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Abstract 

To gain insight into complex biological endocrine glucose-insulin regulatory system where the interactions of components of 

the metabolic system and time-delay inherent in the biological system give rise to complex dynamics. The modeling has 

increased interest and importance in physiological research and enhanced the medical treatment protocols. This brief contains 

a new model using time delay differential equations, which give an accurate result by utilizing two explicit time delays. The 

bifurcation analysis has been conducted to find the main system parameters bifurcation values and corresponding system 

behaviors. The results found consistent with the biological experiments results. 
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I.  INTRODUCTION 

Diabetes Mellitus (DM) which is commonly known as 

diabetes is one of the most widespread chronic disease that 

the world face nowadays. The number of subjects with 

diabetes in the world is increasing continuously every year. 

International Diabetes Federation (IDF) estimates that 436 

million people around the world live with diabetes 

corresponding to 1-11 of the 20-79 adult population. The 

figure is expected to hit the 700 million people in 2045 [1]. 

Diabetes in fact resulting from malfunctioning in the plasma 

glucose-insulin kinetics, causing abnormal high plasma 

sugar levels known as hyperglycemia. Moreover, due to 

increasing interest in the development of the artificial 

pancreas, the mathematical modeling of the human 

endocrine glucose-insulin regulatory system gained much 

focus and attracted more scientific research to mimic the 

expected mechanism of the endocrine system and determine 

the underlying reasons of diabetes mellitus. Knowledge of 

these models provide a safe and efficient control algorithm 

of the plasma glucose level and enhances control devices, 

which relieve the diabetic subjects. These reasons motivated 

the investigation of mathematical models, which may mimic 

this biological process. Thus, investigating the mathematical 

model is of great importance theologically and practically. 

Both, the theoretical investigation and numerical 

computation of the endocrine glucose-insulin regulatory 

system might enhance the medical treatment protocols and 

enrich the medical insight [2]. Blood glucose level is 

regulated through a negative feedback loop where 

hyperglycemia incites a rapid increase in insulin secreted 

from the β-cell in the pancreas. The increase in the plasma 

insulin level causes increased glucose uptake and decreases 

glucose production by the liver and leads to reduction in 

plasma glucose [3]. Where, this feedback loop keeps the 

glucose concentration in the human body within a narrow 

range following  an overnight fast (70-109 mg/dl), and it is 

known that the basal blood insulin is in the range of (5-10 

µU/ml) [4] and it might be in a wider range (10-40 µU/ml) 

during continuous enteral nutrition [5], and at meal ingestion 

and high glucose level reach (30-150 µU/ml) [4].  

 Two types of oscillation in human glucose-insulin 

interaction have been observed [6], with two different 

periods, a rapid (10-15 min) and slow or ultradian about 

(100-150 min). The cause of the ultradian oscillation in 

human body may be entirely originated by the dynamic 

interaction of glucose-insulin negative feedback regulatory 

system [6]. This oscillation already detected in human body 

at different physiological situations: After meal ingestion [7], 

glucose oral intake [8], through continuous enteral nutrition 

[9] and during constant glucose intravenous infusion [10]. 

These different oscillation patterns are given in Fig. (1) 

adapted from Sturis 1991 [6].  

Many other biological experiments have shown that the 

insulin secretion from β-cell in the pancreas has an 

oscillatory behavior [9], where the periodic secretion of 

hormones are more effective than other types of stimuli such 

as constant or stochastic [11]. This field of vigorous 

interdisciplinary   research    came   into    being   with    the
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pioneering works of Bergman and his co-workers [12,13]. In 

1991 Sturis [6] suggested a mathematical model consisting 

of six nonlinear differential equations to describe the 

glucose-insulin ultradian oscillation, at different glucose 

feeding and showed that the feedback mechanism is the 

underlying source of sustained oscillation however, the 

model includes three non-observable auxiliary variables. 

Topp et al. [3] incorporated the β-cell in the model in 

addition to the glucose and insulin concertation level, the 

model has two stable fixed points representing physiological 

and pathological steady states. Engelborghs in 2001 [14], 

provided a bifurcation analysis of the periodic solution of the 

delay differential equations system represent the glucose-

insulin metabolic system, with discrete time delay. 

Incorporating explicitly two time delays is presented in [15] 

the resulting system consists of three delay differential 

equations with proven positiveness, stability and stability 

using Lyapunov function method. Jiaxu Li [16] proposed 

robust model for endocrine metabolic regulatory system and 

showed the ultradian oscillation with time delay. Two 

compartments model for both glucose and insulin variables 

and incorporating two time delays explicitly is presented in 

[17], their model focuses on the importance of the 

subcutaneous tissues glucose and insulin concertation levels. 

Strike in 2018 [18] provided a qualitative numerical study of 

glucose dynamics in patients with stress hyperglycemia and 

diabetes receiving intermittent and continuous enteral feeds. 

Amit [2] proposed a smooth approximation of the minimal 

model, with linear feedback-based control algorithm.  

 In this paper, we proposed a time delay differential 

equation model to represent the metabolic endocrine 

glucose-insulin regulatory feedback system, two time delays 

have been incorporated explicitly in the model for better and 

more accurate representation of the biological system. The 

model has been analyzed through stability and Hopf 

bifurcation analysis. The effects of varying multiple 

parameters in the system model are presented and different 

system behaviors are captured. The paper organized as 

follow, section II includes the mathematical model analysis, 

Sec. III presents the simulation results and Sec. IV shows the 

final conclusions and future work. 

II. THE MODEL 

The main elements in the glucose-insulin metabolic regulator 

system are shown in the schematic diagram illustrated in Fig. 

(2). The delay differential equations have been used in the 

model to simulate the finite time response of the pancreas (to 

release insulin) and the liver (to secrete glucose) to changing 

conditions   managed   by   the   glucose   insulin   regulatory  

 
Fig. 1 Oscillation of insulin and glucose observed during: (A)  ingestion of three meals; (B) during oral glucose; (C)  during 

continuous enteral nutrition; (D) during constant glucose infusion. These profiles are from 4 different subjects. Data 

smoothed with 2-point moving average. Adapted from Sturis [6]. 
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system. The principle of mass conservation can be described 

as follows:    

 

where it was employed to derive the glucose insulin dynamic 

equations.  

The equations depict the rate of change of the glucose 

concentration,  �̇�(𝑡) and the rate of change of the insulin 

concentration, 𝐼(̇𝑡), which should equal its amount produced 

minus the amount cleared. The glucose production, 𝐺𝑝(𝑡), 

glucose utilization, 𝐺𝑢(𝑡) , insulin production, 𝐼𝑝(𝑡) , and 

insulin clearance, 𝐼𝑐(𝑡), are defined by a set of highly non-

linear functions (𝑓1 through 𝑓6): 

 

𝐺𝑝(𝑡) = 𝐺𝑖𝑛(𝑡) + 𝑓5(𝐼(𝑡 − 𝜏2)) 

𝐺𝑢(𝑡) = 𝑓2(𝐺(𝑡)) + 𝑓3(𝐺(𝑡))𝑓4(𝐼(𝑡)) 

𝐼𝑝(𝑡) = 𝐼𝑖𝑛(𝑡) + 𝑓1(𝐺(𝑡 − 𝜏2)) 

𝐼𝑐(𝑡) = −𝑑𝑖𝐼(𝑡) − 𝑑𝑖𝑓6(𝐺(𝑡))𝑓7(𝐼(𝑡)) 

(2) 

 
 

𝑓1(𝐺) = 𝑅𝑚/ (1 + 𝑒((𝐶1−𝐺/𝑉𝑔)/𝑎1)), 

𝑓2(𝐺) = 𝑈𝑏 (1 − 𝑒(−𝐺/(𝐶2𝑉𝑔))), 

𝑓3(𝐺) = 𝐺/(𝐶3𝑉𝑔), 

𝑓4(𝐼) = 𝑈0 + (𝑈𝑚 − 𝑈0) 

/ (1 + 𝑒−𝛽𝑙𝑛(𝐼/𝐶4(1/𝑉𝑖+1/(𝐸𝑡𝑖)))) 

𝑓5(𝐺) = 𝑅𝑔/ (1 + 𝑒(𝛼 (𝐼/𝑉𝑝−𝐶5))), 

𝑓6(𝐺) = 𝐺 /(𝐶3𝑉𝑔), 

𝑓7(𝐼) = 𝐼/(10 𝑉𝑝). 

 

(3) 

The functions 𝑓𝑖  where 𝑖 = 1,2, 3, …  5 , which derived 

directly from human physiologic data [11,16], and 𝑓6 and 𝑓7 

are used to represent the insulin degradation which depends 

on glucose, they determine the various components of the 

glucose-insulin regulatory system; the purpose of each 

function is mentioned in Table 1 . Note that 𝐺𝑖𝑛(𝑡) denotes 

the glucose absorption from either enteral nutrition or an 

intravenous source. The 𝐼𝑖𝑛(𝑡)  term represents insulin 

absorption from exogenous source, in this work, it is 

considered no exogenous insulin infusion.  The time delay of 

the    endogenous    insulin   secretion   and  the   time  delay  
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Fig. 2 A schematic diagram for glucose-insulin regulatory system.  

 

�̇�(𝑡) = 𝐺𝑝(𝑡) − 𝐺𝑢(𝑡) 

𝐼(̇𝑡) = 𝐼𝑝(𝑡) − 𝐼𝑢(𝑡) 

 

(1) 
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represented endogenous glucose release are denoted by 𝜏1 

and 𝜏2  respectively. In order to investigate the effect of 

system parameters on the stability of the system and the 

possibility of periodic behavior of the system dynamics, the 

analysis will be as follows:  
 

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑥(𝑡 − 𝜏1), 𝑥(𝑡 − 𝜏2), 𝜃) (4) 

 

where 𝑥(𝑡) ∈ ℝ𝑛, 𝑓: ℝ𝑛∗(𝑚+1) × ℝ𝑘 → ℝ𝑛 and 𝜃 ∈ ℝ𝑘. The 

solution of (4) is not unique function of 𝑥(𝑡) at fixed time 

point due to the dependence on the past history. So, instead 

the initial solution should be specified over an interval of 

time length 𝜏 such that 𝜏 = 𝑚𝑎𝑥𝑖=1,2,..,𝑚{𝜏𝑖}. Then the initial 

function segment belongs to = 𝐶([−𝜏, 0], ℝ𝑛) , the  

infinite dimensional space function mapping the delay 

interval [−𝜏, 0] into ℝ𝑛.  

The equilibrium solution 𝑥(𝑡) ≡ 𝑥∗ ∈ ℝ𝑛  of (4) can be 

evaluated as a solution of the nonlinear system:  

 

𝑓(𝑥1
∗, 𝑥2

∗, 𝜃) = 0 (5) 

 

It is worth noting that 𝑥∗ does not depend on the time delay 

values, but the stability of the steady state solution 𝑥∗ 

depends on the time delays. To find the stability, the system 

(4) linearized about 𝑥∗ to obtain the variational equation as 

follows:  

�̇�(𝑡) = 𝐽0(𝑥∗, 𝜃)𝑦(𝑡) + ∑ 𝐽𝑖(𝑥∗, 𝜃)𝑦(𝑡 − 𝜏𝑖)

𝑚

𝑖=1

, (6) 

where 

 

𝐽𝑖(𝑥∗, 𝜃) =
𝜕𝑓

𝜕𝑥𝑖

(𝑥∗, 𝜃), 𝑖 = 0,1,2, … , 𝑚. (7) 

 

 

 

Then, the characteristic matrix can be written as follows:  

 

Λ(𝜆) = 𝜆𝐼 − 𝐽0(𝑥∗, 𝜃) + ∑ 𝐽𝑖(𝑥∗, 𝜃)𝑒−𝜏𝑖𝜆

𝑚

𝑖=1

 (8) 

The  eigenvalues    of  (8)  can  be   found  by  solving   the 

transcendental polynomial equation:  

 

𝑑𝑒𝑡(Λ(𝜆)) = 0 (9) 

 

where (9) has an infinite number of roots 𝜆  that give the 

stability of the steady state solution 𝑥∗. 

Which mean that all the roots should be in the left hand side, 

and it is unstable otherwise. To ensure the bifurcation of the 

steady state solution with changing some biological 

parameter 𝜃, then the eigenvalues should cross the imaginary 

axis not through the real axis. Therefore, a periodic solution 

arises at the bifurcation point. Assuming that the system (1) 

has a steady state 𝑥∗ = (𝐺∗, 𝐼∗)  then the transcendental 

characteristic equation (9) can be written as follows:  

 

𝜆2 + 𝐴1𝜆 + 𝐴2 + 𝐴3𝑒−𝜆(𝜏1+𝜏2) + A4𝑒−𝜆(𝜏1)

+ 𝐴5𝑒−𝜆(𝜏2)  = 0 
 

(10) 

where 

𝐴1 = −𝑎1 − 𝑎4, 
𝐴2 = 𝑎1𝑎4 − 𝑎2𝑎3, 
𝐴3 = −𝑓1

′(𝐺∗)𝑓5
′(𝐼∗), 

𝐴4 = −𝑎2𝑓1
′(𝐺∗), 

𝐴5 = −𝑎3𝑓5
′(𝐼∗), 

with 

𝑎1 = −𝑓2
′(𝐺∗) − 𝑓3

′(𝐺∗)𝑓4
′(𝐼∗), 

𝑎2 = −𝑓3
′(𝐺∗)𝑓4

′(𝐺∗), 

𝑎3 = −𝑑𝑖𝑓6
′(𝐺∗)𝑓7(𝐼∗), 

𝑎4 = −𝑑𝑖 − 𝑑𝑖𝑓6(𝐺∗)𝑓7
′(𝐼∗). 

 

Then the steady state solution 𝑥∗ losses its stability as the 

eigenvalue real part become positive. So, the stability 

boundary where 𝜆 = 𝑗𝜔, 𝜔 ∈ ℝ+  can be obtained by  

 

 

−𝜔2 + 𝑗𝐴1𝜔 + 𝐴2 + 𝐴5𝑒−𝑗𝜔𝜏2

−𝐴4 − 𝐴3𝑒−𝑗𝜔𝜏2
= 𝑒−𝑗𝜔𝜏1  (11) 

 

So, the solution of the equation (11) can be found by 

intersection of the two curve the first is 𝑒−𝑗𝜔𝜏1  that is 

scanned repeatedly as increasing 𝜔𝜏1. The second curve is  

 the ratio curve given by (12) as shown below: 

 

Which scanned once as 𝜔 increase from 0 to ∞. This curve 

start at the point −(𝐴2 + 𝐴5)/(𝐴3 + 𝐴4)  for 𝜔 = 0 , then 

growth toward the ∞ as 𝜔 → ∞ , and making a spiral around 

the point −(𝐴2 + 𝐴5)/(𝐴3 + 𝐴4) . The spiral form and 

number of intersections with the unit circle change 

depending on the parameter values. 

Table 1 Model Functions Description 

Function 

Name 
Description 

𝑓1(𝐺) Insulin release by pancreas. 

𝑓2(𝐺) Insulin-Independent glucose utilization. 

𝑓3(𝐺)𝑓4(𝐼) Insulin-dependent glucose utilization.  

𝑓5(𝐺) Hepatic glucose production. 

𝑓6(𝐺)𝑓7(𝐼) Glucose-dependent insulin degradation.  

𝐺𝑖𝑛(𝑡) Nutritional source. 

𝐼𝑖𝑛(𝑡) Exogenous insulin 

  

𝐴4 𝜔2 − 𝐴2𝐴4 − 𝐴3𝐴5 − (𝐴4𝐴5 + 𝐴3(𝐴2 − 𝜔2) 𝑐𝑜𝑠 (𝜔𝜏2) + 𝐴1𝐴3 𝑠𝑖𝑛(𝜔𝜏2)

𝐴3
2 + 𝐴4

2 + 2𝐴3𝐴4𝑐𝑜𝑠(𝜔𝜏2)
 

                                        + 𝑗 
−𝐴1𝐴4𝜔 + (𝐴4𝐴5 − 𝐴3(𝐴2 − 𝜔2))𝑠𝑖𝑛(𝜔𝜏2) − 𝐴1𝐴3𝜔𝑐𝑜𝑠(𝜔𝜏2)

𝐴3
2 + 𝐴4

2 + 2𝐴3𝐴4𝑐𝑜𝑠(𝜔𝜏2)
 

(12) 
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III. SIMULATION RESULTS 

Extensive numerical simulation for the system (1) has been 

implemented for the system parameters given in Table 2 to 

capture the variety of system dynamics and behaviors. Fig. 

(3) and Fig. (4) show the time courses of the glucose and 

inulin variables and the corresponding steady state phase 

portrait, which show clearly a limit cycle, for two different 

sets of parameters which show clearly that the proposed 

model ensures sustain oscillation and robust performance for 

wide range of time delay. To demonstrate the system 

dynamics and the evolution of the solutions, four parameters 

will be changed consequently to reveal the Hopf bifurcation  

dynamics.  The   parameters  that  will be chosen are the two 

time delay (𝜏1 and 𝜏2) and the exogenous glucose infusion 

rate 𝐺𝑖𝑛 and the insulin degradation rate 𝑑𝑖. Fig. (5) shows 

the bifurcation diagram and phase portrait for range of values 

of 𝜏1 ∈ [0, 20] . It is clear that the bifurcation point is at 

𝜏1ℎ
= 2.55 𝑚𝑖𝑛 and the amplitude of both variable in this 

case in the accepted range and consistence with the 

biological finding [6,11,16]. 

Sustained oscillation can be observed in the range  𝜏1 ∈
[2.55,20]. Fig. (6) shows the period variation with respect to 

the time delay where oscillation period in the range 
[98, 145] and agree with the experiments. Fig. (7) depicts 

the bifurcation diagram and phase portrait for range of values 

of 𝜏2 ∈ [0,40]. It is clear that the bifurcation point is at 𝜏2ℎ
=

6 𝑚𝑖𝑛 and the amplitude of both variables in this case in the 

accepted range and consistent with the biological finding 

[6,11,16]. Fig. (8) shows the period variation with respect to 

the time delay is in the range [97, 163]  is agree with the 

experiments. To investigate the effect of the glucose infusion 

rate 𝐺𝑖𝑛 on the system behavior, the rate has been changed 

from 0 to 1.5 mg/dl/min, as shown in Fig. (9), the dynamics 

bifurcate at 𝐺𝑖𝑛ℎ
= 1.275  mg/dl/min, and the system is 

periodic for 𝐺𝑖𝑛 < 𝐺𝑖𝑛ℎ
 and asymptotically stable otherwise, 

in other word if the exogenous glucose infusion rate is 

greater than the initial glucose level the glucose concertation 

level returns to the basal level in a definite time [19]. The 

corresponding period is shown in Fig. (10), the period is 

slightly decreasing with changing the exogenous glucose 

infusion rate.  

Finally, the effect of the insulin degradation rate is shown 

Fig. (11) where degradation rate has been changed in the 

range 𝑑𝑖 ∈ [0.01, 0.12]  a bifurcation point is found to be 

𝑑𝑖ℎ
= 0.026 where the dynamic is periodic when the insulin 

degradation rate above 𝑑𝑖ℎ
 and the period is monotonically 

decreasing as shown in Fig. (12). 

IV. CONCLUSION  

The modeling of the biological system is an important 

approach to understand the complexity of the systems, and it 

gives an important tool to reveal the hidden dynamics of the 

biological processes. As shown in the results, the slight 

change in the system parameter can give rise for variety of 

dynamics and the oscillation and periodic solution can 

emanate at certain bifurcation point, this behavior should be 

considered with much attention biologically where it 

enriches the medical insight about the endocrine metabolic 

glucose-insulin regulator feedback system which have a 

complex behavior. More biological facts and factors can be 

incorporated within the mathematical model such as the 

stress effect, glucagon, human state and the dynamics of the 

𝛽-cell and other components of the endocrine system. 
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A  B 

Fig. 3 System response: (A) time series  at 𝜏1 = 6 𝑚𝑖𝑛, 𝜏2 = 4.5 𝑚𝑖𝑛, 𝐺𝑖𝑛 = 0.54 𝑎𝑛𝑑 𝑑𝑖 = 0.06;  (B) Phase portrait. 

 

 

 

A  B 

Fig. 4 System response: (A) time series  at 𝜏1 = 6 𝑚𝑖𝑛, 𝜏2 = 36 𝑚𝑖𝑛, 𝐺𝑖𝑛 = 1.35 and 𝑑𝑖 = 0.06;  (B) Phase portrait. 

 

 

 

 

A  B 

Fig. 5 Hopf bifurcation with 𝜏1: (A) Bifurcation diagram;  (B) Phase portrait. 𝜏2 = 12 𝑚𝑖𝑛, 𝐺𝑖𝑛 = 1.08 and 𝑑𝑖 = 0.06. 
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Fig. 6 Period of the solution. 
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B 

Fig. 7 Hopf bifurcation with 𝜏1:  (A) Bifurcation diagram;  

(B) Phase plane portrait. 𝜏1 = 7 𝑚𝑖𝑛, 𝐺𝑖𝑛 = 1.08  and  

 𝑑𝑖 = 0.06 𝑚𝑖𝑛−1. 

 

Fig. 8 Period of the solution. 

 

Fig. 9 Bifurcation diagram. 

 

 

 

Fig. 10 Period of the solution. 
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Fig. 11 Bifurcation diagram with  𝑑𝑖 .  Fig. 12 Period of the solution. 
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