artificial arm or driving a wheelchair). Numerous feature 

reduction and classification algorithms have been developed 

for applications based on EEG-based Motor Imagery 
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(MI)[9], [10]. Multiple strategies for feature extraction have 

been considered in the literature[11], [12]: 

1) Temporal characteristics. 

2) The energy characteristics of the spectrum. 

3) Statistical characteristics.  

Numerous techniques are available for extracting time 

features, the most often utilized of which are: Eigen Value 

Decomposition (EVD), Independent Component Analysis 

(ICA), Principal Component Analysis (PCA), and Linear 

Discriminant Analysis (LDA) [13] and [5][14]. Because BCI 

applications demand real-time or near-real-time approaches, 

temporal features are the optimal candidate for computing 

time and complexity compared to other feature extraction 

techniques. Numerous studies studied the usage of various 

feature extraction techniques and discovered encouraging 

results. [15], [16] explored the feature matrix’s small size 

problem, in which the number of time features is 

significantly greater than the number of channels. It achieves 

an accuracy of 84 percent while dealing with two-class 

problems.[17] achieved a maximum accuracy of 99 percent 

by combining CSP filtering with LDA. [18] demonstrated 

that the xDAWN method surpasses both ICA and PCA in 

terms of accuracy. [19] and [20] compared the accuracy of 

various spectral feature extraction techniques, including 

Power Spectral Density (PSD), time-frequency energy 

distributions, periodogram, spectrogram, and Morlet 

Wavelet. This work aims to develop an offline EEG-MI 

classifier using Support Vector Machines (SVM). It entails 

both of the preceding steps: feature extraction and 

classification. This article discusses all aspects of the SVM 

classifier’s implementation as well as the relevant theoretical 

background. The following is the organization of the paper. 

Section 2 discusses the acquisition of brain signals. Section 

3 discusses signal pre-processing. Section 4 discusses feature 

extraction and classification. The limits of LDA are then 

examined in Section III, along with possible solutions. A 

detailed description of the SVM classification algorithm is 

included. Section IV describes the setup technique as well as 

the recording process. The algorithm parameters are 

adjusted, and the resulting accuracy is illustrated in the 

figures [21], [22]. Figure 1 shown the stages of Brain-

computer interface block diagram model.  

II. DATA ACQUISITION  

The initial layer of BCI systems is used to collect brain 

signals via invasive or non-invasive approaches. This is 

referred to as electroencephalography (EEG), when the 

brain’s electrical activity is monitored in connection to its 

recorded in an experiment, which uses electrical spikes to 

transmit signals. Market- or clinical-grade instruments are 

being developed to detect these electrical impulses. The first 

consumer system for monitoring brain activity is the Emotiv 

Epoc, which includes 14 electrodes as shown in Fig. 2. 

Alternatively, NeuroSky’s Epoc measures brain activity. 

 

 

 
 

 

 
Fig. 1: The block diagram of the BCI-Based motor imagery system 
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Fig. 2: EMOTIV EPOC headset 

 

Database Description 

The data for this article were collected using EMOTIV 

EPOC+. A data set contains four main tasks, one for each 

hand (class 1, class 2), one for each foot (class 3), and one 

for tongue pictures involving the tongue (class 4). Which 

mean the class one recorded from imagery moving left hand, 

class two from imagery right hand, class three from imagery 

moving foot and finally the class four from moving imagery 

the tongue. The recording sessions took place on two 

different days. Each session consisted of six runs separated 

by brief rest intervals. Each run had 48 trials (12 for each 

class). The timeframe of the experiment used to collect data 

is depicted in Fig. 3. The data contains of 42 subjects on two 

sessions every sessions contains of 16 seconds 8 with closed 

eyes and 8 with open eyes.  

 

 
Fig. 3: Timing scheme of recorded EEG signal from the 

subjects and the segment used for feature extraction 

III. EEG SIGNAL PRE-PROCESSING:  

Following the signal acquisition, pre-processing reduces any 

noise or artifacts captured when acquiring the devices’ 

signals. Among the undesirable signs are the following: 

Every time an electronic device is mounted, an inference is 

made. Specific muscular contractions result in EMG signals; 

eye movement or blinking results in the ocular artifact. The 

presence of undesired noise in the EEG recording will result 

in incorrect conclusions and skew the EEG findings’ 

interpretation. As a result, several filters are utilized to 

eliminate noise from the signals. To begin, each channel was 

resampled to 128 Hz and filtered with a low pass filter in this 

article (Chebyshev Type II Lowpass filter, cutoff: 40 Hz) as 

shown in Fig. 4 how shows the EEG signal before and after 

filtering. 

  
Fig. 4: EEG signal before and after filtering 

IV. EEG SIGNAL EXTRACTION AND CLASSIFICATION:  

Due to the lack of discernible difference between distinct MI 

orders in the EEG signal time samples, it is impossible to 

classify time samples directly. The EEG time samples for 

two courses are depicted in Fig. 5. As can be observed, there 

is no discernible pattern of classification between the 

four classes. As a result, feature extraction is required, as the 

classification accuracy is dependent on it. The Fig. 5 shows 

scale plot of EEG time samples of single-channel for four 

classes. 

 

 

Fig. 5: Scale plot of EEG time samples of single-channel 

for four classes 

A. Feature Extraction 

Discrete Wavelet Transform with Maximum Overlap 

(MODWT) the relative tolerances are independent of the 

detail and approximation elements but can change as the 

details and approximation elements change. The wavelet 

approach was used to categorize theta, delta and theta 

patterns of brain activity in the experiment described in this 

work. Delta waves (intense concentration and sleep) are most 

frequently detected between 0 and 4 Hz. Theta waves (4 to 8 

Hz) occur at extremely low frequencies during meditation 

and learning, whereas somewhat higher frequencies occur 

during sleep, research, and remembering. Alpha waves occur 

at frequencies between 8 and 12 Hz and are most evident 

when the brain is at rest. Beta waves, ranging from 12 to 32 

Hz, are generated when the brain actively engages in 

cognition or the external environment. Mu rhythm is 
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generally between 8 and 13 Hz in frequency and is frequently 

associated with the rhythmic and non-rhythmic coordination 

of muscle groups. Before wave decomposition, it was 

essential to resample the original EEG signal to achieve 128 

Hz. It was conducted on both discrete wavelet transform 

(DWT), and complete overlap wavelet transform data 

(MODWT). A multistep approach was necessary for the 

analysis; in both cases, a Haar basis was used. Fig. 6 

illustrates the decimation of the EEG into five distinct 

components (MODWT) using a maximum wavelet 

transform. 

The Fig. 7 shows the EEG Signal decomposed into five 

bands the results of the bands shows in figure. It uses 

statistical metrics computed from each sub-band after 

wavelet decomposition over a window of 25 samples. Mean 

and variance, after sub-bans were obtained, the mean, 

variance, and Shannon entropy of each sub-bands were 

calculated and used as features. A total of 3 features×5 

bands×14channels=210 features were extracted for each trial 

as shown in Equations 1-2. Another measurement widely 

used in this type of experiment is the median, which is 

defined as the central value in a group of ordered data. The 

fourth function vectorization generator, which measures the 

uncertainty or complexity of a random signal, is defined as 

in Equation 3  

  

 
 

Fig. 6: EEG signal decomposed into five bands, with each 

significant sub-band highlighted. 

 

               

                       (1)     

 

         

         (2) 

 

          

         (3)  

 

 

 

Fig. 7: MODWT Graphic band (Alpha, Beta, Delta, 

Gamma, Theta) after decomposition. 

 

B. Classification  

Several kernels were implemented as part of the support 

vector machines (SVMs) to compare each data type (e.g.g. 

Differentiate among different groupings of variables. 

Structural risk minimization consists of statistical learning 

with a technique that iterates on the data structure to 

construct a model and a probability distribution. Though 

linear discrimination is not possible in the definition of the 

algorithm does help us discriminate among various features 

in the input space is realized as features are mapped into a 

higher dimensional space that does not have this separation 

mapping can be performed using a linear or nonlinear 

algorithm, depending on the purpose of the used kernel. 

Instead of training decision trees, it first locates the class 

separators with the most significant margin between 

instances. Then, it finds the class separators and selects the 

ones that divide the classes with the slightest error. In various 

cases, the optimum hyperplane is expressed as a combination 

of several characteristics, known as the support vectors for 

the optimum. Here, we will use a straight-line, As shown in 

Fig. 8 the procedure of building SVM the standard, and the 

exponential functions for mappings to research the 

differences between them. 
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Fig. 8: The procedure of the SVM classifier. 

V. IMPLEMENTATION AND RESULTS 

The EEG dataset was collected using the EMOTIV EPOC 

headset, which provides 14 channels. The subject was asked 

to sit at rest state for 10 to 20 minutes before recording. This 

allows the relaxation of the brain activities in general and the 

accuracy of recorded EEG data. The subject is then asked to 

put both of his hands on a table in Front of him while his eyes 

are opened. Then, a cue is shown to him to imagine the 

movement of his right hand (Close and Opening). While he 

closes and opens his right hand repeatedly real movement 

and imagery movement, the EEG data is recorded for 5 

seconds at a rate of 250 samples per second. Then repeat the 

operation for all three classes. Those trails are imported to 

MATLAB. Each trail consists of 640 samples. The trial 

recording is repeated until 120 trials are recorded and stored 

of all classes. These trials are named Class Right training. 

The same procedure is repeated for Class Left training 

samples, tongue class, and foot class. MATLAB 2020a 

environment is used to record, store and implement the SVM 

algorithm. After the training data is acquired, the features 

representing each class are extracted and stored as matrices. 

The subject then performed either left- or simple right-hand 

movement (closing and opening each hand) repeatedly for 

five seconds. The choice of which hand to move is random. 

During the subject session, the EEG signal is recorded at a 

sampling rate of 250 samples per second. This step is 

repeated for 120 trials with different random choices for 

either left- or right-hand tongue and foot of the subject. For 

each trial, the SVM algorithm extracts the features from the 

EEG data set, and those features are compared against the 

training features extracted during the training phase. 

According to the sign-in Table III, the winning class result is 

recorded. The accuracy of the algorithm is calculated as: 

 

 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =

 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
=

 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                 (4) 

 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  (5) 

 

 𝑇𝑃𝑅 =
𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃+𝐹𝑁
= 1 − 𝐹𝑁𝑅   (6) 

 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
        (7) 

 

 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 (𝑃𝑃𝑉) =
 𝛴 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝛴 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
=

𝑇𝑃

𝑇𝑃+𝐹𝑃
= 1 − 𝐹𝐷𝑅      (8) 

 

 𝐹𝑁𝑅 =
𝐹𝑁

𝑃
=

𝐹𝑁

𝐹𝑁+𝑇𝑃
= 1 − 𝑇𝑃𝑅          (9) 

 

 𝐹𝐷𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑃
= 1 − 𝑃𝑃𝑉       (10) 

 

As it can be seen, the best channel accuracy occurs at channel 

3, which complies with the F3 sensor. This sensor is the 

nearest to the MI region in the brain, related to the EMOTIV 

EPOC headset (see Fig. 2). The regularization parameter (η) 

selection plays a role in increasing the accuracy of the 

inverse of the matrix. Several values were tested for η against 

accuracy, as shown in Fig. 5. The best accuracy occurs 

between [0.85, 0.9]. Figure 6 shows the effect of window size 

(in samples) on the classification accuracy. It can be seen that 

a window size of approximately 1.2 seconds gives the best 

accuracy. In other words, the mean value for every 150 

samples represents a particular EEG signal. 

On the other hand, increasing the window size beyond 175 

samples will decrease the accuracy. The reason for this 

accuracy degradation is that a larger window size will 

overlap with adjacent EEG samples. Therefore, the unique 

time feature characteristics will be destroyed. As a result, an 

EEG recording of 1.5 seconds is sufficient for LDA 

classification. Thus, the user does not have to repeat EEG 

emotion within a single trial. 

https://en.wikipedia.org/wiki/Positive_predictive_value
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Fig. 9: Confusion matrix obtained using MODWT and 

SVM with cubic kernel 

Table I 

Comparison of different types of SVM classifier 

Classifier Type Train 

Accuracy 

Test 

Accuracy 

Fine Tree 56.50% 75.20% 

Linear Discriminant 50% 56.80% 

Naïve-Bayas Gaussian 36.30% 36.70% 

Quadratic SVM 76.80% 86.10% 

Cubic SVM 92.60% 97.20% 

Cosine K-NN 57.30% 53.50% 

Cubic K-NN 54.60% 51.50% 

Optimize Discriminant 50% 59.90% 

Optimize Naïve-Bayes 70% 74.80% 

Optimize Tree 86.50% 85.10% 

Linear SVM 52.30% 58.30% 

Ensemble K-NN 82.40% 76.80% 

 

VI. CONCLUSION  

This article describes EEG Motor-Imagery BCI System 

Based on Maximum Overlap Discrete Wavelet Transform 

(MODWT) and Machine learning algorithm a study that 

proved how an EEG might identify electrical activity 

patterns associated with motor imagery using BCI devices. 

Maximum Overlap Discrete Wavelet analysis performed 

exceptionally well as a class separator. Using the defined 

features from the Maximum-Overlap Discrete classifier to 

identify specific subbands produced outstanding results. On 

average, the support vector machine achieved 98.81 percent 

accuracy. However, the support vector algorithm was only 

correctable to 97.77 percent when working on a nine-point 

kernel. Other movements in this research, which are 

currently in the robot control phase of development, entail 

simple ones. 
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Foot 94.8% 92.1% 5.2% 7.9% 99.1% 91.7% 0.9% 8.3% 

Left hand 96.8% 92.0% 3.1% 8.0% 94.8% 93.7% 5.2% 6.3% 
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Table III 

Comparison result with previous works of detection and classification of EEG-based Motor-Imagery

. 

Article Year Application Feature 

Extraction 

Classifier Disadvantages Accuracy 

(%) 

[23] 2014 Limb Motor Task Spatial-

frequency 

temporal patterns 

SRC High 

computational cost 

75.46 

[24] 2017 Limb Motor Task RMS LDA Time-domain 

features not 

suitable for 

analysis EEG 

datasets 

78.77 

[25] 2019 Integrate a 

wheelchair and an 

artificial limb 

CSP SVM CSP suffers from 

degradation in 

performance in 

case of non-

Gaussian 

distributions 

80 

[26] 2018 Limb Motor Task CSP SVM Required high 

input channels 

85.01 

[27] 2019 Limb Motor Task CSP MDRM Required high 

input channels 

86.13 

[28] 2011 Control an artificial 

limb 

DWT LDA 

QDA 

KNN 

DWT gives lower 

frequency 

resolution than 

WPD 

86.9 

[29] 2011 Control artificial 

limb by paralyzed 

patients 

HOS + DWT LDA DWT gives lower 

frequency 

resolution than 

WPD 

89.5 

[30] 2018 control wheelchairs WPD SVM High 

computational cost 

90.68 

[31] 2008 Limb Motor Task FT MNFD FT not suitable for 

analysis of EEG 

data 

90.89 

[32] 2020 Real-time 

wheelchair control 

FFT FNN FFT not suitable 

for analysis EEG 

dataset 

92.0 

[33] 2017 Limb Motor Task DWT + WPD KNN KNN suffers from 

the curse of 

dimensionality 

92.8 

The 

proposed 

work  

2021 Limb motor tasks  MODWT+ 

Statical features 

SVM  97.8 
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