
Received: 09 June 2021 Revised: 12 July 2021 Accepted: 13 July 2021

DOI: 10.37917/ijeee.17.2.3 Vol. 17| Issue 2| December 2021

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.
© 2021 The Authors. Published by Iraqi Journal for Electrical and Electronic Engineering by College of Engineering, University of Basrah.

https://doi.org/10.37917/ijeee.17.2.3 https://www.ijeee.edu.iq 17

Iraqi Journal for Electrical and Electronic Engineering
Original Article

 Open Access

Backward Private Searchable Symmetric Encryption

with Improved Locality

Salim S. Bilbul, Ayad I. Abdulsada*,

Department of Computer science, Education College for Pure Sciences,

University of Basrah, Basrah, 61004, Iraq

Correspondence

* Ayad I. Abdulsada
Department of Computer science

Education College for Pure Sciences,

University of Basrah, Basrah, Iraq
Email: ayad.abdulsada@uobasrah.edu.iq

Abstract

Searchable symmetric encryption (SSE) enables clients to outsource their encrypted documents into a remote server and allows

them to search the outsourced data efficiently without violating the privacy of the documents and search queries. Dynamic SSE

schemes (DSSE) include performing update queries, where documents can be added or removed at the expense of leaking more

information to the server. Two important privacy notions are addressed in DSSE schemes: forward and backward privacy. The

first one prevents associating the newly added documents with previously issued search queries. While the second one ensures

that the deleted documents cannot be linked with subsequent search queries. Backward has three formal types of leakage

ordered from strong to weak security: Type-I, Type-II, and Type-III. In this paper, we propose a new DSSE scheme that

achieves Type-II backward and forward privacy by generating fresh keys for each search query and preventing the server from

learning the underlying operation (del or add) included in update query. Our scheme improves I/O performance and search

cost. We implement our scheme and compare its efficiency against the most efficient backward privacy DSSE schemes in the

literature of the same leakage: MITRA and MITRA*. Results show that our scheme outperforms the previous schemes in terms

of efficiency in dynamic environments. In our experiments, the server takes 699ms to search and return (100,000) results.

KEYWORDS: Searchable encryption, I/O efficiency, Symmetric primitives.

I. INTRODUCTION

Searchable symmetric encryption (SSE) schemes are

efficient solutions that allow a client to store his encrypted

documents at a remote untrusted server while enabling

him/her to search and retrieve documents that match the

search queries without violating the privacy of documents

and the underlying search keywords. The basic approach of

SSE schemes is to extract an inverted index from the entire

document collection that maps each keyword 𝑤 to the set of

document identifiers whose documents include w. The index

is encrypted and outsourced along with the encrypted

documents to the server. To search on the encrypted index,

the client provides search tokens by encrypting certain

keywords using a secret key. The server runs a search

algorithm on the search tokens and the encrypted index to

find the matched entries. However, search tokens are

constructed in a deterministic way, thus the server can learn

when multiple searches share a common keyword. This

leakage is called the search pattern [3, 4]. Efficient SSE

schemes [1, 2, 3, 5, 6] allow leaking also the access pattern
[3], which is the set documents that include the search

keyword. Several studies [4, 7- 9] have shown how to exploit

the above-mentioned leakages by the adversarial servers to

perform specific attacks to violate documents and search

queries privates, making traditional SSE schemes unsuitable

for practical applications. Such an attack inspires the

importance of forward privacy, which ensures that newly

inserted documents should never be linked with previous

search queries. The early schemes of SSE are suitable to deal

with static collections. Dynamic SSE schemes support

update operations on the collection [10–12]. The

functionality of dynamic SSE introduces new privacy

challenges. For example, insert query of specific document d
to the collection might be related with previous search

queries for a given keyword w to reveal that w is included in

d. Schemes that resist such leakage are called forward

private and are first introduced in [10], and then addressed in

many works like [1, 5, 13–15] to avoid file-injection attacks

[9]. Another privacy challenge is raised when a search query

for a given keyword w might be associated with deleted

documents to infer that such documents were continuing w,

in the past. Schemes that minimize this leakage are called

http://ijeee.edu.iq/Papers/Vol17-Issue2/1570733805.pdf
http://ijeee.edu.iq/Papers/Vol17-Issue2/1570733805.pdf
mailto:ayad.abdulsada@uobasrah.edu.iq

18 | Bilbul & Abdulsada

backward private. Unfortunately, apart from being

mentioned in [1], neither real constructions were presented

to achieve this property nor a formal definition was

provided. The first formal definition of backward privacy is

due Bost et al. [2] where three different types of leakage are

proposed: Type-I, Type-II, and Type-III.

Contributions. In this paper, we design and implement a

single-keyword SSE dynamic scheme that achieves both

forward and Type-II backward privacy with two rounds for

search queries. The security of our scheme is proved

formally under the model of a random oracle. Our scheme

enjoys the following properties:

1- Forward privacy: where a fresh key is used for

generating new search tokens. Thus, the server is no

longer able to associate previous search tokens with

subsequent update tokens.

2- Type-II backward privacy: where update operations

(del or add) are never revealed to the server during the

execution of update queries.

3- Efficient index: During search, the accessed entries of

the encrypted index are marked and removed, this

prevents increase in index size.

4- Optimized I/O: the results of the previous search are

stored in the server in their plaintext format as such

results are already leaked to the server and re-encrypting

them again will not provide any security advantages.

Therefore, plaintext results can be read continuously in

an optimal locality.

5- Efficient search and update: The server needs to

evaluate 𝑂(𝑜𝑤
′) hash functions for a search a keyword

𝑤, where 𝑜𝑤
′ is the total number of updates on 𝑤 since

the last search. For update, the server only evaluates

𝑂(1) storage operation. All operations are performed

using light-symmetric cryptographic primitives.

6- Comparison results: we compare our scheme against

MITRA and MITRA*, the most efficient backward

private schemes to data, in terms of computation

cost and I/O efficiency.

The remaining of the paper is organized into the following

sections. Section II reviews the most relevant SSE schemes.

Section III introduces the basic notations and cryptographic

primitives that will be utilized in the current work. Section

IV presents the proposed. Section IIV shows the results of

our scheme. Section IIIV concludes the whole paper.

II. RELATED WORKS

Oblivious RAM-based SSE schemes. The functionality of

searching the outsourced data was first achieved using the

Oblivious RAM (ORAM) [16] tool that allows accessing the

outsourced memory without revealing the access pattern.

Several ORAM-based SSE schemes with different leakages

have been proposed [1, 13]. However, Naveed et al. [17]

have stated that such schemes do not hide the access pattern

properly, since document identifiers of search results are

revealed to the server for retrieving their corresponding

documents.

Static SSE schemes. Static schemes allow performing

search operation only over the encrypted data. The first

linear-time search SSE scheme is due to the seminal work of

Song et al. [18]. Curtmola et al. [3] defined the first formal

definition of the security of SSE schemes. Particularly, they

introduced the notion of leakage function and successfully

proposed an inverted-index-based SSE scheme with

sub-linear search time. Boolean SSE was introduced in [19].

Disjunctive SSE is developed by Kamara and Moataz [12].

Dynamic SSE schemes. Dynamic SSE (DSSE) schemes

allow updating the encrypted data and were first introduced

by Kamara et al. [20] and enhanced in [11]. To deal with

large-scale datasets, Cash et al. [6] proposed an optimized

DSSE scheme. However, no one of these schemes supports

forward privacy.

Forward privacy. The first formal definition of forward

privacy is introduced by Bost in [5] along with an optimal

communication DSSE scheme, Sophos. Diana [2], a forward

private DSSE scheme, is based on symmetric cartographic

primitives GGM-PRF [21] to support parallel search with

higher communication overhead. Improved forward private

DSSE schemes are presented in [14, 15, 22]. The strategy of

[22] to achieve forward privacy was to re-generate the keys

of update operation after each search query. However, this

method requires re-encrypting the search results by the client

and re-sending them back to the server, which incurs more

I/O overhead and one additional round of interaction.

FASTIO [14] has improved the locality [6] of DSSE

schemes.

Backward privacy. The notion of backward privacy was

first introduced by Stefanov et al. in [1] without providing a

formal definition. In their work, an ORAM-based SSE

scheme was released to capture only forward privacy. Such a

construction has the ability to deal with deleting entries,

where such entries are skipped elegantly by the server.

Unfortunately, this work focuses on improving the search

performance rather than security concerns. Bost [2]

introduced the first formal definition of backward privacy

with three different types of information leakage ordered

from strong to weak security requirements: Type-I, Type-II,

and Type-III. Furthermore, the author introduced four

backward private DSSE schemes with variable

privacy/performance balance: Fides, Moneta, Dianadel , and

Janus. Fides is a Type-II scheme that employs two instances

of the forward private DSSE scheme, Sophos [5]. The first

instance is used to store addition operations, while the

second one is used to store deletion operations. During the

search operation, the two instances are inspected to retrieve

all entries, the deleted ones are filtered at the queried side,

and the server is asked to return the documents of the

remaining identifiers. In this case, the server is not able to

know the deleted documents. Monita is a Type-I DSSE

scheme which is constructed using TWORAM [13], an

ORAM-based forward private DSSE scheme that uses heavy

communication operations making it suitable for only

theoretical instances of Type-I schemes. Dianadel and Janus

are Type-III DSSE schemes that leak more information to

the server for better performance. Dianadel is constructed

from constrained pseudorandom functions (CPRF) [23],

Bilbul & Abdulsada | 19

which incurs high communication and computation costs.

Janus employs puncturable encryption [24] that supports the

property of incremental update, to release an optimum DSSE

scheme with a single-round search and optimal

communication cost. However, the search time of Janus is

not optimal. Such that, after hundreds of deletion operations,

Janus will not be practical, mainly due to the computation

and storage costs. Furthermore, Dianadel and Janus disallow

the reinsertion of the previously deleted keyword-document

pairs. Recently, Chamani et al. [25] proposed MITRA, the

most practical Type-II backward private DSSE scheme in

the literature. An improved version of MITRA, which is

called MITRA*, can handle deletion operations efficiently.

Orion and Horus [25] are two backward private schemes

with quasi-optimal search time (i.e. O(nwpolylog(N)),
which is far from being optimal search time O(O(nw), where

nw is the number of current documents that share the

keyword 𝑤 . Orion [25] is a Type-I scheme that requires

𝑂(𝑙𝑜𝑔 𝑁) round of interactions, where 𝑁 is the number of

document-keyword pairs. Horus is a Type-III scheme that

achieves better search performance than Orion and requires

few rounds of interaction. Table 1 summarizes the most

relevant DSSE schemes. All of the listed schemes support

forward and backward privacy.

III. BACKGROUND

 This section introduces the basic notations and

cryptographic primitives that will be utilized in the current

work.

A. Notations

The security parameter is denoted by λ ∈ ℕ, which is used as

input in all algorithms of our scheme. Probabilistic

polynomial-time is referred to as PPT. negl(λ) stands for a

negligible function in λ , where f: ℕ → ℝ is considered a

negligible function only iff for all c > 0, ∃n_0 ∈ N s.t ∀n ≥
n0, f(n) < n−c. In the context of the client-server setting, the

notation P(x; y) indicates that the protocol P is executed by

the input x of the client and the input y of the server. The

cardinality of a set X is denoted by |X|. x
$

← X notation stands

for sampling x uniformly from X. Assigning the value y to

variable x is denoted by x ← y. The notation || refers to the

concatenation operation. The notion {0,1}ℓ denotes the set of

all strings of length ℓ , and {0,1}∗ denotes all strings of

arbitrary lengths.

Consider a collection of 𝐷 documents that includes textual

keywords derived from a defined alphabet Σ , with each

document 𝑑𝑖 is identified by its identifier 𝑖𝑑𝑖 ∈ {0,1}ℓ. The

database 𝐷𝐵 includes a set of pairs of document identifiers

and keywords (𝑖𝑑, 𝑤) such that the keyword 𝑤 appears in

the document with identifier 𝑖𝑑 . The set of all unique

keywords that appear in 𝐷𝐵 is denoted by 𝑊 of size

𝐾 (𝑖. 𝑒, 𝐾 = |𝑊|), 𝑁 stands for the number of pairs in 𝐷𝐵

(i.e., 𝑁 = |𝐷𝐵|). The set of documents that include 𝑤 is

denoted by 𝐷𝐵(𝑤).

TABLE 1

Comparison of existing forward and backward private DSSE

schemes with our scheme. N is the total number of

(keyword, identifier) mappings. For keyword w, aw is the

total number of addition operations on w, dw is the number

of delete operations performed on w, ow is the total number

of updates on w (i.e ow = aw + dw), ow
′ is the total number

of updates since the last search, nw is the number of

documents currently sharing w, RO stands for the number of

rounds for search. Ô hides the loglogN factors.

B. Dynamic Searchable symmetric encryption (DSSE)

DSSE scheme 𝜋 =(Setup, Search ,Update) includes one

algorithm 𝑆𝑒𝑡𝑢𝑝 and two protocols 𝑆𝑒𝑎𝑟𝑐ℎ , 𝑈𝑝𝑑𝑎𝑡𝑒 that

are executed between a client and a server. The client holds

the databased 𝐷𝐵 and outsources the encrypted database

EDB to the server.

 𝑆𝑒𝑡𝑢𝑝(𝜆, 𝐷𝐵; ⊥) is an algorithm that receives the

security parameter (𝜆) and the data base DB as input and

returns (𝑠𝑘, 𝜎; EDB) to the client where 𝑠𝑘 is a secret

key, 𝜎 is the local state and EDB is an empty database

that outsourced in the server.

 𝑆𝑒𝑎𝑟𝑐ℎ(𝑠𝑘, 𝑞, 𝜎; 𝐸𝐷𝐵) is the protocol of searching the

database. In the current work, we deal with only search

queries of single keywords (𝑞 = 𝑤 ∈ Σ∗). The output of

this protocol to the client is 𝐷𝐵(𝑤) (or ⊥ when 𝑤 ∉

𝑊). It also may change 𝜎 and EDB.

 𝑈𝑝𝑑𝑎𝑡𝑒(𝑠𝑘, 𝑜𝑝, 𝑖𝑛, 𝜎; 𝐸𝐷𝐵) is the protocol for

updating the database. 𝑜𝑝 stands for update operation

which could be either del or add. Input in is a pair

(𝑖𝑑, 𝑤). This protocol may also change the values of 𝜎

and EDB.

Given the security parameter 𝜆 and the database 𝐷𝐵 , the

client starts to run Setup to get the secret key 𝑠𝑘 then he/she

adds the 𝑁 entries of 𝐷𝐵 into 𝐸𝐷𝐵 by calling Update

protocol 𝑁 times. Search protocol returns for the client only

the document identifiers of 𝐷𝐵(𝑤). Actual documents are

returned to the client with an additional round. We consider a

semi-honest server, where it follows precisely the steps of

the protocol but tries to get additional information from the

messages (transcripts) it receives during the execution of the

protocol.

Forward privacy. Forward privacy ensures cutting the link

between earlier search queries and the current update

operation. This feature is useful when we want to hide

whether the current addition operation is related to a new

keyword or an existing one.

Backward privacy. The objective of backward privacy is to

minimize the information leaked to the server when a search

query is issued for a keyword 𝑤 which some of its entries

20 | Bilbul & Abdulsada

have been deleted previously. Informally DSSE scheme is

considered backward-private scheme when the search query

on keyword 𝑤 does not reveal the identifier 𝑖𝑑 that its

corresponding pair (𝑤, 𝑖𝑑) is added into the database and

then removed. Observe that the search query reveals 𝑖𝑑 only

when it is issued after the addition of (𝑤, 𝑖𝑑) and before

deleting this pair. Bost et al. [2] introduced formally three

different types of backward privacy with variable leakage

patterns: Type-I, Type-II, and Type-III. Type-I reveals the

lowest information, while Type-III reveals the most.

Informally, these types are defined as follows:

 Type-I(Backward privacy revealing insertion pattern

(BPIP)): When BPIP schemes search for keyword 𝑤,

nothing is revealed to the server beyond: the documents

currently matching 𝑤, time of inserting documents, and

the total number of deletion and addition operations on

w.

 Type-II(Backward privacy revealing update pattern

(BPUP)): This type reveals all information of type-I

plus the times at which 𝑤 is updated.

 Type-III(Weak backward privacy (WBP)) In addition to

the leakage of Type-II, this type reveals also the deletion

history of 𝑤 (i.e. which deletion canceled which

addition)

C. Scalability of searchable encryption schemes

Real implementations [3, 6] have shown that the scalability

of SSE schemes to large databases is mainly affected not by

their usage of cryptographic tools but rather by three

irreconcilable memory parameters: storage locality, storage

cost, and read efficiency. The notion of locality represents

the number of non-contiguous memory reads required by the

server to retrieve the result items matching search queries,

while read-efficiency represents the additional number of

memory reads made by the server to retrieve the result items

beyond the actual need. The trade-off between these

parameters was first observed by Cash et al. [6], where to

improve their locality; SSE schemes have to read additional

entries per query. This hurt practical performance. Most

prior SSE schemes scatter index entries at pseudorandom

locations which causes an increased number of localities and

hence degrading search performance. Cash and Tessaro [28]

addressed the lower bound of server memory access locality

of SSE schemes: they demonstrated that, for the sake of

security, it is not possible to achieve, at the same time,

optimal server storage, read efficiency, and optimal locality.

Their lower bound states that if a scheme holds optimal

locality and storage space, then when the adversary server

knows the locations of results for previous search queries,

then it can infer from the non-accessed locations some

statistical information about the underlying data collection.

Asharov et al. [29] give a tighter lower bound of storage

locality. Furthermore, Demertzis et al.[30] have shown how

locality notion can be tuned. However, all of the

aforementioned studies hold for static schemes, and the

locality of dynamic locality is not studied formally. Thus, an

optimized I/O performance is required for dynamic SSE

schemes while preserving their security requirements.

IV. PROPOSED SCHEME

In this section, we introduce our proposed scheme that

supports forward and backward privacy. Our scheme follows

the definition of Type-II for backward privacy in a manner

that it reveals nothing to the server during the execution of

update queries other than the time at which such updates

happened during searches. The proposed scheme follows the

two-party model, where the first party is the data owner

(client) and the second party is the server that provides large

storage and efficient computation power. Our scheme relays,

as almost all current DSSE schemes [14, 19, 22, 25], on a

key-value index to capture the relation of each keyword with

its corresponding identifiers. Such an index is encrypted and

outsourced to the server to enable it for answering the

requests of clients efficiently. The client formulates his

requests in the form of encrypted tokens, which are sent to

the server to perform its job. Index stores, for a given

keyword w, the encryption of (𝑖𝑑, 𝑜𝑝) in the corresponding

key that is derived from 𝑤, where 𝑜𝑝 is the update operation,

and 𝑖𝑑 is the identifier of a document involved in this

operation. Keys represent the addresses for storing the

corresponding values at index and are obtained utilizing

pseudorandom and secure hash functions. Keys should be

derived in a way that ensures create the ability for the client

to generate the same address related to the relevant keyword

𝑤 during the search. The encrypted index is maintained by

using synchronized data structures stored at client and

server. Note that, our work focuses on the encrypted index

and does not consider the encrypted documents. This means

that encryption of actual documents is not included in the

steps of our work. Such a simplification is common in the

literature of SSE schemes, for example [2, 6, 19, 22]. The

reason behind this treatment is that the actual documents are

commonly protected by CPA-encryption schemes like AES

and thus no information is leaked from the ciphertext except

document size.

Server data structures. The server uses two data structures:

𝑆𝑒 of size 𝑂(𝑁) and 𝑆𝑟 of size 𝑂(𝐾). 𝑆𝑒 is used to associate

each keyword to the set of document identifiers which

includes it. If document 𝑑𝑗 contains the keyword 𝑤, then the

encryption of its identifier 𝑖𝑑𝑗 along with its update

operation 𝑜𝑝 is stored in 𝑆𝑒 at address determined by 𝐾𝑤

(derived from 𝑤) and the index 𝑗. In this setting, given 𝐾𝑤

and the number of documents sharing 𝑤, the server identifies

all relevant addresses, and returns the corresponding

encrypted values, which will be refined by the client to get

the document identifiers currently matching 𝑤. 𝑆𝑒 is used to

store the set of all plaintext document identifiers that match

𝑤 . The address of each entry in 𝑆𝑒 is random-looking

obtained by using a secure hash function. Thus, entries of a

given keyword are scattered at random locations in 𝑆𝑒. As

we process the keywords sequentially to construct 𝑆𝑒, this

prevents leaking any information about the entries of each

keyword. However, this is true only when keywords are

outsourced at the beginning. Later insertion of a specific

keyword conceals the number of documents sharing it, and

hence Se does not prevent such leakage.

Client Data structures. The client has to store two data

structures: 𝐶𝑛𝑡[𝑤] that capture the number of documents

Bilbul & Abdulsada | 21

sharing the keyword 𝑤 (as in Cash et al. [6]), and

𝑆𝑟𝑐ℎ𝐶𝑛𝑡[𝑤] that counts the number of search operations on

a keyword 𝑤. This counter is utilized to achieve forward

privacy by generating new keys after each search. Both 𝐶𝑛𝑡

and 𝑆𝑟𝑐ℎ𝐶𝑛𝑡 data structures are of size 𝑂(𝐾) and are

initialized with zeros. The main advantage of our scheme

over FASTIO of [14], which supports only forward privacy,

is that, instead of outsourcing to the server only masked

values, we outsource encrypted values that are decrypted

locally at the client-side. To improve efficiency, we store the

search query result of previous searches in their plaintext,

such that when a new search query is issued, the server can

leverage the cashed result and only needs to investigate the

new encrypted update entries since the previous search

query. By this procedure, our scheme outperforms the most

efficient DSSE scheme of the same leakage, Mitra* [25].

Figure 1 illustrates our proposed scheme.

Assumptions. Let λ be security parameter,

GenPRF(1λ), GenPRP(1λ), be key generation functions,

F: {0,1}λ × {0,1}∗ → {0,1}λ be a pseudorandom function

𝑃𝑅𝐹 , h: {0,1}∗ → {0,1}λ be a Hash function modeled as

random oracle, and 𝐺: {0,1} λ × {0,1}λ → {0,1}λ be a

pseudorandom permutation function 𝑃𝑃𝐹.

𝐒𝐞𝐭𝐮𝐩 (λ; ⊥)
Client:

1- 𝐾𝑡 , 𝐾𝑓

$
← 𝐺𝑒𝑛𝑃𝑅𝐹(1𝜆)

2- 𝐾𝑔

$
← 𝐺𝑒𝑛𝑃𝑅𝑃(1𝜆)

3- 𝑆𝑟𝑐ℎ𝐶𝑛𝑡, 𝐶𝑛𝑡 ← 𝑒𝑚𝑝𝑡𝑦 𝑚𝑎𝑝

4- 𝜎 ← { 𝑆𝑟𝑐ℎ𝐶𝑛𝑡, 𝐶𝑛𝑡}
Server:

5- 𝑆𝑒 , 𝑆𝑟 ← 𝑒𝑚𝑝𝑡𝑦 𝑚𝑎𝑝

𝑼𝒑𝒅𝒂𝒕𝒆 (𝐾𝑔, 𝐾𝑓 , 𝜎, 𝑖𝑑, 𝑤, 𝑜𝑝; 𝑆𝑒)

Client:

6- If (𝜎[𝑤] = ⊥) then

7- 𝑆𝑟𝑐ℎ𝐶𝑛𝑡[𝑤] ← 0,
8- 𝐶𝑛𝑡[𝑤] ← 0
9- End if

10- 𝐶𝑛𝑡[𝑤] ← 𝐶𝑛𝑡[𝑤] + 1

11- 𝐾𝑤 ← 𝐹𝐾𝑓
(𝑤||𝑆𝑟𝑐ℎ𝐶𝑛𝑡[𝑤])

12- 𝐴𝑑𝑑𝑟 ← ℎ(𝐾𝑤||𝐶𝑛𝑡[𝑤]||0)

13- 𝑚𝑎𝑠𝑘 ← ℎ(𝐾𝑤||𝐶𝑛𝑡[𝑤]||1)

14- 𝑠𝑘 ← 𝐹𝐾𝑔
(𝑤||𝑆𝑟𝑐ℎ𝐶𝑛𝑡[𝑤])

15- If 𝑜𝑝 = "𝑎𝑑𝑑" 𝒕𝒉𝒆𝒏 𝑑 ← 1

16- 𝒆𝒍𝒔𝒆 𝑑 ← 0

17- 𝑉𝑎𝑙 ← 𝐺𝑠𝑘(𝑖𝑑||𝑑) ⊕ 𝑚𝑎𝑠𝑘

18- 𝑆𝑒𝑛𝑑 (𝐴𝑑𝑑𝑟, 𝑉𝑎𝑙) 𝑡𝑜 𝑆𝑒𝑟𝑣𝑒𝑟
Server:

19- 𝑆𝑒[𝐴𝑑𝑑𝑟] ← 𝑉𝑎𝑙
 Search (𝐾𝑔 , 𝐾𝑓 , 𝐾𝑡 𝜎, 𝑤; 𝑆𝑒 , 𝑆𝑟)

Round1 Client:

20- if (𝜎 [𝑤] = ⊥) then

21- Return ∅
22- End if

23- 𝑡𝑤 ← 𝐹𝐾𝑡
(𝑤)

24- 𝐶𝑛 = 𝑐𝑛𝑡[𝑤]

25- if (𝐶𝑛 = 0) then

26- 𝐾𝑤 ←⊥
27- else

28- 𝐾𝑤 ← 𝐹𝐾𝑓
(𝑤||𝑆𝑟𝑐ℎ𝐶𝑛𝑡[𝑤])

29- End if

30- 𝑠𝑒𝑛𝑑 (𝐾𝑤 , 𝑡𝑤, 𝐶𝑛) 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑒𝑟
Server:

31- 𝐼𝐷1, 𝐼𝐷2 ← {}
Retrieve all last search result

32- 𝐼𝐷1 ← 𝑆𝑟[𝑡𝑤]
33- if (𝐾𝑤 =⊥)then

34- Return 𝐼𝐷1
35- End if

36- for 𝑖 = 1 to |𝐶𝑛| do

37- 𝐴𝑑𝑑𝑟 ← ℎ(𝐾𝑤||𝐶𝑛||0)

38- 𝑚𝑎𝑠𝑘 ← ℎ(𝐾𝑤||𝐶𝑛𝑡[𝑤]||1)]
39- 𝐼𝐷2 ← 𝐼𝐷2⋃[𝑆𝑒[𝐴𝑑𝑑𝑟] ⊕ 𝑚𝑎𝑠𝑘]
40- 𝐷𝑒𝑙𝑒𝑡𝑒 𝑆𝑒[𝐴𝑑𝑑𝑟]
41- End for

42- 𝑠𝑒𝑛𝑑 𝐼𝐷1 , 𝐼𝐷2 𝑡𝑜 𝐶𝑙𝑖𝑒𝑛𝑡
43- Round2 Client:

44- if (|ID2 |≠ 0) then

45- 𝐶𝑛𝑡[𝑤] ← 0, 𝑆𝑟𝑐ℎ𝐶𝑛𝑡[𝑤] + 1
46- End if

47- 𝑠𝑘 ← 𝐹𝐾𝑔
(𝑤|| 𝑆𝑟𝑐ℎ𝐶𝑛𝑡[𝑤])

48- for 𝑖 = 1 to |ID2 | do

49- (𝑖𝑑||𝑑) ← 𝐺𝑠𝑘
−1(𝐼𝐷2[𝑖])

50- if (d = 1) then

51- 𝐼𝐷1 ← 𝐼𝐷1⋃{𝑖𝑑}
52- else

53- 𝐼𝐷1 = 𝐼𝐷1 − {𝑖𝑑}
54- End if
55- End for

56- Send ID1 to server
Server:

57- 𝑆𝑟[𝑡𝑤] ← 𝐼𝐷1

A. Details of the proposed scheme

Setup. The setup algorithm generates randomly three secret

keys 𝐾𝑓 , 𝐾𝑔 , and 𝐾𝑡 all of size bounded by the security

parameter 𝜆. 𝐾𝑓 is considered as long term key, in 𝑃𝑅𝐹 𝐹,

that prevents the server from generating valid search tokens,

𝐾𝑔 is used in 𝑃𝑅𝑃 𝐺 to protect (𝑜𝑝, 𝑖𝑑) pairs, and 𝐾𝑡 is used

to construct a tag ,𝑡𝑤 , for each keyword 𝑤 . The client

initiates one empty state 𝐶𝑙𝑛𝑡𝑠𝑡𝑎𝑡𝑒 which is stored locally,

while the server initiates two empty maps (𝑆𝑒 , 𝑆𝑟). 𝑆𝑒 is used

to store the encrypted entries, while 𝑆𝑟 is used to store the

cashed plaintext search results.

Update. In update protocol (lines 6-19), the client provides a

keyword 𝑤 , a document identifier 𝑖𝑑 , and an update

operation op, which is either add or del. For instance, the

update query (add ,”book”, 10) tells the server to add a new

entry for keyword “book” in document 10. The local state 𝜎
stores for the keyword 𝑤, two counters. The first counter,

[𝑤] , accumulates the number of update operations that are

related to 𝑤, while the second counter, 𝑆𝑟𝑐ℎ𝐶𝑛𝑡[𝑤], denotes

the total number of search operations that take place to 𝑤.

22 | Bilbul & Abdulsada

First, the client accesses the state 𝜎 of 𝑤 to check its

initialization. If it is not initialized yet, he/she sets the two

counters related to 𝑤 to 0. In both cases, counter 𝐶𝑛𝑡[𝑤] is

incremented by 1. Next, the client executes the PRF 𝐹 with

key 𝐾𝑓 to calculates FK𝑓
(w, SrchCnt[w]). The output, 𝑘𝑤, is

considered as a secret key for the hash function, which will

be executed twice. The output of the first hash is used as the

key Addr that determines the location of storing the

encrypted pair (𝑖𝑑||𝑜𝑝) at the server, whereas the second

output is XORed with the encrypted entry to get the masked

value Val which will be uploaded to the server. The

encryption key of the pair is derived from applying the

function 𝐹 on the inputs 𝑤 and 𝑆𝑟𝑐ℎ𝐶𝑛𝑡[𝑤] with a secret

key K𝑔.

Search. Search protocol (lines 20-57) includes two rounds.

In the first round, the client starts to check the initialization

of ClntStat for 𝑤. If it is not initialized, then this means that

the corresponding keyword 𝑤 was not inserted before. So

search operation will terminate. Otherwise, the client

generates from 𝑤 a tag value, t𝑤 , to give the server the

ability to return the set of document identifiers (if exists) that

match 𝑤 from the last search query. Next, the client checks

the value of Cnt[w] to construct valid values for the search

token (t𝑤 , k𝑤, 𝑣, Cnt[w]). In this context, if the counter

Cnt[w] value is set to zero, which means there are no update

operations happen since the last search query, then the search

results will remain the same as the previous search query.

For this reason, the client unravels the new value of

SrchCnt[w] and reveals only the tag tw, which is enough, in

this case, to retrieve the correct results. If Cnt[w] is not equal

to zero, the client will set 𝑣 to the current SrchCnt[w] .

Search on the server-side is comprised of two main steps. In

the first step, the server uses t𝑤 to retrieve the plaintext

results from the recent search query (line 32). Then the

server may move to the second step (line 33-42). If there is at

least one update operation, since the last search query, the

server will retrieve the new encrypted entries using the

values of 𝑘𝑤, the counter Cnt[w] and the state 𝑣. Then the

server removes the update entries from 𝑆𝑒 to keep the index

up-to-date and obviates the need for an index cleaning

procedure. When all updates have been processed, the server

returns the plaintext results and the encrypted update set to

the client. In the second round, the client checks the received

encrypted set, 𝐼𝐷2. If it is not empty, the client resets Cnt[w]
and increments the counter SrchCnt[w] to make the future

update operations are unlikable to the past issued search

queries, which is a necessary condition for forward privacy.

Then, the client proceeds over the received encrypted

entries. In each iteration, he/she decrypts the entry,

determines to keep its corresponding identifier depending on

whether such identifier is removed later or not. Finally, the

refined set is sent to the server, which stores them directly in

𝑆𝑟 map.

B. Efficiency investigation

Search and update efficiency. We discuss the efficiency of

our proposed scheme in terms of communication and

computation complexity costs. Observe that update queries

are only 𝑂(1) for both parties as they require a fixed number

of operations. The communication cost is also of 𝑂(1) since

only a single pair of values is sent from client to server. For

search queries, our scheme requires 𝑂(1) operations from

the client in the first round, and 𝑂(𝑜𝑤
′) of decryption

operations, where 𝑜𝑤
′ represents the total number of update

operations (add and del) that took place after the last search

operation and also 𝑂(𝑜𝑤
′) of look-ups and 𝑋𝑂𝑅 operations

from the server. Recall that the counter Cnt[w] is reset after

each search operation, thus it catches only the number of

update operation on 𝑤 that happens after the last search,

which is denoted by 𝑜𝑤
′ . Therefore, the computation and

computation overheads of the search operation are 𝑂(𝑜𝑤
′).

When 𝑁 update operations are executed, then they entail

𝑂(𝑁) storage at the server, since each update requires one

storage in 𝑺𝒆 map. The client should provide 2. 𝑂(|𝑊|) for

Cnt and SrchCnt maps, and 3 𝜆-bit keys.

Deletion cost. Unlike the previous DSSE schemes [1, 2, 5,

1, 22, 25], which grows the encrypted index after each

update operation, our work avoids this, where all accessed

entries are removed from the encrypted index. Additionally

deleted documents are filtered locally by the client.

Roundtrips. Our scheme requires two roundtrips to return

the document identifiers matching w. An additional round is

needed when we want to retrieve the actual documents. Note

that our scheme relies on only light symmetric cryptographic

primitives, making it attractive for practical applications.

I/O efficiency. Observe that locality of results and security

are two conflicting notions. This is because, security requires

update operations for a keyword 𝑤 , to generate random

locations in the encrypted index that are unrelated to already

known locations relevant to 𝑤. To resolve such a conflict,

we cache the results of previous search operations, at the

server, in their plaintext. This reduces locality since result

items will be organized together so that they can be returned

continuously without violating privacy as such results do not

provide additional leakage to the server. More precisely,

when 𝑜𝑤
′ new update operations are performed after the last

search query, a total of 𝑜𝑤
′ noncontiguous reads are needed.

Thus, the overall locality is reduced from 𝑜𝑤 to 𝑜𝑤
′ + 1.

Storage cost and read efficiency. Our scheme enjoys a

near-optimal storage cost and read efficiency. Particularly,

the index of our scheme is composed of two maps 𝑆𝑒 and

𝑆𝑟 In 𝑆𝑒 , each entry is 𝜆 bits where 𝜆 is the security

parameter. In 𝑆𝑟 , each entry is a set of plaintext ℓ − 𝑏𝑖𝑡

document identifiers. Consider an index of 𝑁𝑡 entries, the

size of such index ranges between 𝑁𝑡 . ℓ to 𝑁𝑡 .𝜆 bits. To

serve a plaintext search query, the server needs to read at

least |DB(𝑤)|. ℓ bits for the relevant document identifiers.

In our scheme, some identifiers are read from 𝑆𝑒 and some

are read from 𝑆𝑟 . Entries in 𝑆𝑒 adds additional 𝜆 - ℓ bits per

identifier, while the entries in 𝑆𝑟 add no cost. In practice, the

document identifiers are represented by large numbers (𝜆 ≈
ℓ) to ensure distinct identifiers. Hence, the storage cost and

read efficiency in our scheme is near-optimal.

C. Security analysis

 Our scheme is designed to support forward privacy and

Type-II of backward privacy. Forward privacy is achieved

since the two elements (𝐴𝑑𝑑𝑟, 𝑉𝑎𝑙) are generated using a

Bilbul & Abdulsada | 23

pseudorandom function 𝐹 that receives a new input for each

update, making it difficult for the server to distinguish them

from random. Furthermore, even the update operation that is

evaluated at the server, still hidden which leads to an empty

update leakage. For backward privacy, the client sends to the

server a search token that enables it to generate random

locations which it observes during the previous updates. This

allows for the server to know, for each 𝑤, the timestamp for

each 𝑢𝑝𝑑𝑎𝑡𝑒 operation. Except for this, the server does not

learn anything. Particularly deletions that cancel specific

additions are not revealed to the server. This immediately

leads to backward privacy of Type-II. For the search queries,

only the access pattern and query pattern are leaked, which is

standard leakage in the literature. Notice that, even though a

fresh key is generated after each search, our scheme still

leaks the search pattern since the searched keywords are not

re-encrypted again. The fresh key is used to achieve forward

privacy, but not protecting the search pattern. However, the

actual keywords under search queries are protected; making

the server unable to know them.

V. EXPERIMENTAL RESULTS

We released a prototype for our scheme using Java

programing language. Particularly, SHA-256 (of 160 bits

long) is employed as the cryptographic hash function ℎ .

Using stronger hash functions like SHA-3 does not affect

considerably the efficiency of our scheme, as such hashing is

not the main cornerstone for our design. Index data

structures are implemented as Java 𝐻𝑎𝑠ℎ𝑀𝑎𝑝𝑠, since it does

not retain the order of inserted pairs. This is an interesting

property for the security of 𝑆𝑒 , so that the insertion

operations leak no information about the order of inserted

pairs. When a set of keywords are stored initially in 𝑆𝑒, all of

their relevant entries are outsourced altogether. Thus, the

server is not able to learn how many documents each

keyword appears in. However, such information is leaked

gradually through successive search queries. When

keywords are outsourced one by one, the server notices the

number of their corresponding entries in 𝑆𝑒. Since addresses

in 𝑆𝑒 are generated by hash functions, collisions may occur

but with a very small probability. Consider the number 𝑁 of

stored pairs is bounded by 280 , and output of the hash

function is 256-bit. Then there are at most 280 entries

conflicting on 2256 address space. According to the birthday

attack, stored entries collide with probability
𝑁2

2∗2256 =
2160

2257 =

2−97 , which is negligible. When a new entry causes a

collision, this collision could be handled by the server, where

it informs the client to increment the 𝑆𝑟𝑐ℎ𝐶𝑛𝑡[𝑤] and

regenerate its corresponding address. We release the 𝑃𝑅𝐹 𝐹

[31] with AES-128/256 for and 𝑃𝑃𝐹 𝐺 using AES-128/128.

Our prototype is implemented on a desktop computer with a

single Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz 2.11

GHz (with 8 logical cores), 8GB of RAM, and hard disk 512

GB SSD running Windows 10 64-bit operating system,

x64-based processor. Our experiments were performed on a

synthetic database 𝐷𝐵 of size |𝐷𝐵| = 3 ∗ 105 entries,

where entries are randomly generated. During the

experiments, we constructed variable result sizes between

10– 105 documents. From the update operations, delete

operations are performed with probability 𝑝 of 0.1 to

simulate the effect of deletions on performance. Throughout

the experiments, results are reported as the average of 10

running times. We compare the performance of the proposed

scheme with the most efficient backward private schemes in

literature: Mitra and Mitra*. All of the compared schemes

employ the same cryptographic symmetric primitives, which

gives a fair comparison. To simulate the dynamic setting, we

construct a sequence 𝑆𝑒𝑞 of 100,000 interleaved search and

update queries on a certain keyword. The sequence is

constructed according to a search parameter 𝛿 that

represents the probability of 𝑠𝑒𝑎𝑟𝑐ℎ queries in the sequence,

i.e. (1 − 𝛿) is the probability of update queries.

A. Search efficiency

To locate the matched documents for a given search query

the server is required to process a set of encrypted index

entries. Figure 1 shows the search performance for two

schemes. In this experiment, we record the total time at the

server side to search for keywords having a variable number

of matching documents. To get the time for processing a

single entry we divide the total time by the number of

matching documents. Notice that, for both schemes, the

search time for processing a single entry is decreased when

the number of matched documents increases. MITRA is

slightly better than our scheme in terms of search time since

it uses fewer processing steps than our scheme but at the

expense of longer search tokens (see Figure 5) and more

time for search token generation at the client-side (see Figure

2). However, this experiment does not consider the real

scenario of search operations, where it considers searching

for a given keyword only for one time. Such a setting ignores

the locality improvement of our scheme, which will be

explained later in this section.

Fig. 1: Average per entry search time

B. Search tokens

Figure 2 compares our scheme with other schemes in terms

of search token generation time at the client-side. Notice that

our scheme outperforms the competent schemes. MITRA

and MITRA* require more time to generate the search

tokens when the matched documents grow.

24 | Bilbul & Abdulsada

Fig. 2: Times for building trapdoor

C. Effect of dynamic operations

In this experiment, we show the effect of the dynamic

environment on the performance of search queries. During

this experiment, we accumulate the search time on the

server-side for search queries in 𝑆𝑒𝑞 sequence. Figure 3

illustrates the search time for different 𝛿 values. For MITRA

and MITRA*, the search time grows linearly according to

the number of executed update queries. Notice that MITRA*

requires more time than MITRA since it re-encrypts the

search results. In both schemes, search operation requires to

touch index entries that are scattered among random

locations, which decreases search locality. On the other

hand, our scheme incurs much better search performance

since it touches only the inserted entries after the last search.

Thus we read the search results in lower locality than in the

other competitor schemes.

Fig. 3: Performance of dynamic search

D. Communication cost

In this experiment, we compare the communication cost of

our proposed scheme against MITRA and MITRA*. Figure

4 demonstrates the communication cost as a function of the

number of matched documents in sequence Seq. It is easy to

see that our scheme incurs lower communication costs than

the other schemes since it returns some results in plaintext

forms. Recall that MITRA retrieves all the matched

documents in their encrypted form and filters the deleted

documents at the client-side. Thus it requires more

communication cost. MITRA* is worse than MITRA since it

re-encrypts the filtered results and sends them back to the

server with an extra communication cost.

Fig. 4: Communication cost of matched results.

VI. CONCLUSION

Forward and backward privacy are two important properties

to thwart serious attacks on SSE. In this paper, we introduce

an efficient dynamic SSE scheme that achieves forward and

backward privacy from only symmetric cryptographic

primitives. Our scheme achieves optimal communication

and computational complexities. Our treatment to cash the

results of the previous search enhanced the I/O efficiency.

Excremental results show that the proposed scheme is both

efficient and practical.

The limitations of the current work can be illustrated as

follows: first, we use one server to store the outsourced data

and answer user’s queries. Second, our scheme maintains a

state of two counters for each keyword; our ongoing work is

to deploy our work on a distributed setting, where multiple

servers are used to store the encrypted data and jointly

answer the provided queries and we would like to minimize

the client storage cost into only a constant permanent cost.

Bilbul & Abdulsada | 25

CONFLICT OF INTEREST

The authors have no conflict of relevant interest to this

article.

REFERENCES

[1] Emil Stefanov, Charalampos Papamanthou, and Elaine

Shi. Practical dynamic searchable encryption with small

leakage. In NDSS, volume 71, pages 72–75, 2014.

[2] Raphël Bost, Brice Minaud, and Olga Ohrimenko.

Forward and backward private searchable encryption

from constrained cryptographic primitives. In Proceedings

of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, pages 1465–1482, 2017.

[3] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail

Ostrovsky. 2006. Searchable symmetric encryption:

improved definitions and efficient constructions. In ACM

CCS 2016. 79–88.

[4] C. Liu, L. Zhu, M. Wang, and Y.-a. Tan, “Search

pattern leakage in searchable encryption: Attacks and new

construction,” Information Sciences, vol. 265, 2014.

[5] Raphael Bost. Σ𝑜𝜙𝑜𝜍 : Forward secure searchable

encryption. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security,

pages 1143–1154, 2016.

[6] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit

S Jutla, Hugo Krawczyk, Marcel Catalin Rosu, and

Michael Steiner. Dynamic searchable encryption in

very-large databases: data structures and implementation.

In NDSS, volume 14, pages 23–26. Citeseer, 2014.

[7] David Cash, Paul Grubbs, Jason Perry, and Thomas

Ristenpart. Leakage-abuse attacks against searchable

encryption. In Proceedings of the 22nd ACM SIGSAC

conference on computer and communications security,

pages 668–679, 2015.

[8] M. Islam, M. Kuzu, and M. Kantarcioglu, “Access

pattern disclosure on searchable encryption:

Ramification, attack and mitigation,” in Network and

Distributed System Security (NDSS), 2012.

[9] Yupeng Zhang, Jonathan Katz, and Charalampos

Papamanthou. All your queries are belong to us: The

power of file-injection attacks on searchable encryption. In

25th {USENIX} Security Symposium ({USENIX} Security

16), pages 707–720, 2016.

[10] Y.-C. Chang and M. Mitzenmacher, “Privacy

preserving keyword searches on remote encrypted data,” in

International conference on applied cryptography and

network security. Springer, 2005, pp. 442–455.

[11] S. Kamara and C. Papamanthou, “Parallel and dynamic

searchable symmetric encryption,” in International

Conference on Financial Cryptography and Data Security.

Springer, 2013, pp. 258–274.

[12] S. Kamara and T. Moataz, “Boolean searchable

symmetric encryption with worst-case sub-linear

complexity,” in Annual International Conference on the

Theory and Applications of Cryptographic Techniques.

Springer, 2017, pp. 94–124.

[13] S. Garg, P. Mohassel, and C. Papamanthou, “Tworam:

efficient oblivious ram in two rounds with applications to

searchable encryption,” in Annual International

Cryptology Conference. Springer, 2016, pp. 563–592.

[14] X. Song, C. Dong, D. Yuan, Q. Xu, and M. Zhao,

“Forward private searchable symmetric encryption with

optimized i/o efficiency,” IEEE Transactions on

Dependable and Secure Computing, 2018.

[15] K. S. Kim, M. Kim, D. Lee, J. H. Park, and W.-H. Kim,

“Forward secure dynamic searchable symmetric

encryption with efficient updates,” in Proceedings of the

2017 ACM SIGSAC Conference on Computer and

Communications Security, 2017, pp. 1449–1463.

[16] O. Goldreich and R. Ostrovsky, “Software protection

and simulation on oblivious rams,” Journal of the ACM

(JACM), vol. 43, no. 3, pp. 431–473, 1996.

[17] M. Naveed, S. Kamara, and C. V. Wright, “Inference

attacks on property-preserving encrypted databases,” in

Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security, 2015, pp. 644–

655.

[18] D. X. Song, D. Wagner, and A. Perrig, “Practical

techniques for searches on encrypted data,” in

Proceeding2000 IEEE Symposium on Security and Privacy.

S&P 2000. IEEE, 2000, pp. 44–55.

[19] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C.

Ros¸u, and M. Steiner, “Highly-scalable searchable

symmetric encryption with support for boolean queries,” in

Annual cryptology conference. Springer, 2013, pp. 353–

373.

[20] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic

searchable symmetric encryption,” in Proceedings of the

2012 ACM conference on Computer and communications

security, 2012, pp. 965–976.

[21] D. Boneh and B. Waters, “Constrained pseudorandom

functions and their applications,” in International

conference on the theory and application of cryptology and

information security. Springer, 2013, pp. 280–300.

[22] M. Etemad, A. K¨upc¸ ¨u, C. Papamanthou, and D.

Evans, “Efficient dynamic searchable encryption with

forward privacy,” Proceedings on Privacy Enhancing

Technologies, vol. 2018, no. 1, pp. 5–20, 2018.

[23] O. Goldreich, S. Goldwasser, and S. Micali, “How to

construct randolli functions,” in 25th Annual Symposium

On Foundations of Computer Science, 1984. IEEE, 1984,

pp. 464–479.

[24] M. D. Green and I. Miers, “Forward secure

asynchronous messaging from puncturable encryption,” in

2015 IEEE Symposium on Security and Privacy. IEEE,

2015, pp. 305 320.

[25] J. Ghareh Chamani, D. Papadopoulos, C. Papamanthou,

and R. Jalili, “New constructions for forward and

backward private symmetric searchable encryption,” in

26 | Bilbul & Abdulsada

Proceedings of the 2018 ACM SIGSAC Conference on

Computer and Communications Security, 2018, pp. 1038–

1055.

[26] M. Bellare and P. Rogaway, “Introduction to modern

cryptography,” Ucsd Cse, vol. 207, p. 207, 2005.

[27] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren,

X. Yu, and S. Devadas, “Path oram: an extremely simple

oblivious ram protocol,” in Proceedings of the 2013 ACM

SIGSAC conference on Computer & communications

security, 2013, pp. 299–310.

[28] D. Cash and S. Tessaro, “The locality of searchable

symmetric encryption,” in Annual international conference

on the theory and applications of cryptographic techniques.

Springer, 2014, pp. 351–368.

[29] G. Asharov, M. Naor, G. Segev, and I. Shahaf,

“Searchable symmetric encryption: optimal locality in

linear space via two-dimensional balanced allocations,” in

Proceedings of the forty-eighth annual ACM symposium

on Theory of Computing, 2016, pp. 1101–1114.

[30] I. Demertzis and C. Papamanthou, “Fast searchable

encryption with tunable locality,” in Proceedings of the

2017 ACM International Conference on Management of

Data, 2017, pp. 1053–1067.

[31] F. Saad Muhi, "A Pseudorandom Binary Generator

Based on Chaotic Linear Feedback Shift Register," Iraqi

Journal for Electrical and Electronic Engineering vol. 12,

pp. 155-160, 2016.

	I. Introduction
	II. Related Works
	III. Background
	A. Notations
	B. Dynamic Searchable symmetric encryption (DSSE)
	C. Scalability of searchable encryption schemes

	IV. Proposed Scheme
	A. Details of the proposed scheme
	B. Efficiency investigation
	C. Security analysis

	V. Experimental Results
	A. Search efficiency
	B. Search tokens
	C. Effect of dynamic operations
	D. Communication cost

	VI. Conclusion
	Conflict of Interest
	References

