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Abstract 

In this paper, the effect of the grating parameters (i.e. gratings length (Lg) and the induced index profile (Δn)); the temperature 

variation (T) and the applied strain change on the fiber Bragg Grating (FBG) 3dB-bandwidth (i.e. full width-half maximum 

(FWHM)) have successfully investigated numerically using MATHCAD software. Results show that for Lg < 7 mm, the FBG 

3dB-bandwidth (i.e. full width-half maximum (FWHM)) value shows a good reliable and visible impact. Otherwise, there are 

no significant effects except for increasing the FBG reflectivity. Also, results show that the FWHM value has affected by the 

change of the Δn value. In contrast, results show that there is no significant effect of the temperature on the FWHM value. 

Also, results shown that the dependence of the Bragg wavelength (λB) upon both strain and temperature variations is lies within 

the range of 0.462 – 0.470 fm με-1 °C-1 

KEYWORDS: FBG bandwidth, optical fiber sensor, temperature and strain sensitivity, Bragg reflectivity.  

 

I.  INTRODUCTION 

The tremendous development in the fiber optic industry 

technology led to a huge revolution in the data transmission 

rate. The availability of communication links with unique 

features such as high reliability, fast performance, and huge 

ability to transmit information with a low-cost bandwidth 

made it a strong competitor [1, 2]. The accelerated advances 

in optical fiber technology have stimulated the development 

of optical fiber sensor technology [3]. This technology 

provides super advantages that do not compare with that 

found in the traditional sensor technology, such as the high 

sensitivity and variety of form factor [4, 5]. The distinctive 

functional characteristics of optical fiber sensors make it to 

the top of sensor technology and replace the well-known 

traditional technologies in a wide range of applications such 

as stress, vibration, electric fields, acceleration, pressure, 

temperature, humidity, viscosity and chemical 

measurements, etc [1, 2]. 

Because of their high dielectric capacity, optical fiber 

sensors are the best in extreme environments such as high 

temperatures and high pressure, as well as in environments 

that contain corrosive substances [6]. In addition, these 

sensors are fully compatible with communication systems 

and have the ability to perform remote sensing tasks with 

high efficiency [7, 8]. 

In recent years, optical fiber sensors-based fiber Bragg 

grating (FBG) have gained the largest share in the sensor 

market due to its many unique advantages such as small size, 

light weight, lack of need for electrical connections, and its 

ability to combat exceptional circumstances [1, 2]. These 

characteristics greatly contribute to showing a good 

performance rate with high sensitivity, accuracy, wide 

dynamic range and excellent efficiency [9, 10]. In addition, 

it is distinguished by its essential immunity to 

electromagnetic interference (EMI), with its rapid ability to 

transmit data with communication systems and widespread 

employment in many applications [1, 2, 11, 12]. 

Due to the structural and design nature of the FBG, which 

makes it highly sensitive to many environmental parameters, 

such as physical, chemical, and electrical variables, makes it 

used in many areas, such as space, energy, marine areas, and 

infrastructure [ 1, 12]. 

Physically, the FBG acts as a wavelength-dependent stop 

band optical filter as a result of a permanent change in the 

refractive index of the fiber core [6, 7, 13-21].  When the 

conditions for the travel mode have met, a new rejection 

window has appeared as a result of the constructive 

interference. This window is known as the Bragg window 

with λB wavelength which is totally dependent on the grating 

period, Λ and the effective refractive index, neff [1, 2]. As a 

result of this dependency, any changes in the Λ value and the 

neff value or in the physical model lead in a shift in the Bragg 

wavelength [8]. This unique behavior of the FBG parameters 

makes them very necessary and useful sensors tools for many 

important applications [1, 2]. For a uniform FBG as in Fig. 

1, the Λ remain constant and the reflected light will be 

maximum at the λB value [1, 2]. 
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Fig. 1: Uniform fiber Bragg gratings [1, 2] 

II. THEORY 

Under the assumption of linear combination for the 

propagation modes, the electric field can give by [22] 
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In Eq. (1), 


kA , 


kA , k and k are represents the 

amplitudes of kth mode in the +z and –z directions, the 

propagation constant and the modal field, respectively. 

According to the coupled mode theory (CMT), the electric 

field equations can be written as [22] 
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Based on the Fig. 1, Equations (2) and (3) are reduced to [22] 
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Where ̂ and  are the dc and ac coupling wave coefficients 

defined as [22] 
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where effn  represents the dc change in the effective 

refractive index, ν is the fringe visibility and φ(z) is the fiber 

gratings chirp. In Equation 6, the factors   and the   are 

defined as [22] 
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By solving equations (4) and (5), the reflectivity of the model 

shown in Fig. 1 is given by [22]  
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III. SENSING IN GRATING FIBER 

The main elements that influence and control the FBG 

properties are the Lg, the Λ and the neff. In contrast, the main 

sensor elements in the gratings fiber are the temperature, the 

strain and the pressure, respectively. Therefore, the sensing 

mechanism works according to the amount of the wavelength 

shifting with a change in any of these parameters [1, 2]. 

 

A. Effect of the Temperature Change  

 

When a change in temperature ΔT is happened, a shift in the 

Bragg wavelength ΔλB will be occur and can describe by [1, 

2] 

  B B T        (11) 

Where, 
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B. Effect of the Strain Change  

 

By changing the applied longitudinal strain Δεz, the shifting 

in the λB will be given by [1, 2] 

 

  1B B e zP      (14) 

 

Where Pe represent the effective strain-optic constant 

defined by [1, 2] 
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Where P11, P12 and υ are the fiber optic strain components 

and the Poisson’s ratio, respectively [1, 2]. 

 

C. Effect of the Pressure Change  

 

By changing the applied pressure, the shifting in the λB is 

obtained by [1, 2] 
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Where E represent the FBG Young’s modulus. 

IV. RESULTS AND DISCUSSION 

In this paper, our analysis based on a uniform FBG single-

mode silica fiber with 1550 nm as shown in Fig. 1 and the all 

typical values used in the simulation are in Ref. [1, 2, 6, 7, 

19]. 

Figure 2 show the effect of grating length (Lg) on the FBG 

full width-half maximum (FWHM) characteristics at 

constant temperature (i.e. at room temperature [19]). As 

shown, when Lg = 1 mm, the FWHM spectra is about 1.6 nm 

and reduced to the 1.52 nm by increasing the Lg to the 2 mm. 

More increasing in the Lg value to the 3 mm leads to reduce 

the 3-dB spectra to the 1.4 nm and has reduced to the 1.28 

nm by increasing the Lg value to the 5 mm. However, this 

behavior of decreasing the FBG FWHM with the increasing 

of the Lg value does not continue, where for Lg ˃ 7 the is no 

significant effect on the 3-dB spectra and is maintained 

approximately at 1.0 nm for more increasing in the Lg value 

until 10 mm. Conversely, the FBG reflectivity has 

significantly affected by the Lg value. Where, it has increased 

approximately from 58% to the 98 % with the increasing of 

the Lg from 1mm to 10mm as shown in Fig.3. 

Figure 4 show the effect of temperature (T) on the grating 

reflectivity for Lg = 10 mm. In this analysis, T has varied 

from 10 oC to To + 10 oC (i.e. To is assumed as a reference 

temperature (i.e. To = 25 oC) [1, 6, 7, 8, 19]). Results shown, 

a shift in the λB by a rate of a 0.12 nm/oC has happened due 

the strong temperature grating refractive index dependence 

[1, 2, 6, 7, 8, 19]. This shifting affected significantly on the 

peak reflected value. In contrast, there is no significant or 

clear effect on the FWHM spectra as shown in Fig. 5 and in 

Fig. 6. This behavior is due to the fact that the change in the 

temperature resulting in a total shift in the reflectivity 

spectrum with constant distance between the first two zeros 

(i.e. FWHM [1, 2]), thereby; the total spectrum do not 

change.  

Fig. 8 shows the effect of fiber refractive index change (Δn) 

on the FBG FWHM characteristics for Lg = 10 mm. It’s 

clearly that the FWHM increases with the increase of the Δn 

value and this increment significantly increases by 

increasing is approximately linear especially for Δn = 0.4 x 

10-4.  

Figure 9 show the effect of strain variation on the λB. Results 

shown that the λB has increasing linearly with the strain 

change and with a rate of 1.2 pm/με. This increasing in the 

λB with the increase of the applied stress will affect the 

system; especially at high stress values, where the shift in the 

wavelength may exceed more than 2 nm. Therefore, the 

stress must be controlled in order any improper case. 

Finally, Fig. 10 shows the effect of both the strain and the 

temperature variations on the Bragg wavelength. Results 

show a clear correlation between the change in both 

temperature and stress on the shift value of Bragg 

wavelength, and this effect may be increase significantly for 

a large temperatures or stress ranges. 
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Fig. 2: Effect of grating length (Lg) on the 3-dB spectra. 
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Fig. 3: Effect of grating length (Lg) on both the FBG 3-dB 

and the peak reflectivity. 
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Fig. 4: Effect of temperature on the grating reflectivity. 
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Fig. 6: Effect of temperature on the 3-dB spectra. 
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Fig. 8: Effect of Δn on the 3-dB spectra. 
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Figure 9: Effect of strain on Bragg wavelength. 

 

V. CONCLUSIONS 

The effects of the grating length (Lg), the fiber refractive 

index change (Δn), the temperature (T) variation and the 

applied strain change are investigated numerically on the 

FBG as a sensor model using MATHCAD software 

successfully. It is found that the FWHM can be increasing by 

optimizing the Lg value and with the increase of the Δn value. 

Thus, for a strong FBG with large FWHM characteristics to 

be achieved, the Lg with 6 mm has to be sufficient and the Δn 

must be as large as possible. Also, results show that by 

changing temperature 50 oC, the tuning value in the λB not 

excited 1 nm. Also, results shown that the dependence of the 

λB upon the strain and the temperature variations is lies 

within the range of 0.462 – 0.470 fm με-1 °C-1.In contrast, 

there is no significant effect on temperature variation on the 

FBG 3-dB value.  
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Fig. 10: Effect of temperature on strain response. 
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