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Abstract 

Most Internet of Vehicles (IoV) applications are delay-sensitive and require resources for data storage and tasks processing, 

which is very difficult to afford by vehicles. Such tasks are often offloaded to more powerful entities, like cloud and fog servers. 

Fog computing is decentralized infrastructure located between data source and cloud, supplies several benefits that make it a 

non-frivolous extension of the cloud. The high volume data which is generated by vehicles’ sensors and also the limited 

computation capabilities of vehicles have imposed several challenges on VANETs systems. Therefore, VANETs is integrated 

with fog computing to form a paradigm namely Vehicular Fog Computing (VFC) which provide low-latency services to mobile 

vehicles. Several studies have tackled the task offloading problem in the VFC field. However, recent studies have not carefully 

addressed the transmission path to the destination node and did not consider the energy consumption of vehicles.  

This paper aims to optimize the task offloading process in the VFC system in terms of latency and energy objectives under 

deadline constraint by adopting a Multi-Objective Evolutionary Algorithm (MOEA).  Road Side Units (RSUs) x-Vehicles Mutli-

Objective Computation offloading method (RxV-MOC) is proposed, where an elite of vehicles are utilized as fog nodes for tasks 

execution and all vehicles in the system are utilized for tasks transmission. The well-known Dijkstra's algorithm is adopted to 

find the minimum path between each two nodes. The simulation results show that the RxV-MOC has reduced significantly the 

energy consumption and latency for the VFC system in comparison with First-Fit algorithm, Best-Fit algorithm, and the MOC 

method. 

KEYWORDS: Cloud Computing, Fog Computing, Internet of Vehicle, Intelligent Transportation System, Multi-Objective 

Evolutionary Algorithm. 

 

I.  INTRODUCTION 

The current era is witnessing an increase in the number of 

intelligent objects that communicate with each other through 

the Internet of things (IoT), to provide many various services 

in various life aspects [1]. When these objects are smart cars 

and vehicles, then IoT will be called the Internet of vehicles 

(IoV) [2]. IoV is the fundamental platform of the intelligent 

transportation system (ITS), data are collected from the 

environment, stored, and processed through IoV [3]. 

Recently, the number of smart vehicles and IoV applications 

in ITSs has increased. This increase has led to an increase in 

the volume of data produced by the sensors of smart vehicles, 

where traditional databases cannot process this massive 

amount of data. The cloud computing is an operating model 

based on the information and communications technology 

that can be employed for vehicular network applications. 

Although cloud computing has massive resources, in which 

cloud servers can effectively address any task, it does not suit 

all IoV applications especially those that are delay-sensitive 

[4]. Due to two reasons; first, the traffic congestion caused 

by processing large amounts of data, second, the 

geographical distance between cloud servers and the 

vehicular network could cause a response-delay [5]. These 

issues have imposed challenges on utilizing the far servers of 

cloud computing environment for processing and storing 

such huge data. So, rather than moving data to the cloud, it 

may be more practical to process tasks near IoT devices or 

smart vehicles [6]. 

 To conquer these drawbacks, a fog computing paradigm 

has emerged to provide computation and storage facilities 

close to data sources and users to reduce network congestion 

and the response time. Fog computing is also known as a 

cloud at the edge, fogging, or edge computing. The fog 

computing infrastructure is decentralized and located 

between the data source and the cloud [7]. This makes it 

suitable for handling delay-sensitive applications tasks. Fog 

computing supplies several benefits that make it a non-
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frivolous extension of the cloud, such as, supporting low-

latency applications and real-time interactions, location 

awareness, and mobility support [8].  

 Recently, researchers interested in studying the 

employment of a large number of parked and slow-moving 

vehicles, especially in urban areas to improve system 

performance and reduce response time, by applying the 

vehicular fog computing (VFC) architecture [9]. VFC is a 

promising model aims to reduce response time to a minimum 

by exploiting limited resources of vehicles that are parked or 

moving at slow or medium speed [10]. Vehicles in the VFC 

system provide its resources such as computing and storage 

capacity to serve its neighbors [11]. In other words, vehicles 

within VFC system operate in a collaborative way. 

 According to the task specifications, the simple tasks can 

be executed by vehicles while the delay-sensitive ones are 

offloaded to the high capabilities Road Side Units (RSUs) 

servers. In addition, when a task requires intensive 

computation and cannot be executed by fog nodes within a 

deadline time, it is better to be offloaded to the unlimited 

capabilities cloud servers [12]. Although the use of high-

specification servers in the cloud and fog improves the user 

experience and reduces latency, at the same time, this 

increases the amount of energy consumption. 

 The task offloading in the VFC environment has been 

considered as an NP-hard optimization problem, where 

determining the best task offloading decision requires an 

efficient algorithm that can deal with such high complexity 

and a large size problem. In recent literature, there have been 

several studies focused on utilizing heuristic and meta-

heuristic algorithm to find the best task offloading solution 

by making the best tradeoff between different conflicting 

optimization objectives like latency and energy consumption 

under deadline and budget constraints. However, these 

studies have mostly considered the task execution in the 

cloud and fog, not considered the energy consumption of 

vehicles. Neither did they carefully address the transmission 

path to the destination node. The selection of the place where 

a task is processed along with a proper path for task 

transmission has a very high impact on offloading 

performance. 

 In this paper, a multi-objective evolutionary algorithm 

(MOEA/D) for task offloading optimization of VFC system 

is adopted to reduce both energy consumption and latency by 

considering the task transmission time and energy under 

deadline constraint. The vehicles' abilities for task execution 

and transmission are exploited, so the well-known Dijkstra's 

algorithm is adopted to find the shortest route for task 

transmission over vehicles. The major contributions of this 

paper are summarized below: 

 A three layers architecture is proposed, consisting of the 

vehicular layer, the RSUs layer which contains several 

RSUs distributed along the road, and the top layer where 

the Macro Base station (MBS) that has high capabilities 

and located in the center of the road where this station 

works to find the optimum solutions for offloading [13]. 

  The RxV-MOC model is proposed. In this model, RSUs 

and elite vehicles are used for task execution. The path 

to transfer the task is chosen according to the place 

where the task is executed. This means, if the destination 

is an RSU, this task is transmitted over RSUs, while if 

the destination is a vehicle, this task is transmitted over 

vehicles. 

 The MOEA/D algorithm is adopted to achieve task 

offloading optimization in fog computing by 

minimizing energy consumption and latency for the 

VFC system by utilizing both RSUs and vehicles for 

task computation and transmission. 

 In order to find the best path for task transmission in the 

vehicles layer taking into consideration both energy 

consumption and latency, the well-known Dijkstra 

algorithm is adopted. 

 Evaluation the performance of the proposed method by 

comparing to multi-objective computation offloading 

(MOC) method, First-Fit algorithm, and Best-Fit 

algorithm. 

 The rest parts of this paper are as follows: Section II 

states the literature works related to task offloading 

optimization. Section III describes the system architecture, 

exhibits the proposed task offloading method. Section IV 

described the problem formulation details and MOEA/D 

algorithm. Section V discusses the results obtained by the 

simulation; the paper is concluded in section VI. 

II.  RELATED WORKS 

Task offloading is considered as one of the most critical 

issues in the VFC system, due to its significance in making 

decisions concerning where to process the vehicle tasks and 

how to allocate the resources for computation. Kumar et al. 

[14] presented a survey of literature related to task 

offloading. They discussed different types of algorithms used 

to distribute and offload programs to save energy or improve 

performance and described why computation offloading is 

important for limited resources devices. Zhu et al. [15] 

discussed the importance of determining whether a task 

offloading is useful or not and introduced a fog computing 

model and an offloading policy. 

 Chang et al. [16] investigated the problem of energy-

efficient optimization. They worked to optimize both the 

offloading process and transmission power for the mobile 

devices in a fog computing system for the sake of decreasing 

the energy consumption with a delay constraint. Ning et al. 

[17] constructed an energy-efficient scheduling framework 

for balancing the offloading among RSUs. They focused on 

reducing the total energy consumption of RSUs with delay 

constraints, but they ignored the energy consumption of 

vehicles. A model of fog computing and an offloading policy 

was proposed by Zhu et al. [15]. This proposed offloading 

policy considered the completion time and energy 

consumption with the constraint of the charges of execution 

data in the cloud. However, only the energy consumption of 

task offloading and feedback result was considered, while 

the energy consumption during task transmission and 

execution was neglected The idea of utilizing parked 
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vehicles was proposed by Liu et al. [18] to improve the 

performance of VANET. Then, a VFC paradigm which is 

based on utilizing parked and moving vehicles as fog 

infrastructures was proposed in [9] to improve the capability 

of communication and computation. Similarly, Wang et al. 

[19] designed an offloading algorithm for average response 

time reduction in fog-based IoV systems, where they used 

moving and parked vehicles as fog nodes. However, these 

researchers did not address the energy aspects. 

 Recently, Xu et al. [20] proposed a multi-objective 

computation offloading method (MOC) to minimize the 

energy consumption and the task execution time with the 

constraints of the load balancing and the ensuring of IoV 

data’s trustworthiness. This model utilized vehicles for task 

transmission only and all the computation is performed by 

RSUs. Although the proposed method achieved 

improvement in energy consumption, the downsides of MOC 

are threefold; First, it did not involve the vehicles in the task 

processing. Second, the shortest path was not clearly 

addressed. Third, transmission energy was not considered 

when computing the total energy consumption. Although the 

current studies achieved acceptable performance in the field 

of task offloading optimization, the best transmission path, 

which ensures low time and energy consumption, still 

requires further investigation. This paper targets reducing the 

energy consumption and latency to complete the generated 

tasks by offloading and balancing the tasks among RSUs and 

vehicles. 

III.  SYSTEM MODEL 

 In this section, the three layers of VFC system are 

described. 

1. MBS layer: the management layer which is exemplified 

by MBS in the center of the road. The coverage area of 

MBS is sufficiently broad to reach all vehicles. MBS 

hosts the proposed MOEA algorithm, also hosts two 

data bases The first database contains information about 

RSUs (Id, coverage area, computational capacity, ready 

time, channel state, etc.). The second database provides 

vehicle details (Id, location, velocity, computational 

capability, wireless communication range, etc.). These 

data bases are updated periodically, so that MBS is fully 

aware of the system status. 

2. RSUs layer: consists of a number of RSUs distributed 

along the unidirectional road. The set of RSUs is 

denoted as ℛ = {𝑅𝑆𝑈1, … , 𝑅𝑆𝑈𝑛, … , 𝑅𝑆𝑈𝑁}, and the set 

of indices is denoted as 𝒩 = {1, … , 𝑛, … , 𝑁}. The road 

is divided into 𝑁 segments with the same size according 

to the coverage radius of RSUs. A vehicle can 

communicate wirelessly with 𝑅𝑆𝑈𝑛  only when it is 

located in segment 𝑛. 

3. Vehicular network layer: consist of a number of vehicles 

travelling in the same direction. The set of vehicles is 

denoted as  𝒱 = {𝑣1, … , 𝑣𝑚, … , 𝑣𝑀}  and the set of 

indices is denoted as ℳ = {1, … , 𝑚, … , 𝑀} . Each 

vehicle will generate one task. The set of tasks is 

denoted as 𝒯 = {𝑡1, … , 𝑡𝑚, … , 𝑡𝑀} . A task 𝑡𝑚  is 

characterized by two features, the data size which is 

denoted by 𝒹𝑚 and maximum tolerable delay which is 

denoted by 𝓉𝑚 . Fig. 1 shows the system architecture, 

Fig. 1 shows the system architecture, where fog 

computing is represented by the management layer and 

RSUs layer. 

  

Fig. 1: System Architecture. 

  

 The MBS selects an elite of vehicles which is located in 

the middle of the road and along it. Employs this elite as a 

fog nodes and exploitation their resources for task 

computation. The set of elite of vehicles is denoted as ℰ =
{𝑒𝑣1, … , 𝑒𝑣𝑥 , … , 𝑒𝑣𝑋} and the set of indices is denoted as 𝜒 =
{1, … , 𝑥, … , 𝑋}. The set of fog nodes which is used for tasks 

computation is denoted as ℱ𝒩 = {𝑓𝑛1, … , 𝑓𝑛𝑓 , … , 𝑓𝑛𝐹} 

where 𝐹 = 𝑁 + 𝐸 and is denoted as ℱ = {1, … , 𝑓, … , 𝐹}. In 

this work, when a vehicle 𝑣𝑚 generates a task 𝑡𝑚, the latter 

asks the MBS for the best execution node and the best 

transmission path to the destination node by sending the 

computational requirement of the task (𝒹𝑚 and 𝓉𝑚). Then, 

the MBS assigns the task appropriate fog node 𝑓𝑛𝑓 so the 

task is executed with minimum energy consumption and 

latency. If 𝑓𝑛𝑓  is a vehicle, 𝑡𝑚  will be transferred to 𝑓𝑛𝑓 

over the vehicles network. If 𝑓𝑛𝑓 is an RSU, then 𝑡𝑚 will be 

transferred over RSUs. Afterwards, the MBS will inform the 

vehicle 𝑣𝑚 with the decision of task offloading by sending 

the ID of 𝑓𝑛𝑓 and the path for delivering the task to 𝑓𝑛𝑓, as 

well as the path for delivering the result to concerned vehicle 

𝑣𝑛 . This work aim to reduce latency and the energy 

consumption for both RSUs and vehicles by offloading and 

balancing the tasks among ℛ and 𝒱. Table 1 summaries the 

mathematical variables used in this work.  
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TABLE 1. 

 Important Notations. 

Notation Variable 

Individual  Ɲ 

Initial population Þ 
Crossover  Probability Ç 

Mutation Probability ɱ  

Probability of choosing the fog node 

for processing 

Ŕ  

Individual length IL 

Population size Z 

Number of RSU 𝒩 

Number of vehicles, Number of tasks ℳ, 𝒯 

Number of vehicles selected for tasks 

execution 
𝜒 

Bandwidth of an RSU 𝐵𝑅𝑆𝑈 

Bandwidth of an vehicle 𝐵𝑉 

Computational capacity of RSUs 𝐶𝑛
𝑅𝑆𝑈 

Computational capacity of vehicles 𝐶𝑔𝑜𝑎𝑙
𝑉  

Data size of a task 𝒹𝑚 

Data size of a result 𝒹𝑚
′  

Execution energy of  RSUs 𝐸𝐸𝑛
𝑅𝑆𝑈 

Execution energy of vehicles 𝐸𝐸𝑚
𝑉  

Maximum tolerable delay of a task 𝓉𝑚 

Transmission energy of RSUs 𝑇𝐸𝑅𝑆𝑈 

Transmission energy of vehicles  𝑇𝐸𝑉 

Velocity of vehicles  𝑉𝑚
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

 

Wireless communication of RSUs 𝑊𝑅𝑆𝑈 

Wireless communication of vehicles 𝑊𝑉 

IV. TASK OFFLOADING PROBLEM FORMULATION AND 

MOEA/D ALGORITHM 

 Generally speaking, real-world problems require 

satisfying multiple objectives at the same time. However, the 

optimization of one objective predominantly degrades at 

least another objective. The introduced problem of task 

offloading optimization in this thesis combines two antithetic 

objective functions to provide the VFC system with a set of 

solutions. Each of these solutions can perfectly map the tasks 

to the proper vehicles and RSU nodes, such that the required 

objectives are satisfied. This section presents how the 

MOEA/D algorithm is adopted for the task offloading 

problem. 

 The MOEA/D algorithm is utilized for the task 

offloading problem, such that, each individual in the meta-

algorithm adopted in this study is represented as a vector 

with a length equals to the number of generated tasks. For 

the sake of simplicity, it has been assumed that each vehicle 

generates one task at a time, thus the total number of 

generated tasks equals the total number of vehicles and they 

are used interchangeably in the coming sections. Each gene 

represents a task generated by a vehicle, while its content 

identifies where this task will be executed. 

 

A. The Initial Population 

 In this sub-section, the initial population Þ is described 

where the formation of the initial population can be derived 

as: 

 Þp,g = rand[1,F]   (1) 

where 𝑝 ∈ {1,2, … , 𝑍}, 𝑔 ∈ {1,2, … , 𝐼𝐿}, and Þ ={Ɲ1, Ɲ2,…, 

ƝZ} 

Ɲz represents the zth chromosome in the initial population. 

Algorithm 1 illustrates generation steps of the initial 

population for the proposed method. 

 

Algorithm1 Generation of Initial Population 

Input: ℛ, 𝒱, Z, IL, Ŕ 

Output: Initial population Þ 

Begin  

Fog-Node = ∅; 

for P ← 1  to Z do  

for 𝑚 ← 1  to IL do  

generate a random value 𝓇; 

if 𝓇 ≤  Ŕ then 

Fog-Node = an Id selected from ℛ randomly;  

else 

Fog-Node = an Id selected from ℰ randomly; 

endif 

ÞP,𝑛 = Fog-Node; 

endfor 

endfor 

Return Þ 

END 

 

 B. Fitness Evaluation 

 In general, the meta-heuristic algorithms satisfy single or 

multi-objective requirements based on the case at hand. As 

previously indicated, the target of the proposed method is to 

minimize both the total energy and latency. Algorithm 2 

illustrates the calculation of both latency and energy in 

fitness evaluation for the proposed method. 

 The objective function gauges the quality of each individual 

as follows: 

 

1) Latency Measurement 

 The latency can be defined as the total amount of time 

required for the task completion which constitutes task 

transmission, task waiting time in the queue, task execution, 

and task result 

feeding back. Before deriving these terms, it is necessary to 

define the following identifiers: 

- vsrc: is the source vehicle that generates the task. 

- vdst: is the vehicle where the task is executed. 

- rdst: is the RSU where the task is executed. 

- snrst: is the nearest RSU to vsrc. 

Using these identifiers, the main terms of the latency 

objective are derived below:  

The offloading time (𝑇𝑜𝑓𝑓𝑙) is the time required to offload 

the task 𝑡𝑚 from the source vehicle (vsrc) to the nearest RSU 

(snrst), and can be expressed as: 
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 𝑇𝑜𝑓𝑓𝑙𝑡𝑚 =
𝐼𝑚

𝐵𝑉2𝐼         (2) 

If the destination node (rdst or vdst) is far from vsrc, the 

task should be transmitted, over RSUs or vehicles, according 

to the place where the task is executed. The transmission time 

(𝑇𝑡𝑟𝑎𝑛𝑠) can be generally expressed as: 

 𝑇𝑡𝑟𝑎𝑛𝑠𝑠𝑟𝑐2𝑑𝑠𝑡
𝑡𝑚 = ∑

𝐼𝑚

𝐵𝑊

𝐻

1
       (3) 

where src and dst are either RSUs or vehicles, 𝐻 represents 

the total hop count between src and dst nodes, and 𝐵𝑊 is 

𝐵𝑅𝑆𝑈  or 𝐵𝑉. 

The required time for the task completion encompasses the 

waiting time (𝑇𝑤𝑎𝑖𝑡), which is the time that a task must wait 

until the resources get ready, plus the time consumption for 

the task execution, which are expressed as: 

 𝑇𝑒𝑥𝑒𝑐𝑑𝑠𝑡
𝑡𝑚 =

𝐼𝑚

𝐶𝑑𝑠𝑡
            (4) 

 𝑇𝑤𝑎𝑖𝑡𝑑𝑠𝑡
𝑡𝑚 = ∑ 𝑇𝑒𝑥𝑒𝑐𝑑𝑠𝑡

𝑡𝑖
𝑡𝑑

𝑖=1
        (5) 

where 𝑪𝒅𝒔𝒕  represents the computation capability of the 

destination node which is either an RSU (𝑪𝒓𝒅𝒔𝒕
𝑹𝑺𝑼 ) or a vehicle 

(𝑪𝒗𝒅𝒔𝒕
𝑽 ), and 𝒕𝒅 represents the number of tasks in the queue 

of the destination node that are waiting for their turn to be 

executed.  

The task result 𝒕𝒏
′  should be transmitted to vsrc over RSUs 

or vehicles. Before that, the new location of vehicle after 𝒕𝒏 

is finished should be found to determine the transmission 

path of 𝒕𝒏
′  which may be the same path of 𝒕𝒏 transmitting or 

may change. The vehicle location is determined depending 

on the vehicle location when it offloaded the task, the task 

transmission time, the task waiting time, the task execution 

time, the task result feeding back time, and the vehicle 

velocity. 

If 𝑡𝑛 is executed by an RSU, 𝑡𝑛
′  should be transmitted to 

the nearest RSU for the new location of vsrc. The 

downloading time to the vsrc can be expressed as shown in 

Eq. 6. If 𝑡𝑛  is executed by a vehicle, 𝑡𝑛
′  is transmitted 

normally to vsrc without any need for downloading process. 

 𝑇𝑑𝑜𝑤𝑛𝑡𝑚
′

=
𝐼𝑚

′

𝐵𝐼2𝑉                            (6) 

Accordingly, the total time for the proposed model can be 

obtained as follow: 

In this model, if the task 𝑡𝑛 is executed by an RSU, the 

total time consists of offloading 𝑡𝑛 to snrst, transmitting 𝑡𝑛 

to rdst, waiting for resources to get ready, executing 𝑡𝑛 , 

transmitting 𝑡𝑛
′  to snrst, downloading 𝑡𝑛

′  to vsrc. This can be 

expressed as: 

 𝑇𝑡𝑜𝑡𝑎𝑙𝑟𝑑𝑠𝑡
𝑡𝑚 = 𝑇𝑜𝑓𝑓𝑙𝑡𝑚 + 𝑇𝑡𝑟𝑎𝑛𝑠𝑠𝑛𝑟𝑠𝑡2𝑟𝑑𝑠𝑡

𝑡𝑚 +

                          𝑇𝑤𝑎𝑖𝑡𝑟𝑑𝑠𝑡
𝑡𝑚 + 𝑇𝑒𝑥𝑒𝑐𝑟𝑑𝑠𝑡

𝑡𝑚 +

                          𝑇𝑡𝑟𝑎𝑛𝑠𝑟𝑑𝑠𝑡2𝑠𝑛𝑟𝑠𝑡
𝑡𝑚

′

+ 𝑇𝑑𝑜𝑤𝑛𝑡𝑚
′

.      (7) 

While if 𝑡𝑛 is executed by a vehicle the total time consists of 

transmitting 𝑡𝑛  to vdst, waiting for resources to get ready, 

executing 𝑡𝑛, and transmitting 𝑡𝑛
′  back to vsrc as follow:  

 𝑇𝑡𝑜𝑡𝑎𝑙𝑣𝑑𝑠𝑡
𝑡𝑚 =   𝑇𝑡𝑟𝑎𝑛𝑠𝑣𝑠𝑟𝑐2𝑣𝑑𝑠𝑡

𝑡𝑚 + 𝑇𝑤𝑎𝑖𝑡𝑣𝑑𝑠𝑡
𝑡𝑚 +

𝑇𝑒𝑥𝑒𝑐𝑣𝑑𝑠𝑡
𝑡𝑚   𝑇𝑡𝑟𝑎𝑛𝑠𝑣𝑑𝑠𝑡2𝑠𝑛𝑟𝑠𝑡

𝑡𝑚
′

    (8) 

To get the accurate minimum latency for one task, the total 

time consumption for each fog node must be calculated 

whether it was an RSU or a vehicle. the following objectives 

should be satisfied: 

 𝑚𝑖𝑛 ∑ ∑ 𝑇𝑡𝑜𝑡𝑎𝑙𝑗
𝑡𝑖𝐹

𝑗=1
𝑀
𝑖=1 ,       (9) 

 𝑠. 𝑡. {
𝐸𝑞. (7), 𝐸𝑞. (8),

𝑇𝑡𝑜𝑡𝑎𝑙𝑗
𝑡𝑖 ≤ 𝓉𝑖 .

      (10) 

2) Energy Measurement 

 The total energy consumption is the total amount of 

energy that is consumed for a task completion, which 

constitutes transmission energy, execution energy and result 

feedback energy. These terms can be generally expressed as 

follows: 

The offloading energy (𝐸𝑜𝑓𝑓𝑙) is the energy consumption 

for offloading 𝑡𝑛 to the nearest RSU, and can be expressed 

as: 

 𝐸𝑜𝑓𝑓𝑙𝑡𝑚 = 𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑 × 𝑇𝑜𝑓𝑓𝑙𝑡𝑚.     (11) 

The transmission energy ( 𝐸𝑡𝑟𝑎𝑛𝑠 ) is the energy 

consumption for transmitting 𝑡𝑛 to the destination node over 

RSUs and vehicles, can be expressed as: 

 𝐸𝑡𝑟𝑎𝑛𝑠𝑠𝑟𝑐2𝑑𝑠𝑡
𝑡𝑚 = 𝑇𝐸 × 𝑇𝑡𝑟𝑎𝑛𝑠𝑠𝑟𝑐2𝑑𝑠𝑡

𝑡𝑚     (12) 

where src and dst are the source and destination nodes which 

can be either an RSU or a vehicle, and 𝑇𝐸  is the energy 

consumption of either RSUs (𝑇𝐸𝑅𝑆𝑈) or vehicles (𝑇𝐸𝑉) for 

transmission. 

The execution energy (𝐸𝑒𝑥𝑒𝑐) is the energy consumption 

for executing 𝑡𝑛 by RSUs or vehicles, can be expressed as: 

 𝐸𝑒𝑥𝑒𝑐𝑑𝑠𝑡
𝑡𝑚 = 𝐸𝐸 × 𝑇𝑒𝑥𝑒𝑐𝑑𝑠𝑡

𝑡𝑚      (13) 

where 𝑑𝑠𝑡 is the node where the task gets execution, and 𝐸𝐸 

is the energy consumption of either RSU (𝐸𝐸𝑟𝑑𝑠𝑡
𝑅𝑆𝑈) or vehicle 

(𝐸𝐸𝑣𝑑𝑠𝑡
𝑉 ) for processing. 

The downloading energy can be expressed as shown in Eq. 

12. If 𝑡𝑛 is executed by a vehicle, 𝑡𝑛
′  is transmitted to vsrc. 

 𝐸𝑑𝑜𝑤𝑛𝑡𝑚
′

= 𝐸𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 × 𝑇𝑑𝑜𝑤𝑛𝑡𝑚
′

    (14) 
The total energy consumption for the proposed models can 

be obtained as follow: 

In this model, the total amount of energy consumption for 

𝒕𝒏 execution and transmission by RSUs is calculated as: 

 𝐸𝑡𝑜𝑡𝑎𝑙𝑟𝑑𝑠𝑡
𝑡𝑚 = 𝑜𝑓𝑓𝑙𝑡𝑚 + 𝐸𝑡𝑟𝑎𝑛𝑠𝑠𝑛𝑟𝑠𝑡2𝑟𝑑𝑠𝑡

𝑡𝑚 +

                         𝐸𝑒𝑥𝑒𝑐𝑟𝑑𝑠𝑡
𝑡𝑚 + 𝐸𝑡𝑟𝑎𝑛𝑠𝑟𝑑𝑠𝑡2𝑠𝑛𝑟𝑠𝑡

𝑡𝑚
′

+

                        𝐸𝑑𝑜𝑤𝑛𝑡𝑚
′

.    (15) 

While, the total amount of energy consumption for 𝒕𝒏 

execution and transmission by vehicle is calculated as: 

 𝐸𝑡𝑜𝑡𝑎𝑙𝑣𝑑𝑠𝑡
𝑡𝑚 = 𝐸𝑡𝑟𝑎𝑛𝑠𝑣𝑠𝑟𝑐2𝑣𝑑𝑠𝑡

𝑡𝑚 + 𝐸𝑒𝑥𝑒𝑐𝑣𝑑𝑠𝑡
𝑡𝑚 +

                          𝐸𝑡𝑟𝑎𝑛𝑠𝑣𝑑𝑠𝑡2𝑠𝑛𝑟𝑠𝑡
𝑡𝑚

′

 .   (16) 
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Algorithm 2 The Fitness Evaluation 

Input: Ɲz, 𝐼𝐿, ℛ, V, 𝒯 

Output: Latency and Energy of Ɲz 

Begin 

 𝑚 = ∅, g = ∅, Latency = 0, Energy = 0; 

for 𝑛 ← 1 to IL do  

𝑚 = the content of gene numbered 𝑛;  

if 𝑚 is an RSU’s Id then 

calculate 𝑇𝑡𝑜𝑡𝑎𝑙𝑚
𝑛  and 𝐸𝑡𝑜𝑡𝑎𝑙𝑚

𝑛  based on Eq. 7 and Eq. 

15; 

 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 + 𝑇𝑡𝑜𝑡𝑎𝑙𝑚
𝑛 ; 

𝐸𝑛𝑒𝑟𝑔𝑦 = 𝐸𝑛𝑒𝑟𝑔𝑦 + 𝐸𝑡𝑜𝑡𝑎𝑙𝑚
𝑛 ; 

 else 

calculate 𝑇𝑡𝑜𝑡𝑎𝑙𝑚
𝑛  and 𝐸𝑡𝑜𝑡𝑎𝑙𝑚

𝑛  based on Eq. 8 and Eq. 

16; 

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 + 𝑇𝑡𝑜𝑡𝑎𝑙𝑚
𝑛 ; 

𝐸𝑛𝑒𝑟𝑔𝑦 = 𝐸𝑛𝑒𝑟𝑔𝑦 + 𝐸𝑡𝑜𝑡𝑎𝑙𝑚
𝑛 ;  

endif 

endfor 

Return 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 and 𝐸𝑛𝑒𝑟𝑔𝑦 of Ɲz 

End 

 

To obtain the minimum energy consumption for one task 

execution. For each fog node (an RSU or a vehicle), the total 

energy consumption must be calculated, the following 

objectives should be satisfied:  

 𝑚𝑖𝑛 ∑ ∑ 𝐸𝑡𝑜𝑡𝑎𝑙𝑗
𝑡𝑖𝐹

𝑗=1
𝑀
𝑖=1 ,    (17) 

 𝑠. 𝑡. {
𝐸𝑞. (15), 𝐸𝑞. (16),

𝑇𝑡𝑜𝑡𝑎𝑙𝑗
𝑡𝑖 ≤ 𝓉𝑖 .

         (18) 

 

C. Crossover Operation  

 This operation is responsible for forming a new 

individual (Child) by integrating the genetic information of 

two elected solutions. 

 𝐶ℎ𝑖𝑙𝑑𝑖 = {
𝐼𝑛𝑑𝑖

1 𝑟𝑎𝑛𝑑𝑖  ≤ Ç

𝐼𝑛𝑑𝑖
2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      (19) 

where Ç is the crossover probability. Algorithm.3 illustrate 

the crossover operation.  

Algorithm 3 The Crossover Operation 

Input:Ɲ1, Ɲ2, IL, Ç  

Output: new individual (Child) 

Begin 

Child =∅; 

for 𝑛 ← 1 to IL do  

generate a random value Ƴ;  

if Ƴ ≤ Ç then 

Child[ 𝑛] = the content of gene t of Ɲ1[𝑛]; 
else 

Child[ 𝑛] = the content of gene t of Ɲ2[ 𝑛]; 
endif 

perform the fitness evaluation of Child based on 

Algorithm 2; 

endfor  

Return Child 

End 

D. Mutation Operation 

 The fundamental function that aids in the exploration of 

the entire search space and forbidding the population from 

falling in a local optimal solution. In this operation, a random 

modification to one or more gene values is done in an attempt 

to generate a better solution from the original solution that 

resulted from the crossover operation. In all proposed 

models, the mutation operation depends on the value of the 

mutation probability ɱ. For each gene, a random value is 

generated first. After that, this generated value is compared 

with ɱ. Gene content will be replaced if and only if the 

random value is less than or equal to ɱ. 

 If the fog node which executes the task is an RSU, then 

the gene content is randomly replaced by another RSU. But 

if the fog node is a vehicle, then the gene content will be 

randomly replaced by another vehicle. After that, the 

generated solution is examined to confirm whether the gene 

replacement process had a positive effect and produced a 

better solution than the previous solution or not. If the 

resulting solution is best than the original solution and 

satisfies the deadline condition, the replacement will be 

approved. Otherwise, the original solution will be restored 

and the replacement process is canceled. The mutation 

operation is illustrated in Algorithm 4. 

 

Algorithm 4 The Mutation Operation  

Input: 𝐼𝐿,  Ɲ𝑧, ɱ  

Output: Enhanced individual Ɲ′𝑧
 

Begin 

 L = latency of  Ɲ𝑧, E = energy of  Ɲ𝑧, Ɲ′𝑧
=  Ɲ𝑧; 

for 𝑛 ← 1 to 𝐼𝐿 do 

generate a random value 𝔶; 

if 𝔶 ≤  ɱ then 

fn = the content of gene numbered 𝑛;  

if (fn is an RSU) then 

new-fn= Id selected from ℳ randomly, where new-fn ≠ 

fn;  

else 

new-fn = Id selected from ℰ randomly, where new-fn ≠ 

fn;  

endif 

Ɲ′𝒛
[𝑛] = new-fn; 

perform the fitness evaluation for Ɲ′𝑧
 based on 

Algorithm 2.3; 

if ((𝑇𝑡𝑜𝑡𝑎𝑙 of  Ɲ′𝑧
[𝑛] > 𝐷𝑡) &&( 𝑇𝑡𝑜𝑡𝑎𝑙 of  Ɲ′𝑧

> 

𝑇𝑡𝑜𝑡𝑎𝑙 of Ɲ𝑧… 

     || 𝐸𝑡𝑜𝑡𝑎𝑙 of Ɲ′𝑧
>  𝐸𝑡𝑜𝑡𝑎𝑙 of Ɲ𝑧)) then 

   Ɲ′𝑧
[𝑛] = Ɲ𝑧[𝑛] 

endif 

endif 

endfor 

Return Ɲ′𝑧
 

End 
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V. NUMERICAL RESULT 

 In this section, the performance of the proposed 

algorithm is evaluated. In addition to MOC method, two 

basic offloading methods First-Fit and Next-Fit are 

employed against our proposed algorithm for comparison 

analysis. Then, the numerical results are introduced. These 

models and MOC model are implemented in Matlab Ten 

systems for each model with different entities and task 

specifications are used, such that, every system is executed 

ten times. It is necessary to mention that the population size 

is 100, the system generations is set also to 100, Ç, ɱ, and Ŕ 

are set to 0.3, 0.3, and 0.5 respectively. The simulation 

parameters are summarized in Table 2. The comparative 

methods adopted are briefly described as follows: 

 Multi-objective computing offloading (MOC) 

method: this method has been presented by Xu et al. in 

[20]. They proposed a method for computation 

offloading, where the tasks are executed using RSUs. 

While tasks transmission is done through vehicles 

network. Also, they utilized a simple method to find 

shortest path between two vehicles. 

 First Fit in VFC system (First-Fit): the task is 

offloaded to the nearest RSU. In the case of the nearest 

RSU cannot meet the required resources of the task, this 

task is offloaded to nearest RSU for the current RSU. 

This process is repeating until all tasks are offloaded. 

 Best Fit in VFC system (Best-Fit): for each task, 

finding the RSU which can execute this task with 

minimum execution time taking into consideration the 

waiting time. This process is repeating until all tasks are 

offloaded.  

Fig. 2 shows that RxV-MOC method takes less time than 

other methods. This mean, utilizing resources of vehicles for 

the task execution and transmission contribute in minimizing 

latency. There are four parts of time consumption which are, 

transmission time, execution time, waiting time, and 

feedback time. Fig. 3 and 4 show that RxV-MOC method 

consumes less average transmission time and also less 

average feedback time than MOC method, First-Fit and Best-

Fit algorithm. It is noticeable that First-Fit algorithm 

outperform the MOC method which was utilized vehicles for 

task transmission. This lead to a response-delay because the 

transmission capability of vehicles is less than that of RSUs. 

First-Fit algorithm outperform Best-Fit algorithm, because 

the latter focused on execution and waiting time and not 

considered transmission time. 

TABLE 2. 

Simulation parameters. 

Variable Value 

Length of the road 3000 m 

𝒩 6 

ℳ, 𝒯 20-100 

𝜒 5 

𝐵𝑅𝑆𝑈  27 Mbps 

𝐶𝑛
𝑅𝑆𝑈 1 – 4 GHz 

𝐸𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 31.7 dBm 

𝑇𝐸𝑅𝑆𝑈 33 dBm 

𝐸𝐸𝑛
𝑅𝑆𝑈 43 – 49 dBm 

𝑊𝑅𝑆𝑈 250 m 

𝐵𝑉 20 Mbps 

𝐵𝑉2𝐼  2 Mbps 

𝐶𝑛
𝑉 0.5 – 1 GHz 

𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑  31.7 dBm 

𝐸𝐸𝑚
𝑉  36 – 40 dBm 

𝑇EV 14 dBm 

𝑊𝑉 250 m 

𝑉𝑚
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

 30 - 60 Km/h 

𝓉𝑚 10 Sec. 

𝒹𝑚 1 – 256 KB 

𝒹𝑚
′  ≥ 0.5 KB 

𝐵𝑉2𝐼  2 Mbps 

 

 

Fig. 2: Comparison of the average latency of RxV-MOC, MOC, First-Fit, and Best-Fit versus the number of vehicles. 
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Fig 3: Time consumption of the task transmission. 

 

 
Fig. 4: Time consumption of the result feeding back. 

 

Fig. 5 and 6 show that our proposed method consumed 

more time for execution and waiting than other methods. Due 

to the limited computational capacity of vehicles. 

Fig. 7 shows the average energy consumption versus the 

number of vehicles for the proposed method, MOC method, 

First-Fit algorithm, and Best-Fit algorithm. It is noticeable 

that the RxV-MOC method consumes less energy than the 

others. As previously described, the total energy 

consumption consists of energy consumption of 

transmission, energy consumption of execution, and energy 

consumption of result feeding back. 

 

 
Fig. 5: The amount of waiting time. 

 

 
Fig. 6: Time consumption for the task execution. 

 

 

Fig. 7: Comparison of the average energy of RxV-MOC, MOC, First-Fit, and Best-Fit versus the number of vehicles. 
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Fig. 8, 9, and 10 show that the proposed method consumed 

less amount of energy for task transmission, result feeding 

back, and task execution respectively. Because of utilizing 

vehicles resources and application the theory of transport 

according to the place of execution, which contributed 

reducing the energy consumption. The results show that 

utilization vehicles in the VFC system for task transmission 

only does not have a positive effect in terms of reducing 

energy consumption. Our proposed method, MOC method, 

and First-Fit algorithm outperform Best-Fit algorithm, 

because the latter do not consider the energy consumption of 

task transmission and result feeding back. 

 
Fig. 8: Transmission energy consumption. 

 

 
Fig. 9: Feeding back energy consumption. 

 

 
Fig. 10: Execution energy consumption. 

 

Table 3 display a comparison between the proposed 

method (RxV-MOC) and the MOC method 

TABLE 3. 

 A comparison between RxV-MOC and MOC. 

 RxV-MOC MOC 

Reduce latency   

Reduce energy consumption   

Exploitation of the vehicle 

capability for transmission. 

  

Exploitation of the vehicle 

capability for computation. 

  

Considering the 

transmission energy 

  

VI. CONCLUSIONS 

 In this study, the problem of task offloading in VFC is 

revisited. A RxV-MOC method is proposed in an attempt to 

optimize two contradictory objectives, namely latency and 

energy. The well-known multi-objective algorithm 

(MOEA/D) has been adopted for task offloading 

optimization. In addition, an elite of vehicles are utilized as 

fog nodes and made use of their ability to process and 

transfer tasks, Dijkstra's algorithm is adopted in order to find 

the minimum path between two vehicles. The results 

presented in previous section show that our proposed method 

successfully reduces latency on average of 48% and energy 

by 9%. 

 According to the obtained results, RxV-MOC method 

consumes more execution and waiting time than others. 

Enhancing the performance of the proposed method in terms 

of execution and waiting time is worth further investigations. 

A real dataset can be used to verify the performance of the 

proposed models and more criteria and constraints like cost 

and budget can be investigated. 
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