
Received: 3 January 2021 Revised: 20 February 2021 Accepted: 29 February 2021

DOI: 10.37917/ijeee.17.1.4 Vol. 17| Issue 1| June 2021

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.
© 2021 The Authors. Published by Iraqi Journal for Electrical and Electronic Engineering by College of Engineering, University of Basrah.

https://doi.org/10.37917/ijeee.17.1.4 https://www.ijeee.edu.iq 29

Iraqi Journal for Electrical and Electronic Engineering
Original Article

 Open Access

Encoding JSON by using Base64

Mohammed Thakir Shaamood

College of Arts, Al-Iraqia University, Iraq

Correspondence

*Mohammed Thakir Shaamood

College of Arts, Al-Iraqia University, Iraq
Email: m4alani1@gmail.com

Abstract

Transmitting binary data across a network should generally avoid transmitting raw binary data over the medium for several

reasons, one would be that the medium may be a textual one and may not accept or correctly handle raw bitstream, another

would be that some protocols may misinterpret the meaning of the bits and causes a problem or even loss of the data. To make

the data more readable and would avoid misinterpretation by different systems and environments, this paper introduces

encoding two of the most broadly used data interchange formats, XML and JSON, into the Base64 which is an encoding scheme

that converts binary data to an ASCII string format by using a radix-64 representation. This process, will, make the data more

readable and would avoid misinterpretation by different systems and environments.

 The results reflect that encoding data in Base64 before the transmission will present many advantages including readability

and integrity, it will also enable us to transmit binary data over textual mediums, 7 Bit protocols such as SMTP, and different

network hardware without risking misinterpretation.

KEYWORDS: JSON, Base64, Encoding, Binary, XML.

I. INTRODUCTION

 The technical foundation of the Web is constantly

evolving [1]. Exchanging multiple information formats

mainly depends on web services so as to exchange more

thoughts like a search engine, information by the web

services, mobile information, enterprise application, XML

(Extensible Markup Language) and JSON (JavaScript Object

Notation). Data interchange formats are considered an

influencing factor in data serialization, in terms of the

performance and rate of data transfer. JSON structure is

similar to the type model of the essential java scripting

programming language which gives it many features like,

flexibility, independent text format and it is easy to use [2].

Technology is evolving rapidly. From AI to geo-targeting

and automation, along with other advancements in

information technology has set the stage for more

technological evolution. Robotics are becoming more

sophisticated, and even our daily appliances can now be

connected to the internet. All of These advancements have

brought many inventions and creations, created new and

easier ways of communications and overall, made life much

easier, these new and emerging technologies have made us

highly dependent on information technology.

Along with these new advancements came new problems,

and the obstacle we are discussing in this paper is one of

efficient transmission of information and data, which is the

backbone of every information system, the goal of every

system is to move the highest possible volume of accurate

information through the multiple layers of the system in the

least possible time while consuming as little processing

overhead as possible, while maintaining the security and

integrity of the data. This can be achieved, in part, by using

an efficient format by which the data can be interchanged.

II. NUMERICAL SYSTEMS

 Numerical data is generated by different computing

sources [3]. Representing and numbering of digits in the

computer mainly done in computer ideology by a number

system and that's digit called "inner " in the computer

system. The computer used the binary system to represent

all kinds of data and information. That means representing

every (value/number) that the user saves or fetching from/

feeding into the computer memory. Computer architecture

supports the following number of systems [3].

 Binary number system (Base 2)

 Octal number system (Base 8)

 Decimal number system (Base 10)

 Hexadecimal number system (Base 16)

Binary System

 The Binary System is represented by a set of 1s and 0s

that represents ON and OFF state respectively, in other

words, it represents the presence of an electrical signal and

lack thereof. Binary is a base 2 system, which means that the

base of the system is only 1 and 0, the first digit is worth 1

decimal value, and the second is worth 2, the third is worth 4

and so on, multiplying by a factor of 2 as you go. The main

motive behind using binary in computer science is Hardware

http://ijeee.edu.iq/Papers/Vol17-Issue1/1570694194.pdf
http://ijeee.edu.iq/Papers/Vol17-Issue1/1570694194.pdf
mailto:m4alani1@gmail.com

30 | Shaamood

limitations and physics, during the early days of computers;

it was very hard to control and measure electrical signal so

precise to represent individual decimal values, so it was

much more logical and feasible to distinguish them within

those two states, ON and OFF. For easier use, every 8 bits in

binary system is grouped into one unit called a Byte, which

can represent decimal values from 1 to 256, you can imagine,

that in large amounts of data, Binary bits will be a lot and

harder to manage and understand, which is one of the

disadvantages of binary system. It is for that reason, the need

arises again for a system that allows grouping of binary

numbers which makes it easier to read, write and understand

in a more human-friendly way, as humans are used to

grouping together numbers and things for easier

understanding. Also, to help in writing in less digits and

lowering the possibility of error occurring [4].

III. DATA INTERCHANGE

 Data interchange between front end and back end is a big

factor in building web applications; the format by which the

data is exchanged is an important determining factor in both

efficiency and functionality of a web application, Common

data exchange formats between Web Front End and Web

Back End in the following subjects [5].

A. Extensible Markup Language (XML)

 XML stands for Extensible Markup Language [6]. XML is

uses encoding format understandable by both humans and

machine for data intended to be published on the web [7].

The main goal of designing XML was to simplify and

standardize data exchange.

XML is explicitly developed to provide World Wide Web

information, much like HTML, the basic language used for

the development of web pages since the start of the web.

Since we already have HTML, which is changing to fulfill

more specifications.

There are two major XML applications: the first is to display

low-level details, example configuration files. The second is

a way to apply metadata to records, for example by playing

italics or bold in a text, you may want to highlight a specific

word.

XML is intended for the first time to replace the conventional

way of viewing data, including the name and value pairs

chart.

The second XML application is close to the working of

HTML. The document text is in an overall jar, the <body>

part, with single phrases surrounded by tags I or . In both

cases, several strategies were developed over the years [8].

Since increased Internet usage and widespread use of

distributed applications especially with components built

and controlled by separate parties, the problem with these

various approaches has become more evident than ever. This

is an intercommunication challenge.

Fig. 1: XML Body

B. Why XML

Extensible Markup Language (XML) has become a data

structure that widely used in web services [8]. HTML uses a

fixed number of elements to describe a default Web page

component. Headers, charts, tables, photographs and

hyperlinks [9] are examples of these components. For eg,

HTML functions well to create a homepage, as in the

example below. (see figure 2):

Fig. 2: Example of HTML Page

Each element starts with a start-tag: a block of text preceded

by a bracket of the left angle (<), followed by a right-angle

bracket (>) which contains the element name and probably

other details. Most elements finish with an end-tag, which is

like the respective start-tag, except that it contains just a slash

(/) character with an element name. The output of the feature

is the text between the beginning and end tag, if any. Note

that several of the elements in the example above have nested

elements (that is, elements within other elements) [9]. When

you create an XML document, you are not restrained by a set

of predefined data tags, instead, you create your own tags and

associate them with names, for that reason, you can use xml

to describe anything starting from a database or and

inventory to objects. In the example below (figure 3), we are

using xml to describe a store inventory

Shaamood | 31

Fig. 3: Xml to Describe a Store Inventory

The name of the element in an XML document (in this case

INVENTORY, Object, PRICE) does not form part of an

XML description. It is important to understand the element

names. You should instead render names for the details.

Fig. 4: XML Inventory Example

As you can see in the example above, an XML database is

organized in a tree hierarchy, which includes elements that

are entirely nestled in other elements and has a single top-

level element (the document element or root node, as in this

example). You can conveniently use XML in order to

describe a hierarchically ordered database, such as products

with costs, numbers and different levels of segment, as

described above the structure of the example XML document

is this.

HTML is the primary language used to tell browsers how to

display information on the Web. XML is used in conjunction

with HTML and expands the websites' capacity to include

almost any sort of information considerably, it’s also used to

sort, filter, arrange, manipulate and Present highly structured

information.

C. Generating and writing XML

 An XML document is modeled as a tree that contains labeled

nodes and a designated root [10]. In the below example, we

will use a python code to generate an XML file that describes

multiple objects with different attributes.

1) We will start with a rectangular object, a circular object,

time object, a human object and a file. the first object (the

rectangle) has the following attributes: (Type, Name,

Width, Height, Gradient, and Color), the color has three

colors (Red, Green, and Blue). The Gradient has sub

features (Start of gradient with three colors Red, Green,

and Blue). End of gradient is the second Gradient sub

feature also with three colors (Red, Green, and Blue).

2) First defining those attributes using a standard nested

dictionary, as shown in the figure below (figure 5):

Fig. 5: Defining the Attributes

Using nested dictionaries is very helpful when generating

an xml file, as it helps us define parent/child relations and

multiple sub attributes within a single general attribute.

3) The same method applies for the other objects; we used

name/value pairs to define each attribute/sub attribute,

as shown in figure below (figure 6):

Fig. 6: Using name/value

4) After defining each object, and assigning its attributes,

we will need to convert these name/value pairs, for that

we will use a module called “dicttoxml”.

5) Then, import the module from python’s library to our

work place, using the “import “command, doing so will

enable us to use classes and methods within the

module.

Fig. 7: Importing the Module.

6) Then import one of the subclasses of the module, called

“parseString”, this class mainly enables the program to

parse and manipulate string values within the

dictionary.

Fig. 8: Using parseString

7) Next, we create an instance of the class “dicttoxml”

within the dicttoxml module file with the dictionary we

created “file” as class attribute, we also instantiated an

32 | Shaamood

object of class parseString which we imported earlier

with the object/instance “xml” as its attribute.

Fig. 9: Using class dicttoxml

Finally, to show the results, we print out the method

“toprettyxml” of the object “dom” to convert and display the

results, the resulting xml file will be as shown below in:

Fig. 10: the produced XML file has a size of about 2.06

MB.

IV. XML RESULTS

 As we have seen in the example above, XML is quite easy

to generate, another benefit of XML is that namespaces and

comments can be helped by putting metadata in tags as

identifiers, manipulating data and measuring data.

XML also has the benefit of viewing it in a readable and

organized fashion by browsers. This formatting is well

provided by XML's tree structure which enables browsers to

naturally crumble individual tree components i.e., strings

that contain organized markups, to express the mixed

material. The programmer only wants the marked-up text to

be placed into a child tag of the parent in which it belongs in

order to use XML. As JSON includes only data, there is no

such easy way to indicate markup, similar to the metadata

situation. Again, metadata will be expected to be stored as

data that could be viewed as format abuse [10]. The XML is

very stable because it uses honesty and authorization

assurance, particularly when debugging. A node marked as a

tree has been defined in the XML data model [11]. In

architecture, on the other hand, XML requires the use of a

rendering app, which means it must be parsed by a sluggish

and bulky text parser. Because of the verbose and costs of

parsing big XML files, many of these DOM manipulation

libraries can contribute to the application using vast

quantities of storage. It's also pretty verbose, indicating a

bigger file size. The XML syntax often parallels other web-

based bookmarking languages, which may contribute to

confusion. JSON (JavaScript Object Notation) is a common

lightweight replacement for XML

V. BASE64

 Base64 [12] is a encoding scheme that converts binary

data to an ASCII string format by using a radix-64

representation. Initially, the algorithm was named as

“printable encoding” and was later changed to “Base64” in

1992. Base64 is one of the algorithms used to encode and

decode data in ASCII format [13]. Base64 is designed for

carrying stored data across channels in binary formats that

only accept text content reliably [14]. Commons of all binary

to text encoding systems are based on Base64. The general

idea is to pick 64 characters widely used to most encoding

and readable to humans and to use in many applications,

including email, [15] by stored complex XML format

database64 files. This will avoid data that were historically

not 8-bit, being changed or lost in transit by information

systems, such as email. "Base64" was developed as the

earliest case of use for dialing communication between

devices running the same operating system and may thus

allow further decisions as to which characters are safe to use.

For eg, unencoding uses upper case letters, numbers, and

various dots, but not fewer [16].

VI. JSON

 JavaScript Object Notation (JSON) is an open-standard

data interchange format [17] that uses human-readable text

to transmit data objects consisting of attribute–value pairs

and array data types. It uses human-readable text to store and

transmit data objects [18]. JSON easy to process by machine

and it is easy to manipulate by a user [19]. Is a data format

that is based on the JavaScript programming language data

types and it gained large popularity among web developers.

JSON is a powerful format for exchanging and publishing

data in many application fields, JSON combines well-known

data structures and XML [15]. Also, JSON became the main

format for the web to exchange data, the executing functions

of the software ordered by remote machines that must

establish a precise protocol for answering and receiving

requests which called Application Programming Interface

(API). It is a language that can be easily understood by the

machines and the developers. Sending API responses and

Shaamood | 33

requests over the (HTTP) protocol because JSON becomes

the most familiar format [20]. Applications can communicate

through a network usually using APIs4, using JSON data

format. The key characteristics of JSON are versatility,

accessibility and high expressivity [21]. JSON is non-

proprietary, compact and technology-agnostic. The

development (serializing), and consumption

(deserialization), of JSON information are provided in all

modern languages and platforms. JSON is easy to create and

consists of elements that serve people such as objects,

dictionaries and pairs of names / values. JSON datasets are

typically collected from distant, unregulated sources with

pieces of unfinished data or schema-free data [6]. Douglas

Crockford was originally developed in 2001 and first

standardized by RFC 4627 under IETF in 2006 [22].

In JSON's development several factors contributed,

including:

 Cessation of JSON-based explosive development of

Restful APIs.

 Keep the essential constructs of JSON in mind.

 JavaScript's growing popularity enhances the popularity

of JSON.

A. Generating and writing JSON

JSON is constructed on two structures: name/value pair set.

The object, record, struct, dictionary, hash table, wrench list,

or related sequence is generally referred to as this in different

languages. A list of values that has been ordered. There are

universal data structures in most languages, also known as an

array, vector, list or sequence. Almost all contemporary

programming languages accept them in one way or another.

It is also prudent to draw on these constructs in a database

format interchangeable with programming languages. The

unordered name/value pairs of a JSON entity. It starts from

the right brace with "{"left strap and ends with"}." The colon

and the name/value pair are divided by comma each name

will obey. (,).

Fig. 11: JSON Object

B. JSON Syntax

 JSON syntax describes a sequence of Unicode code

points. JSON also depends on Unicode in the hex numbers

used in the \u escapement notation [23].

JSON JSON's critical features:

 Object and Array: on the two universal data

structures, JSON is designed

 An object that holds several called value pairs, is

labelled with braces ({}).

A column (:) is used to distinguish names and values for each

pair of names.

Value is divided by commas while some pairs of name-value

(,) (Jiang and Ahmed, 2017).

 We will use python to write, generate and test some features

of JSON file.

1) First, we will need to prepare the objects that we

want to convert into a JSON file following the rules

mentioned above, for the sake of consistency, we will use

the same objects in the XML example (figure (12)

Fig. 12: Using Objects

Objects here are defined as an array, in name/value pairs.

Then, as we did in the earlier XML example, we will need to

import the necessary modules into our python file, In this

case, we will need to import the “json” module, which is one

of python’s standard built-in library modules that is used to

parse, read and write JSON syntax.

2) Next, we will define a function called “convert”, this

function will take two variables as input, first is the “file”

variable which contains the array we want to convert, the

second is called “text file”, which is a file object that we

will be writing JSON output to.

Fig. 13: Using Convert Function

Fig. 14: File Object

3) Next, we will call a function called “dump” within

the class “json” and place it’s outputsin a variable called

“json_string” using our “file” as an attribute. This

function will parse our “file” array and convert it into

JSON format. We will so call the “write” function within

the previously define “text_file” object in order to write

output into the text file.

Fig. 15: Dump Function

4) Up to this stage, this code will convert the string

values into JSON format and write it to a text file. The

produced text file has a size of about 500kb, almost a

quarter of the equivalent XML file.

34 | Shaamood

Fig. 16: Convert the String Values into JSON Format and

Write it to a Text File

5) Next, we will add some extra lines of code to measure

the execution speed of the code and memory usage, to get

some data that will help us in comparison between XML

and JSON. The first module we will use “timeit”, it’s a

standard library module used to find the execution time

of a code snippet.

Fig. 17: Measure the Execution Speed

The other module we used is called “tracemalloc”, this

module will profile the memory allocated for execution of

this code, as shown below (figure 18).

Fig. 18: Tracemalloc Module

VII. JSON RESULTS

 The final result shows that this code took about 3/10000

of a second to execute with peak memory usage of 0.00038

MB, those are much lower values when compared to XML,

which took about 5/1000 of a second to execute with about

0.0042 MB peak memory usage. This is mainly why JSON

is much more efficient over XML and why it is becoming an

industry standard.

Because of it simpler and smaller syntax, JSON is faster to

parse and process as we have seen in the previous examples.

It also has a wide range of support and compatible browsers

and operational systems, which means less workload for a

developer working with it; it is also less verbose, meaning

that it uses much more words than XML which results in

much smaller file size. And has data structures that are very

similar to primitive data structures used by most

programming language.

Another strong point of JSON is faster server-side parsing,

which means that the user will get a faster response from the

back-end processes of the application, It is also more easy to

create and use and is human friendly. On the other hand,

Unlike XML, JSON does not provide display capabilities as

it is not a markup language and cannot include Meta data; it

is also less secure than XML. Also, JSON supports only text

and number data type, which is one of the down sides of

using JSON. One of those issues is the transmission of binary

data over a textual medium. When data is transmitted over a

medium, the data will be viewed in the same format as

expected, we cannot be sure. Any systems can misunderstand

or even drop the most important piece of data. In comparison,

the disparity between system end codes means that the

character 10 and 13 of the ASCII are often altered as well.

Most computers often store 8-bit, but not all, files. Such

transmitting devices and media can accommodate just 7 bits

or less simultaneously. Such a medium can view the stream

in more than 7 bits so you won't get what you want from the

other side if you send 8 bits.

VIII. BINARY DATA AND JSON

 Binary data is not allowed in the JSON format. It is

important to escape binary data to be interpreted as a string

variable (i.e., zero or more Unicode chars with backslash

escapes in double quotes). UTF-8 is available, but it does not

encrypt the UTF-8 binary data as spatially efficient as 150

percent of their initial size.

Incorrect UTF-8 encoding also includes several random

binary byte strings. The advantage of this constraint on UTF-

8 is that multi byte characters start and end whatever byte are

robust and feasible.

As a result, if the byte encoding inside [0...127] only takes

one byte in the UTF-8 encoding, it will take 2 bytes to

encrypt the byte value within the range [128...255]! Worse

than that. Worse than that. Check characters cannot be shown

in a string in JSON. The binary data will thus have to be

accurately encoded for any transformation.

In UTF-8, it is the most space efficient to encode a 128

ASCII value. You will save 7 bits in 8 bits. If the binary data

is then broken down in 7-bit chunks, so that the data encoded

expands to 114% of the original byte in a UTF-8 encoded

Shaamood | 35

string. More than Base64. Better. Sadly, we can't use this

simple trick as certain ASCII chars are not allowed by JSON.

The ASCII (([0...31] and 127) control characters and \ are

excluding, which leaves 128-35 = 93 characters alone.

In principle, we might then describe the Based93 encodes,

which would increase the encoded size to eight/log2(93) =

eight*log10(2)/log10(93) = 122%. But the Base93 encoding

would not be as simple as the Base64 one. Base64 cuts down

in 6bit-chunks the input byte set, which is simple by bit [24].

IX. ENCODING BINARY ELEMENTS WITHIN JSON WITH

BASE64

 To further understand the advantages of using base64

encoding scheme, we will go through the process of

converting a JSON dictionary into, first a binary bit stream

and then into a base64 representation, to achieve this:

• The first step is to start with a JSON file that will contain

an inventory of items with different attributes. First, we

import the “json” module into our environment and parse our

json file using it.

Fig. 19:“json.load” Method to Parse “ourfile.json”

As we can see above, we have used the “json.load” method

to parse “ourfile.json” and convert it into a python

dictionary.

• Using print command to make sure that the elements are

accessible in key/value pair format.

Fig. 20: using print command

Fig. 21: key/value pair format

• Next, the following step is: encode the elements within our

dictionary using basee64 format, it is worth mentioning that

all string values must first be converted first into a string, and

then into bytes objects before it can be encoded using base64,

in this case, we will use “UTF-8” format.

Fig. 22: Using encode Function

• As we can see in the figure above, we used “.encode()”

function to encode the string representation of our value in

a “UTF-8” format.

Fig. 23: Values

• We can also get the size of the encoded string file using

“sys” library, in this case, the resulted string file is 550

bytes in size.

• Next, using the “base64” module to encode our string

representation of a dictionary.

Fig. 24: Encode String Representation

• We used the “b64encode” method inside the “base64”

class to encode our string, we also used the “sys.getsizeof”

standard library method to calculate the size of the string

after encoding, and it resulted in a base64 hash of 729 bytes,

which is roughly 30 percent more than the string file, which

is the standard increase in size when encoding in base64.

Fig. 25Encode String

While it is true that base64 has ~33% expansion rate, it is not

necessarily true that processing overhead is significantly

more than this: it really depends on JSON library/toolkit you

are using. Encoding and decoding are simple straight-

forward operations, and they can even be optimized with

character encoding (as JSON only supports UTF-8/16/32) --

base64 characters are always single-byte for JSON String

entries. For example, on Java platform there are libraries that

36 | Shaamood

can do the job rather efficiently, so that overhead is mostly

due to expanded size.

Base64 is simple, commonly used standard, so it is unlikely

to find something better specifically to use with JSON (base-

85 is used by postscript etc. but benefits are at best marginal)

compression before encoding (and after decoding) may make

lots of sense, depending on data you use.

X. CONCLUSION

 Our findings reflect that encoding data in Base64 prior to

transmission will present many advantages including

readability and integrity, it will also enable us to transmit

binary data over textual mediums, 7 Bit protocols such as

SMTP and different network hardware without risking

misinterpretation. Although data bloating may occur, since

In case of encoding, the Base64 algorithm replaces each 3

bytes with a total of 4 bytes and adds padding characters if

necessary, thereby resulting in a number of four characters

always. The result will always be 33 percent bigger than the

original data (more accurately, 4⁄3). The formula for

calculating the result string length without padding is n*4/3

where n is the original data length. and some extra processing

would be required to encode or decode, my findings shows

that it does not overshadows the aforementioned advantages.

Also, Although XML has been used extensively by the

industry for a long time due to its security and ability to

represent new types of data tags that other markup languages

cannot, it’s also capable of presenting data in an organized,

hierarchal and readable manner. our findings also shows that

JSON has many advantages over XML, and are the reason

why its gradually becoming the standard for interchanging

data between multiple stacks, those advantages include less

verbosity, which translates to smaller file size, which is a

critical component of an efficient system, it also has a

structure that is identical to data types used by developer and,

Unlike XML, doesn’t require an application to parse and

manipulate data, which greatly reduces its processing

overhead. For those reasons, JSON was used to illustrate the

process of encoding JSON strings with Base64.

CONFLICT OF INTEREST

 The authors have no conflict of relevant interest to this

article.

REFERENCES

[1] L. Irshad, L. Yan, and Z. Ma, “Schema-Based JSON

Data Stores in Relational Databases,” J. Database

Manag., vol. 30, no. 3, pp. 38–70, 2019.

[2] M. S. Marev, E. Compatangelo, and W.

Vasconcelos, “Towards a context-dependent

numerical data quality evaluation framework

Technical Report,” arXiv, pp. 1–12, 2018.

[3] A. Olusola Olajide, Number System. Adekunle

Ajasin University, 2017.

[4] S.R.Chaudhari, “Number Systems,” in Principles of

Digital Electronics, 5th ed., Pune: licensed under a

Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International License., 2019.

[5] A. Kelbert, “EMTF XML: New data interchange

format and conversion tools for electromagnetic

transfer functions,” Geophysics, vol. 85, no. 1, pp.

F1–F17, 2020, doi: 10.1190/geo2018-0679.1.

[6] M. K. Yusof and M. Man, “Efficiency of JSON for

data retrieval in big data,” Indones. J. Electr. Eng.

Comput. Sci., vol. 7, no. 1, pp. 250–262, 2017, doi:

10.11591/ijeecs.v7.i1.pp250-262.

[7] Suha Mohammed Hadi, “A New Approach for

Designing Multi Information Management System

Using XML Technology,” Al-khwarizmi Eng. J. ,

vol. 1, no. 1, pp. 46–51, 2005.

[8] C. Späth, C. Mainka, V. Mladenov, and J. Schwenk,

“Sok: XML parser vulnerabilities,” 10th USENIX

Work. Offensive Technol. WOOT 2016, 2016.

[9] B. Li and J. Hu, “Analysis of the HTML to XML

Conversion Method,” no. Isci, pp. 64–69, 2015, doi:

10.2991/isci-15.2015.10.

[10] M. Naseriparsa, C. Liu, M. S. Islam, and R. Zhou,

“XPloreRank: exploring XML data via you may also

like queries,” World Wide Web, vol. 22, no. 4, pp.

1727–1750, 2019, doi: 10.1007/s11280-018-0630-x.

[11] H. Bohring and O. Auer, “Mapping XML to OWL

ontologies,” Lect. Notes Informatics (LNI), Proc. -

Ser. Gesellschaft fur Inform., vol. P-72, pp. 147–156,

2005.

[12] Abdullah A. Abdullah, “Enhancing Cost and

Security of Arabic SMS Messages over Mobile

Phone Network,” AL-Rafidain J. Comput. Sci.

Math., vol. 6, no. 3, pp. 111–127, 2009.

[13] H. Nurdiyanto, R. Rahim, and N. Wulan,

“Symmetric Stream Cipher using Triple

Transposition Key Method and Base64 Algorithm

for Security Improvement,” J. Phys. Conf. Ser., vol.

930, no. 1, 2017, doi: 10.1088/1742-

6596/930/1/012005.

[14] L. Cantara, “METS: The Metadata Encoding and

Transmission Standard,” Cat. Classif. Q., vol. 40,

no. 3–4, pp. 237–253, Sep. 2005, doi:

10.1300/J104v40n03_11.

[15] A. M. Logunleko, K. B. Logunleko, and O. O.

Lawal, “An End-to-End Secured Email System

using Base64 Algorithm,” Int. J. Comput. Appl., vol.

175, no. 28, pp. 1–6, 2020, doi:

10.5120/ijca2020920669.

[16] G. J. Sussman and J. Sussman, “Structure and

interpretation of computer programs, (second

edition),” Comput. Math. with Appl., vol. 33, no. 4,

p. 133, 1997, doi: 10.1016/s0898-1221(97)90051-1.

[17] D. Petković, “JSON Integration in Relational

Database Systems,” Int. J. Comput. Appl., vol. 168,

no. 5, pp. 14–19, 2017, doi:

10.5120/ijca2017914389.

[18] M. B. S. Narayana, H. Khalifa, and W. van der Aalst,

“JXES: JSON support for the XES event log

standard,” arXiv, no. i, 2020.

[19] Jiří Papoušek, “Traffic Flow Processing in JSON

Format,” Spring, 2020.

[20] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D.

Vrgoč, “Foundations of JSON Schema,” in

Shaamood | 37

Proceedings of the 25th International Conference on

World Wide Web, 2016, pp. 263–273, doi:

10.1145/2872427.2883029.

[21] Y. Li, N. R. Katsipoulakis, B. Chandramouli, J.

Goldstein, and D. Kossmann, “Mison: A Fast JSON

Parser for Data Analytics,” Proc. VLDB Endow., vol.

10, no. 10, pp. 1118–1129, Jun. 2017, doi:

10.14778/3115404.3115416.

[22] P. Bourhis, J. L. Reutter, F. Suárez, and D. Vrgoč,

“JSON: Data Model, Query Languages and Schema

Specification,” in Proceedings of the 36th ACM

SIGMOD-SIGACT-SIGAI Symposium on Principles

of Database Systems, 2017, pp. 123–135, doi:

10.1145/3034786.3056120.

[23] ECMA International, “The JSON Data Interchange

Syntax,” Stand. ECMA-404, vol. 2nd Editio, no.

December 2017, p. 8, 2017, [Online]. Available:
http://www.ecma-international.org/publications/standards/Ecma-404.htm.

[24] M. T. Goodrich and R. Tamassia, Data Structures

and Algorithms in Java. 2020.

