
Received: 2 March 2021 Revised: 26 March 2021 Accepted: 28 March 2021

DOI: 10.37917/ijeee.17.1.8 Vol. 17 | Issue 1 | June 2021

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.
© 2021 The Authors. Published by Iraqi Journal for Electrical and Electronic Engineering by College of Engineering, University of Basrah.

https://doi.org/10.37917/ijeee.17.1.8 https://www.ijeee.edu.iq 66

Iraqi Journal for Electrical and Electronic Engineering
Original Article

 Open Access

A Light Weight Multi-Objective Task Offloading

Optimization for Vehicular Fog Computing
Sura Khairy Abdullah*, Adnan Jumaa Jabir

Department of Computer Science, College of Science, University of Baghdad, Baghdad, Iraq

Correspondence

*Sura Khairy Abdullah

Department of Computer Science, College of Science,
University of Baghdad, Baghdad, Iraq

Email: sura.kh.abdullah@gmail.com

Abstract

Most Internet of Vehicles (IoV) applications are delay-sensitive and require resources for data storage and tasks processing,

which is very difficult to afford by vehicles. Such tasks are often offloaded to more powerful entities, like cloud and fog servers.

Fog computing is decentralized infrastructure located between data source and cloud, supplies several benefits that make it a

non-frivolous extension of the cloud. The high volume data which is generated by vehicles’ sensors and also the limited

computation capabilities of vehicles have imposed several challenges on VANETs systems. Therefore, VANETs is integrated

with fog computing to form a paradigm namely Vehicular Fog Computing (VFC) which provide low-latency services to mobile

vehicles. Several studies have tackled the task offloading problem in the VFC field. However, recent studies have not carefully

addressed the transmission path to the destination node and did not consider the energy consumption of vehicles.

This paper aims to optimize the task offloading process in the VFC system in terms of latency and energy objectives under

deadline constraint by adopting a Multi-Objective Evolutionary Algorithm (MOEA). Road Side Units (RSUs) x-Vehicles Mutli-

Objective Computation offloading method (RxV-MOC) is proposed, where an elite of vehicles are utilized as fog nodes for tasks

execution and all vehicles in the system are utilized for tasks transmission. The well-known Dijkstra's algorithm is adopted to

find the minimum path between each two nodes. The simulation results show that the RxV-MOC has reduced significantly the

energy consumption and latency for the VFC system in comparison with First-Fit algorithm, Best-Fit algorithm, and the MOC

method.

KEYWORDS: Cloud Computing, Fog Computing, Internet of Vehicle, Intelligent Transportation System, Multi-Objective

Evolutionary Algorithm.

I. INTRODUCTION

The current era is witnessing an increase in the number of

intelligent objects that communicate with each other through

the Internet of things (IoT), to provide many various services

in various life aspects [1]. When these objects are smart cars

and vehicles, then IoT will be called the Internet of vehicles

(IoV) [2]. IoV is the fundamental platform of the intelligent

transportation system (ITS), data are collected from the

environment, stored, and processed through IoV [3].

Recently, the number of smart vehicles and IoV applications

in ITSs has increased. This increase has led to an increase in

the volume of data produced by the sensors of smart vehicles,

where traditional databases cannot process this massive

amount of data. The cloud computing is an operating model

based on the information and communications technology

that can be employed for vehicular network applications.

Although cloud computing has massive resources, in which

cloud servers can effectively address any task, it does not suit

all IoV applications especially those that are delay-sensitive

[4]. Due to two reasons; first, the traffic congestion caused

by processing large amounts of data, second, the

geographical distance between cloud servers and the

vehicular network could cause a response-delay [5]. These

issues have imposed challenges on utilizing the far servers of

cloud computing environment for processing and storing

such huge data. So, rather than moving data to the cloud, it

may be more practical to process tasks near IoT devices or

smart vehicles [6].

 To conquer these drawbacks, a fog computing paradigm

has emerged to provide computation and storage facilities

close to data sources and users to reduce network congestion

and the response time. Fog computing is also known as a

cloud at the edge, fogging, or edge computing. The fog

computing infrastructure is decentralized and located

between the data source and the cloud [7]. This makes it

suitable for handling delay-sensitive applications tasks. Fog

computing supplies several benefits that make it a non-

http://ijeee.edu.iq/Papers/Vol17-Issue1/1570709816.pdf
http://ijeee.edu.iq/Papers/Vol17-Issue1/1570709816.pdf
mailto:sura.kh.abdullah@gmail.com

67 | Abdullah & Jabir

frivolous extension of the cloud, such as, supporting low-

latency applications and real-time interactions, location

awareness, and mobility support [8].

 Recently, researchers interested in studying the

employment of a large number of parked and slow-moving

vehicles, especially in urban areas to improve system

performance and reduce response time, by applying the

vehicular fog computing (VFC) architecture [9]. VFC is a

promising model aims to reduce response time to a minimum

by exploiting limited resources of vehicles that are parked or

moving at slow or medium speed [10]. Vehicles in the VFC

system provide its resources such as computing and storage

capacity to serve its neighbors [11]. In other words, vehicles

within VFC system operate in a collaborative way.

 According to the task specifications, the simple tasks can

be executed by vehicles while the delay-sensitive ones are

offloaded to the high capabilities Road Side Units (RSUs)

servers. In addition, when a task requires intensive

computation and cannot be executed by fog nodes within a

deadline time, it is better to be offloaded to the unlimited

capabilities cloud servers [12]. Although the use of high-

specification servers in the cloud and fog improves the user

experience and reduces latency, at the same time, this

increases the amount of energy consumption.

 The task offloading in the VFC environment has been

considered as an NP-hard optimization problem, where

determining the best task offloading decision requires an

efficient algorithm that can deal with such high complexity

and a large size problem. In recent literature, there have been

several studies focused on utilizing heuristic and meta-

heuristic algorithm to find the best task offloading solution

by making the best tradeoff between different conflicting

optimization objectives like latency and energy consumption

under deadline and budget constraints. However, these

studies have mostly considered the task execution in the

cloud and fog, not considered the energy consumption of

vehicles. Neither did they carefully address the transmission

path to the destination node. The selection of the place where

a task is processed along with a proper path for task

transmission has a very high impact on offloading

performance.

 In this paper, a multi-objective evolutionary algorithm

(MOEA/D) for task offloading optimization of VFC system

is adopted to reduce both energy consumption and latency by

considering the task transmission time and energy under

deadline constraint. The vehicles' abilities for task execution

and transmission are exploited, so the well-known Dijkstra's

algorithm is adopted to find the shortest route for task

transmission over vehicles. The major contributions of this

paper are summarized below:

 A three layers architecture is proposed, consisting of the

vehicular layer, the RSUs layer which contains several

RSUs distributed along the road, and the top layer where

the Macro Base station (MBS) that has high capabilities

and located in the center of the road where this station

works to find the optimum solutions for offloading [13].

 The RxV-MOC model is proposed. In this model, RSUs

and elite vehicles are used for task execution. The path

to transfer the task is chosen according to the place

where the task is executed. This means, if the destination

is an RSU, this task is transmitted over RSUs, while if

the destination is a vehicle, this task is transmitted over

vehicles.

 The MOEA/D algorithm is adopted to achieve task

offloading optimization in fog computing by

minimizing energy consumption and latency for the

VFC system by utilizing both RSUs and vehicles for

task computation and transmission.

 In order to find the best path for task transmission in the

vehicles layer taking into consideration both energy

consumption and latency, the well-known Dijkstra

algorithm is adopted.

 Evaluation the performance of the proposed method by

comparing to multi-objective computation offloading

(MOC) method, First-Fit algorithm, and Best-Fit

algorithm.

 The rest parts of this paper are as follows: Section II

states the literature works related to task offloading

optimization. Section III describes the system architecture,

exhibits the proposed task offloading method. Section IV

described the problem formulation details and MOEA/D

algorithm. Section V discusses the results obtained by the

simulation; the paper is concluded in section VI.

II. RELATED WORKS

Task offloading is considered as one of the most critical

issues in the VFC system, due to its significance in making

decisions concerning where to process the vehicle tasks and

how to allocate the resources for computation. Kumar et al.

[14] presented a survey of literature related to task

offloading. They discussed different types of algorithms used

to distribute and offload programs to save energy or improve

performance and described why computation offloading is

important for limited resources devices. Zhu et al. [15]

discussed the importance of determining whether a task

offloading is useful or not and introduced a fog computing

model and an offloading policy.

 Chang et al. [16] investigated the problem of energy-

efficient optimization. They worked to optimize both the

offloading process and transmission power for the mobile

devices in a fog computing system for the sake of decreasing

the energy consumption with a delay constraint. Ning et al.

[17] constructed an energy-efficient scheduling framework

for balancing the offloading among RSUs. They focused on

reducing the total energy consumption of RSUs with delay

constraints, but they ignored the energy consumption of

vehicles. A model of fog computing and an offloading policy

was proposed by Zhu et al. [15]. This proposed offloading

policy considered the completion time and energy

consumption with the constraint of the charges of execution

data in the cloud. However, only the energy consumption of

task offloading and feedback result was considered, while

the energy consumption during task transmission and

execution was neglected The idea of utilizing parked

 Abdullah & Jabir | 68

vehicles was proposed by Liu et al. [18] to improve the

performance of VANET. Then, a VFC paradigm which is

based on utilizing parked and moving vehicles as fog

infrastructures was proposed in [9] to improve the capability

of communication and computation. Similarly, Wang et al.

[19] designed an offloading algorithm for average response

time reduction in fog-based IoV systems, where they used

moving and parked vehicles as fog nodes. However, these

researchers did not address the energy aspects.

 Recently, Xu et al. [20] proposed a multi-objective

computation offloading method (MOC) to minimize the

energy consumption and the task execution time with the

constraints of the load balancing and the ensuring of IoV

data’s trustworthiness. This model utilized vehicles for task

transmission only and all the computation is performed by

RSUs. Although the proposed method achieved

improvement in energy consumption, the downsides of MOC

are threefold; First, it did not involve the vehicles in the task

processing. Second, the shortest path was not clearly

addressed. Third, transmission energy was not considered

when computing the total energy consumption. Although the

current studies achieved acceptable performance in the field

of task offloading optimization, the best transmission path,

which ensures low time and energy consumption, still

requires further investigation. This paper targets reducing the

energy consumption and latency to complete the generated

tasks by offloading and balancing the tasks among RSUs and

vehicles.

III. SYSTEM MODEL

 In this section, the three layers of VFC system are

described.

1. MBS layer: the management layer which is exemplified

by MBS in the center of the road. The coverage area of

MBS is sufficiently broad to reach all vehicles. MBS

hosts the proposed MOEA algorithm, also hosts two

data bases The first database contains information about

RSUs (Id, coverage area, computational capacity, ready

time, channel state, etc.). The second database provides

vehicle details (Id, location, velocity, computational

capability, wireless communication range, etc.). These

data bases are updated periodically, so that MBS is fully

aware of the system status.

2. RSUs layer: consists of a number of RSUs distributed

along the unidirectional road. The set of RSUs is

denoted as ℛ = {𝑅𝑆𝑈1, … , 𝑅𝑆𝑈𝑛, … , 𝑅𝑆𝑈𝑁}, and the set

of indices is denoted as 𝒩 = {1, … , 𝑛, … , 𝑁}. The road

is divided into 𝑁 segments with the same size according

to the coverage radius of RSUs. A vehicle can

communicate wirelessly with 𝑅𝑆𝑈𝑛 only when it is

located in segment 𝑛.

3. Vehicular network layer: consist of a number of vehicles

travelling in the same direction. The set of vehicles is

denoted as 𝒱 = {𝑣1, … , 𝑣𝑚, … , 𝑣𝑀} and the set of

indices is denoted as ℳ = {1, … , 𝑚, … , 𝑀} . Each

vehicle will generate one task. The set of tasks is

denoted as 𝒯 = {𝑡1, … , 𝑡𝑚, … , 𝑡𝑀} . A task 𝑡𝑚 is

characterized by two features, the data size which is

denoted by 𝒹𝑚 and maximum tolerable delay which is

denoted by 𝓉𝑚 . Fig. 1 shows the system architecture,

Fig. 1 shows the system architecture, where fog

computing is represented by the management layer and

RSUs layer.

Fig. 1: System Architecture.

 The MBS selects an elite of vehicles which is located in

the middle of the road and along it. Employs this elite as a

fog nodes and exploitation their resources for task

computation. The set of elite of vehicles is denoted as ℰ =
{𝑒𝑣1, … , 𝑒𝑣𝑥 , … , 𝑒𝑣𝑋} and the set of indices is denoted as 𝜒 =
{1, … , 𝑥, … , 𝑋}. The set of fog nodes which is used for tasks

computation is denoted as ℱ𝒩 = {𝑓𝑛1, … , 𝑓𝑛𝑓 , … , 𝑓𝑛𝐹}

where 𝐹 = 𝑁 + 𝐸 and is denoted as ℱ = {1, … , 𝑓, … , 𝐹}. In

this work, when a vehicle 𝑣𝑚 generates a task 𝑡𝑚, the latter

asks the MBS for the best execution node and the best

transmission path to the destination node by sending the

computational requirement of the task (𝒹𝑚 and 𝓉𝑚). Then,

the MBS assigns the task appropriate fog node 𝑓𝑛𝑓 so the

task is executed with minimum energy consumption and

latency. If 𝑓𝑛𝑓 is a vehicle, 𝑡𝑚 will be transferred to 𝑓𝑛𝑓

over the vehicles network. If 𝑓𝑛𝑓 is an RSU, then 𝑡𝑚 will be

transferred over RSUs. Afterwards, the MBS will inform the

vehicle 𝑣𝑚 with the decision of task offloading by sending

the ID of 𝑓𝑛𝑓 and the path for delivering the task to 𝑓𝑛𝑓, as

well as the path for delivering the result to concerned vehicle

𝑣𝑛 . This work aim to reduce latency and the energy

consumption for both RSUs and vehicles by offloading and

balancing the tasks among ℛ and 𝒱. Table 1 summaries the

mathematical variables used in this work.

69 | Abdullah & Jabir

TABLE 1.

 Important Notations.

Notation Variable

Individual Ɲ

Initial population Þ
Crossover Probability Ç

Mutation Probability ɱ

Probability of choosing the fog node

for processing

Ŕ

Individual length IL

Population size Z

Number of RSU 𝒩

Number of vehicles, Number of tasks ℳ, 𝒯

Number of vehicles selected for tasks

execution
𝜒

Bandwidth of an RSU 𝐵𝑅𝑆𝑈

Bandwidth of an vehicle 𝐵𝑉

Computational capacity of RSUs 𝐶𝑛
𝑅𝑆𝑈

Computational capacity of vehicles 𝐶𝑔𝑜𝑎𝑙
𝑉

Data size of a task 𝒹𝑚

Data size of a result 𝒹𝑚
′

Execution energy of RSUs 𝐸𝐸𝑛
𝑅𝑆𝑈

Execution energy of vehicles 𝐸𝐸𝑚
𝑉

Maximum tolerable delay of a task 𝓉𝑚

Transmission energy of RSUs 𝑇𝐸𝑅𝑆𝑈

Transmission energy of vehicles 𝑇𝐸𝑉

Velocity of vehicles 𝑉𝑚
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

Wireless communication of RSUs 𝑊𝑅𝑆𝑈

Wireless communication of vehicles 𝑊𝑉

IV. TASK OFFLOADING PROBLEM FORMULATION AND

MOEA/D ALGORITHM

 Generally speaking, real-world problems require

satisfying multiple objectives at the same time. However, the

optimization of one objective predominantly degrades at

least another objective. The introduced problem of task

offloading optimization in this thesis combines two antithetic

objective functions to provide the VFC system with a set of

solutions. Each of these solutions can perfectly map the tasks

to the proper vehicles and RSU nodes, such that the required

objectives are satisfied. This section presents how the

MOEA/D algorithm is adopted for the task offloading

problem.

 The MOEA/D algorithm is utilized for the task

offloading problem, such that, each individual in the meta-

algorithm adopted in this study is represented as a vector

with a length equals to the number of generated tasks. For

the sake of simplicity, it has been assumed that each vehicle

generates one task at a time, thus the total number of

generated tasks equals the total number of vehicles and they

are used interchangeably in the coming sections. Each gene

represents a task generated by a vehicle, while its content

identifies where this task will be executed.

A. The Initial Population

 In this sub-section, the initial population Þ is described

where the formation of the initial population can be derived

as:

 Þp,g = rand[1,F] (1)

where 𝑝 ∈ {1,2, … , 𝑍}, 𝑔 ∈ {1,2, … , 𝐼𝐿}, and Þ ={Ɲ1, Ɲ2,…,

ƝZ}

Ɲz represents the zth chromosome in the initial population.

Algorithm 1 illustrates generation steps of the initial

population for the proposed method.

Algorithm1 Generation of Initial Population

Input: ℛ, 𝒱, Z, IL, Ŕ

Output: Initial population Þ

Begin

Fog-Node = ∅;

for P ← 1 to Z do

for 𝑚 ← 1 to IL do

generate a random value 𝓇;

if 𝓇 ≤ Ŕ then

Fog-Node = an Id selected from ℛ randomly;

else

Fog-Node = an Id selected from ℰ randomly;

endif

ÞP,𝑛 = Fog-Node;

endfor

endfor

Return Þ

END

 B. Fitness Evaluation

 In general, the meta-heuristic algorithms satisfy single or

multi-objective requirements based on the case at hand. As

previously indicated, the target of the proposed method is to

minimize both the total energy and latency. Algorithm 2

illustrates the calculation of both latency and energy in

fitness evaluation for the proposed method.

 The objective function gauges the quality of each individual

as follows:

1) Latency Measurement

 The latency can be defined as the total amount of time

required for the task completion which constitutes task

transmission, task waiting time in the queue, task execution,

and task result

feeding back. Before deriving these terms, it is necessary to

define the following identifiers:

- vsrc: is the source vehicle that generates the task.

- vdst: is the vehicle where the task is executed.

- rdst: is the RSU where the task is executed.

- snrst: is the nearest RSU to vsrc.

Using these identifiers, the main terms of the latency

objective are derived below:

The offloading time (𝑇𝑜𝑓𝑓𝑙) is the time required to offload

the task 𝑡𝑚 from the source vehicle (vsrc) to the nearest RSU

(snrst), and can be expressed as:

 Abdullah & Jabir | 70

 𝑇𝑜𝑓𝑓𝑙𝑡𝑚 =
𝐼𝑚

𝐵𝑉2𝐼 (2)

If the destination node (rdst or vdst) is far from vsrc, the

task should be transmitted, over RSUs or vehicles, according

to the place where the task is executed. The transmission time

(𝑇𝑡𝑟𝑎𝑛𝑠) can be generally expressed as:

 𝑇𝑡𝑟𝑎𝑛𝑠𝑠𝑟𝑐2𝑑𝑠𝑡
𝑡𝑚 = ∑

𝐼𝑚

𝐵𝑊

𝐻

1
 (3)

where src and dst are either RSUs or vehicles, 𝐻 represents

the total hop count between src and dst nodes, and 𝐵𝑊 is

𝐵𝑅𝑆𝑈 or 𝐵𝑉.

The required time for the task completion encompasses the

waiting time (𝑇𝑤𝑎𝑖𝑡), which is the time that a task must wait

until the resources get ready, plus the time consumption for

the task execution, which are expressed as:

 𝑇𝑒𝑥𝑒𝑐𝑑𝑠𝑡
𝑡𝑚 =

𝐼𝑚

𝐶𝑑𝑠𝑡
 (4)

 𝑇𝑤𝑎𝑖𝑡𝑑𝑠𝑡
𝑡𝑚 = ∑ 𝑇𝑒𝑥𝑒𝑐𝑑𝑠𝑡

𝑡𝑖
𝑡𝑑

𝑖=1
 (5)

where 𝑪𝒅𝒔𝒕 represents the computation capability of the

destination node which is either an RSU (𝑪𝒓𝒅𝒔𝒕
𝑹𝑺𝑼) or a vehicle

(𝑪𝒗𝒅𝒔𝒕
𝑽), and 𝒕𝒅 represents the number of tasks in the queue

of the destination node that are waiting for their turn to be

executed.

The task result 𝒕𝒏
′ should be transmitted to vsrc over RSUs

or vehicles. Before that, the new location of vehicle after 𝒕𝒏

is finished should be found to determine the transmission

path of 𝒕𝒏
′ which may be the same path of 𝒕𝒏 transmitting or

may change. The vehicle location is determined depending

on the vehicle location when it offloaded the task, the task

transmission time, the task waiting time, the task execution

time, the task result feeding back time, and the vehicle

velocity.

If 𝑡𝑛 is executed by an RSU, 𝑡𝑛
′ should be transmitted to

the nearest RSU for the new location of vsrc. The

downloading time to the vsrc can be expressed as shown in

Eq. 6. If 𝑡𝑛 is executed by a vehicle, 𝑡𝑛
′ is transmitted

normally to vsrc without any need for downloading process.

 𝑇𝑑𝑜𝑤𝑛𝑡𝑚
′

=
𝐼𝑚

′

𝐵𝐼2𝑉 (6)

Accordingly, the total time for the proposed model can be

obtained as follow:

In this model, if the task 𝑡𝑛 is executed by an RSU, the

total time consists of offloading 𝑡𝑛 to snrst, transmitting 𝑡𝑛

to rdst, waiting for resources to get ready, executing 𝑡𝑛 ,

transmitting 𝑡𝑛
′ to snrst, downloading 𝑡𝑛

′ to vsrc. This can be

expressed as:

 𝑇𝑡𝑜𝑡𝑎𝑙𝑟𝑑𝑠𝑡
𝑡𝑚 = 𝑇𝑜𝑓𝑓𝑙𝑡𝑚 + 𝑇𝑡𝑟𝑎𝑛𝑠𝑠𝑛𝑟𝑠𝑡2𝑟𝑑𝑠𝑡

𝑡𝑚 +

 𝑇𝑤𝑎𝑖𝑡𝑟𝑑𝑠𝑡
𝑡𝑚 + 𝑇𝑒𝑥𝑒𝑐𝑟𝑑𝑠𝑡

𝑡𝑚 +

 𝑇𝑡𝑟𝑎𝑛𝑠𝑟𝑑𝑠𝑡2𝑠𝑛𝑟𝑠𝑡
𝑡𝑚

′

+ 𝑇𝑑𝑜𝑤𝑛𝑡𝑚
′

. (7)

While if 𝑡𝑛 is executed by a vehicle the total time consists of

transmitting 𝑡𝑛 to vdst, waiting for resources to get ready,

executing 𝑡𝑛, and transmitting 𝑡𝑛
′ back to vsrc as follow:

 𝑇𝑡𝑜𝑡𝑎𝑙𝑣𝑑𝑠𝑡
𝑡𝑚 = 𝑇𝑡𝑟𝑎𝑛𝑠𝑣𝑠𝑟𝑐2𝑣𝑑𝑠𝑡

𝑡𝑚 + 𝑇𝑤𝑎𝑖𝑡𝑣𝑑𝑠𝑡
𝑡𝑚 +

𝑇𝑒𝑥𝑒𝑐𝑣𝑑𝑠𝑡
𝑡𝑚 𝑇𝑡𝑟𝑎𝑛𝑠𝑣𝑑𝑠𝑡2𝑠𝑛𝑟𝑠𝑡

𝑡𝑚
′

 (8)

To get the accurate minimum latency for one task, the total

time consumption for each fog node must be calculated

whether it was an RSU or a vehicle. the following objectives

should be satisfied:

 𝑚𝑖𝑛 ∑ ∑ 𝑇𝑡𝑜𝑡𝑎𝑙𝑗
𝑡𝑖𝐹

𝑗=1
𝑀
𝑖=1 , (9)

 𝑠. 𝑡. {
𝐸𝑞. (7), 𝐸𝑞. (8),

𝑇𝑡𝑜𝑡𝑎𝑙𝑗
𝑡𝑖 ≤ 𝓉𝑖 .

 (10)

2) Energy Measurement

 The total energy consumption is the total amount of

energy that is consumed for a task completion, which

constitutes transmission energy, execution energy and result

feedback energy. These terms can be generally expressed as

follows:

The offloading energy (𝐸𝑜𝑓𝑓𝑙) is the energy consumption

for offloading 𝑡𝑛 to the nearest RSU, and can be expressed

as:

 𝐸𝑜𝑓𝑓𝑙𝑡𝑚 = 𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑 × 𝑇𝑜𝑓𝑓𝑙𝑡𝑚. (11)

The transmission energy (𝐸𝑡𝑟𝑎𝑛𝑠) is the energy

consumption for transmitting 𝑡𝑛 to the destination node over

RSUs and vehicles, can be expressed as:

 𝐸𝑡𝑟𝑎𝑛𝑠𝑠𝑟𝑐2𝑑𝑠𝑡
𝑡𝑚 = 𝑇𝐸 × 𝑇𝑡𝑟𝑎𝑛𝑠𝑠𝑟𝑐2𝑑𝑠𝑡

𝑡𝑚 (12)

where src and dst are the source and destination nodes which

can be either an RSU or a vehicle, and 𝑇𝐸 is the energy

consumption of either RSUs (𝑇𝐸𝑅𝑆𝑈) or vehicles (𝑇𝐸𝑉) for

transmission.

The execution energy (𝐸𝑒𝑥𝑒𝑐) is the energy consumption

for executing 𝑡𝑛 by RSUs or vehicles, can be expressed as:

 𝐸𝑒𝑥𝑒𝑐𝑑𝑠𝑡
𝑡𝑚 = 𝐸𝐸 × 𝑇𝑒𝑥𝑒𝑐𝑑𝑠𝑡

𝑡𝑚 (13)

where 𝑑𝑠𝑡 is the node where the task gets execution, and 𝐸𝐸

is the energy consumption of either RSU (𝐸𝐸𝑟𝑑𝑠𝑡
𝑅𝑆𝑈) or vehicle

(𝐸𝐸𝑣𝑑𝑠𝑡
𝑉) for processing.

The downloading energy can be expressed as shown in Eq.

12. If 𝑡𝑛 is executed by a vehicle, 𝑡𝑛
′ is transmitted to vsrc.

 𝐸𝑑𝑜𝑤𝑛𝑡𝑚
′

= 𝐸𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 × 𝑇𝑑𝑜𝑤𝑛𝑡𝑚
′

 (14)
The total energy consumption for the proposed models can

be obtained as follow:

In this model, the total amount of energy consumption for

𝒕𝒏 execution and transmission by RSUs is calculated as:

 𝐸𝑡𝑜𝑡𝑎𝑙𝑟𝑑𝑠𝑡
𝑡𝑚 = 𝑜𝑓𝑓𝑙𝑡𝑚 + 𝐸𝑡𝑟𝑎𝑛𝑠𝑠𝑛𝑟𝑠𝑡2𝑟𝑑𝑠𝑡

𝑡𝑚 +

 𝐸𝑒𝑥𝑒𝑐𝑟𝑑𝑠𝑡
𝑡𝑚 + 𝐸𝑡𝑟𝑎𝑛𝑠𝑟𝑑𝑠𝑡2𝑠𝑛𝑟𝑠𝑡

𝑡𝑚
′

+

 𝐸𝑑𝑜𝑤𝑛𝑡𝑚
′

. (15)

While, the total amount of energy consumption for 𝒕𝒏

execution and transmission by vehicle is calculated as:

 𝐸𝑡𝑜𝑡𝑎𝑙𝑣𝑑𝑠𝑡
𝑡𝑚 = 𝐸𝑡𝑟𝑎𝑛𝑠𝑣𝑠𝑟𝑐2𝑣𝑑𝑠𝑡

𝑡𝑚 + 𝐸𝑒𝑥𝑒𝑐𝑣𝑑𝑠𝑡
𝑡𝑚 +

 𝐸𝑡𝑟𝑎𝑛𝑠𝑣𝑑𝑠𝑡2𝑠𝑛𝑟𝑠𝑡
𝑡𝑚

′

 . (16)

71 | Abdullah & Jabir

Algorithm 2 The Fitness Evaluation

Input: Ɲz, 𝐼𝐿, ℛ, V, 𝒯

Output: Latency and Energy of Ɲz

Begin

 𝑚 = ∅, g = ∅, Latency = 0, Energy = 0;

for 𝑛 ← 1 to IL do

𝑚 = the content of gene numbered 𝑛;

if 𝑚 is an RSU’s Id then

calculate 𝑇𝑡𝑜𝑡𝑎𝑙𝑚
𝑛 and 𝐸𝑡𝑜𝑡𝑎𝑙𝑚

𝑛 based on Eq. 7 and Eq.

15;

 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 + 𝑇𝑡𝑜𝑡𝑎𝑙𝑚
𝑛 ;

𝐸𝑛𝑒𝑟𝑔𝑦 = 𝐸𝑛𝑒𝑟𝑔𝑦 + 𝐸𝑡𝑜𝑡𝑎𝑙𝑚
𝑛 ;

 else

calculate 𝑇𝑡𝑜𝑡𝑎𝑙𝑚
𝑛 and 𝐸𝑡𝑜𝑡𝑎𝑙𝑚

𝑛 based on Eq. 8 and Eq.

16;

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 + 𝑇𝑡𝑜𝑡𝑎𝑙𝑚
𝑛 ;

𝐸𝑛𝑒𝑟𝑔𝑦 = 𝐸𝑛𝑒𝑟𝑔𝑦 + 𝐸𝑡𝑜𝑡𝑎𝑙𝑚
𝑛 ;

endif

endfor

Return 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 and 𝐸𝑛𝑒𝑟𝑔𝑦 of Ɲz

End

To obtain the minimum energy consumption for one task

execution. For each fog node (an RSU or a vehicle), the total

energy consumption must be calculated, the following

objectives should be satisfied:

 𝑚𝑖𝑛 ∑ ∑ 𝐸𝑡𝑜𝑡𝑎𝑙𝑗
𝑡𝑖𝐹

𝑗=1
𝑀
𝑖=1 , (17)

 𝑠. 𝑡. {
𝐸𝑞. (15), 𝐸𝑞. (16),

𝑇𝑡𝑜𝑡𝑎𝑙𝑗
𝑡𝑖 ≤ 𝓉𝑖 .

 (18)

C. Crossover Operation

 This operation is responsible for forming a new

individual (Child) by integrating the genetic information of

two elected solutions.

 𝐶ℎ𝑖𝑙𝑑𝑖 = {
𝐼𝑛𝑑𝑖

1 𝑟𝑎𝑛𝑑𝑖 ≤ Ç

𝐼𝑛𝑑𝑖
2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (19)

where Ç is the crossover probability. Algorithm.3 illustrate

the crossover operation.

Algorithm 3 The Crossover Operation

Input:Ɲ1, Ɲ2, IL, Ç

Output: new individual (Child)

Begin

Child =∅;

for 𝑛 ← 1 to IL do

generate a random value Ƴ;

if Ƴ ≤ Ç then

Child[𝑛] = the content of gene t of Ɲ1[𝑛];
else

Child[𝑛] = the content of gene t of Ɲ2[𝑛];
endif

perform the fitness evaluation of Child based on

Algorithm 2;

endfor

Return Child

End

D. Mutation Operation

 The fundamental function that aids in the exploration of

the entire search space and forbidding the population from

falling in a local optimal solution. In this operation, a random

modification to one or more gene values is done in an attempt

to generate a better solution from the original solution that

resulted from the crossover operation. In all proposed

models, the mutation operation depends on the value of the

mutation probability ɱ. For each gene, a random value is

generated first. After that, this generated value is compared

with ɱ. Gene content will be replaced if and only if the

random value is less than or equal to ɱ.

 If the fog node which executes the task is an RSU, then

the gene content is randomly replaced by another RSU. But

if the fog node is a vehicle, then the gene content will be

randomly replaced by another vehicle. After that, the

generated solution is examined to confirm whether the gene

replacement process had a positive effect and produced a

better solution than the previous solution or not. If the

resulting solution is best than the original solution and

satisfies the deadline condition, the replacement will be

approved. Otherwise, the original solution will be restored

and the replacement process is canceled. The mutation

operation is illustrated in Algorithm 4.

Algorithm 4 The Mutation Operation

Input: 𝐼𝐿, Ɲ𝑧, ɱ

Output: Enhanced individual Ɲ′𝑧

Begin

 L = latency of Ɲ𝑧, E = energy of Ɲ𝑧, Ɲ′𝑧
= Ɲ𝑧;

for 𝑛 ← 1 to 𝐼𝐿 do

generate a random value 𝔶;

if 𝔶 ≤ ɱ then

fn = the content of gene numbered 𝑛;

if (fn is an RSU) then

new-fn= Id selected from ℳ randomly, where new-fn ≠

fn;

else

new-fn = Id selected from ℰ randomly, where new-fn ≠

fn;

endif

Ɲ′𝒛
[𝑛] = new-fn;

perform the fitness evaluation for Ɲ′𝑧
 based on

Algorithm 2.3;

if ((𝑇𝑡𝑜𝑡𝑎𝑙 of Ɲ′𝑧
[𝑛] > 𝐷𝑡) &&(𝑇𝑡𝑜𝑡𝑎𝑙 of Ɲ′𝑧

>

𝑇𝑡𝑜𝑡𝑎𝑙 of Ɲ𝑧…

 || 𝐸𝑡𝑜𝑡𝑎𝑙 of Ɲ′𝑧
> 𝐸𝑡𝑜𝑡𝑎𝑙 of Ɲ𝑧)) then

 Ɲ′𝑧
[𝑛] = Ɲ𝑧[𝑛]

endif

endif

endfor

Return Ɲ′𝑧

End

 Abdullah & Jabir | 72

V. NUMERICAL RESULT

 In this section, the performance of the proposed

algorithm is evaluated. In addition to MOC method, two

basic offloading methods First-Fit and Next-Fit are

employed against our proposed algorithm for comparison

analysis. Then, the numerical results are introduced. These

models and MOC model are implemented in Matlab Ten

systems for each model with different entities and task

specifications are used, such that, every system is executed

ten times. It is necessary to mention that the population size

is 100, the system generations is set also to 100, Ç, ɱ, and Ŕ

are set to 0.3, 0.3, and 0.5 respectively. The simulation

parameters are summarized in Table 2. The comparative

methods adopted are briefly described as follows:

 Multi-objective computing offloading (MOC)

method: this method has been presented by Xu et al. in

[20]. They proposed a method for computation

offloading, where the tasks are executed using RSUs.

While tasks transmission is done through vehicles

network. Also, they utilized a simple method to find

shortest path between two vehicles.

 First Fit in VFC system (First-Fit): the task is

offloaded to the nearest RSU. In the case of the nearest

RSU cannot meet the required resources of the task, this

task is offloaded to nearest RSU for the current RSU.

This process is repeating until all tasks are offloaded.

 Best Fit in VFC system (Best-Fit): for each task,

finding the RSU which can execute this task with

minimum execution time taking into consideration the

waiting time. This process is repeating until all tasks are

offloaded.

Fig. 2 shows that RxV-MOC method takes less time than

other methods. This mean, utilizing resources of vehicles for

the task execution and transmission contribute in minimizing

latency. There are four parts of time consumption which are,

transmission time, execution time, waiting time, and

feedback time. Fig. 3 and 4 show that RxV-MOC method

consumes less average transmission time and also less

average feedback time than MOC method, First-Fit and Best-

Fit algorithm. It is noticeable that First-Fit algorithm

outperform the MOC method which was utilized vehicles for

task transmission. This lead to a response-delay because the

transmission capability of vehicles is less than that of RSUs.

First-Fit algorithm outperform Best-Fit algorithm, because

the latter focused on execution and waiting time and not

considered transmission time.

TABLE 2.

Simulation parameters.

Variable Value

Length of the road 3000 m

𝒩 6

ℳ, 𝒯 20-100

𝜒 5

𝐵𝑅𝑆𝑈 27 Mbps

𝐶𝑛
𝑅𝑆𝑈 1 – 4 GHz

𝐸𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 31.7 dBm

𝑇𝐸𝑅𝑆𝑈 33 dBm

𝐸𝐸𝑛
𝑅𝑆𝑈 43 – 49 dBm

𝑊𝑅𝑆𝑈 250 m

𝐵𝑉 20 Mbps

𝐵𝑉2𝐼 2 Mbps

𝐶𝑛
𝑉 0.5 – 1 GHz

𝐸𝑜𝑓𝑓𝑙𝑜𝑎𝑑 31.7 dBm

𝐸𝐸𝑚
𝑉 36 – 40 dBm

𝑇EV 14 dBm

𝑊𝑉 250 m

𝑉𝑚
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

 30 - 60 Km/h

𝓉𝑚 10 Sec.

𝒹𝑚 1 – 256 KB

𝒹𝑚
′ ≥ 0.5 KB

𝐵𝑉2𝐼 2 Mbps

Fig. 2: Comparison of the average latency of RxV-MOC, MOC, First-Fit, and Best-Fit versus the number of vehicles.

0

10

20

30

40

50

20 30 40 50 60 70 100

L
a

te
n

cy
 (

S
ec

)

Number of vehicles

RxV-MOC MOC First_Fit Best_Fit

73 | Abdullah & Jabir

Fig 3: Time consumption of the task transmission.

Fig. 4: Time consumption of the result feeding back.

Fig. 5 and 6 show that our proposed method consumed

more time for execution and waiting than other methods. Due

to the limited computational capacity of vehicles.

Fig. 7 shows the average energy consumption versus the

number of vehicles for the proposed method, MOC method,

First-Fit algorithm, and Best-Fit algorithm. It is noticeable

that the RxV-MOC method consumes less energy than the

others. As previously described, the total energy

consumption consists of energy consumption of

transmission, energy consumption of execution, and energy

consumption of result feeding back.

Fig. 5: The amount of waiting time.

Fig. 6: Time consumption for the task execution.

Fig. 7: Comparison of the average energy of RxV-MOC, MOC, First-Fit, and Best-Fit versus the number of vehicles.

0

10

20

30

40

50

20 30 40 50 60 70 100

T
ra

n
m

is
si

o
n

 t
im

e
(s

ec
)

Numbet of vehicles

RxV-MOC

MOC

First_Fit

Best_Fit

0

20

40

60

80

100

120

140

160

20 30 40 50 60 70 100

fe
e
d

b
a

ck
 t

im
e

(m
s)

Number of vehicles

RxV-MOC

MOC

First-Fit

Best_Fit

0

50

100

150

200

250

300

350

20 30 40 50 60 70 100

W
a

it
in

g
 t

im
e

(m
s)

Number of vehicles

RxV-MOC
MOC
First_Fit
Best_Fit

0

10

20

30

40

50

60

70

80

20 30 40 50 60 70 100

E
x
ec

u
ti

o
n

 t
im

e
(m

s)

Number of vehicles

RxV-MOC
MOC
First_Fit
Best_Fit

0

5

10

15

20

25

30

35

40

45

50

20 30 40 50 60 70 100

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
d

B
m

)

Number of vehicles

RxV-MOC MOC First_Fit Best_Fit

 Abdullah & Jabir | 74

Fig. 8, 9, and 10 show that the proposed method consumed

less amount of energy for task transmission, result feeding

back, and task execution respectively. Because of utilizing

vehicles resources and application the theory of transport

according to the place of execution, which contributed

reducing the energy consumption. The results show that

utilization vehicles in the VFC system for task transmission

only does not have a positive effect in terms of reducing

energy consumption. Our proposed method, MOC method,

and First-Fit algorithm outperform Best-Fit algorithm,

because the latter do not consider the energy consumption of

task transmission and result feeding back.

Fig. 8: Transmission energy consumption.

Fig. 9: Feeding back energy consumption.

Fig. 10: Execution energy consumption.

Table 3 display a comparison between the proposed

method (RxV-MOC) and the MOC method

TABLE 3.

 A comparison between RxV-MOC and MOC.

 RxV-MOC MOC

Reduce latency

Reduce energy consumption

Exploitation of the vehicle

capability for transmission.

Exploitation of the vehicle

capability for computation.

Considering the

transmission energy

VI. CONCLUSIONS

 In this study, the problem of task offloading in VFC is

revisited. A RxV-MOC method is proposed in an attempt to

optimize two contradictory objectives, namely latency and

energy. The well-known multi-objective algorithm

(MOEA/D) has been adopted for task offloading

optimization. In addition, an elite of vehicles are utilized as

fog nodes and made use of their ability to process and

transfer tasks, Dijkstra's algorithm is adopted in order to find

the minimum path between two vehicles. The results

presented in previous section show that our proposed method

successfully reduces latency on average of 48% and energy

by 9%.

 According to the obtained results, RxV-MOC method

consumes more execution and waiting time than others.

Enhancing the performance of the proposed method in terms

of execution and waiting time is worth further investigations.

A real dataset can be used to verify the performance of the

proposed models and more criteria and constraints like cost

and budget can be investigated.

CONFLICT OF INTEREST

 The authors have no conflict of relevant interest to this

article.

REFERENCES

[1] C. Puliafito, E. Mingozzi, F. Longo, A. Puliafito, and O.

Rana, "Fog computing for the internet of things: A

Survey," ACM Transactions on Internet Technology

(TOIT), vol. 19, pp. 1-41, 2019.

[2] M. N. Sadiku, M. Tembely, and S. M. Musa, "Internet of

vehicles: An introduction," International Journal of

Advanced Research in Computer Science and Software

Engineering, vol. 8, p. 11, 2018.

[3] J. Kang, R. Yu, X. Huang, and Y. Zhang, "Privacy-

preserved pseudonym scheme for fog computing

supported internet of vehicles," IEEE Transactions on

Intelligent Transportation Systems, vol. 19, pp. 2627-

2637, 2017.

[4] I. B. Lahmar and K. Boukadi, "Resource Allocation in

Fog Computing: A Systematic Mapping Study," in 2020

Fifth International Conference on Fog and Mobile Edge

Computing (FMEC), 2020, pp. 86-93.

0

10

20

30

40

50

60

20 30 40 50 60 70 100

T
ra

n
m

is
si

o
n

 e
n

er
g

y
 (

d
B

m
)

Number of vehicles

RxV-MOC MOC First_Fit Next_Fit

0

5

10

15

20

25

20 30 40 50 60 70 100

F
ee

d
b

a
ck

 e
n

er
g

y
 (

d
B

m
)

Number of vehicles

RXV-MOC MOC First_Fit Next_Fit

-20

-15

-10

-5

0

20 30 40 50 60 70 100

E
x
ec

u
ti

o
n

 e
n

er
g

y

(d
B

m
)

Number of vehicles

RxV-MOC MOC First_Fit Next_Fit

75 | Abdullah & Jabir

[5] M. N. Abdulredha, A. A. Bara'a, and A. J. Jabir,

"Heuristic and Meta-Heuristic Optimization Models for

Task Scheduling in Cloud-Fog Systems: A Review,"

Iraqi Journal for Electrical And Electronic Engineering,

vol. 16, 2020.

[6] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, "On

reducing IoT service delay via fog offloading," IEEE

Internet of Things Journal, vol. 5, pp. 998-1010, 2018.

[7] R. K. Naha, S. Garg, D. Georgakopoulos, P. P.

Jayaraman, L. Gao, Y. Xiang, et al., "Fog Computing:

Survey of trends, architectures, requirements, and

research directions," IEEE access, vol. 6, pp. 47980-

48009, 2018.

[8] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, "Fog

computing and its role in the internet of things," in

Proceedings of the first edition of the MCC workshop on

Mobile cloud computing, 2012, pp. 13-16.

[9] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen,

"Vehicular fog computing: A viewpoint of vehicles as the

infrastructures," IEEE Transactions on Vehicular

Technology, vol. 65, pp. 3860-3873, 2016.

[10] S.-s. Lee and S. Lee, "Resource Allocation for Vehicular

Fog Computing using Reinforcement Learning

Combined with Heuristic Information," IEEE Internet of

Things Journal, 2020.

[11] L. M. Vaquero and L. Rodero-Merino, "Finding your way

in the fog: Towards a comprehensive definition of fog

computing," ACM SIGCOMM Computer

Communication Review, vol. 44, pp. 27-32, 2014.

[12] M. N. Abbas, A. A. Bara'a, and N. J. Kadhim,

"Evolutionary Based Set Covers Algorithm with Local

Refinement for Power Aware Wireless Sensor Networks

Design," Iraqi Journal of Science, pp. 1959-1966, 2018.

[13] P. Liu, J. Li, and Z. Sun, "Matching-based task offloading

for vehicular edge computing," IEEE Access, vol. 7, pp.

27628-27640, 2019.

[14] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, "A survey

of computation offloading for mobile systems," Mobile

networks and Applications, vol. 18, pp. 129-140, 2013.

[15] Q. Zhu, B. Si, F. Yang, and Y. Ma, "Task offloading

decision in fog computing system," China

Communications, vol. 14, pp. 59-68, 2017.

[16] Z. Chang, Z. Zhou, T. Ristaniemi, and Z. Niu, "Energy

efficient optimization for computation offloading in fog

computing system," in GLOBECOM 2017-2017 IEEE

Global Communications Conference, 2017, pp. 1-6.

[17] Z. Ning, J. Huang, and X. Wang, "Vehicular fog

computing: Enabling real-time traffic management for

smart cities," IEEE Wireless Communications, vol. 26,

pp. 87-93, 2019.

[18] N. Liu, M. Liu, W. Lou, G. Chen, and J. Cao, "PVA in

VANETs: Stopped cars are not silent," in 2011

Proceedings IEEE INFOCOM, 2011, pp. 431-435.

[19] X. Wang, Z. Ning, and L. Wang, "Offloading in Internet

of vehicles: A fog-enabled real-time traffic management

system," IEEE Transactions on Industrial Informatics,

vol. 14, pp. 4568-4578, 2018.

[20] X. Xu, R. Gu, F. Dai, L. Qi, and S. Wan, "Multi-objective

computation offloading for internet of vehicles in cloud-

edge computing," Wireless Networks, pp. 1-19, 2019.

