
1 

Abstract: In this paper, a model of PI-speed control current-driven induction motor based on indirect field oriented 

control (IFOC) is addressed. To assess the complex dynamics of a system, different dynamical properties, such as 

stability of equilibrium points, bifurcation diagrams, Lyapunov exponents spectrum, and phase portraits are 

characterized. It is found that the induction motor model exhibits chaotic behaviors when its parameters fall into a 

certain region. Small variations of PI parameters and load torque affect the dynamics and stability of this electric 

machine.  A chaotic attractor has been observed and the speed of the motor oscillates chaotically. Numerical simulation 

results are validating the theoretical analysis.  

 Index Terms— Indirect Field-Oriented Control (IFOC), Induction Motor, Bifurcation, Chaos. 

I. INTRODUCTION 

Chaos, also called complex dynamics, is recently 

one of the most current topics in nonlinear 

dynamical systems studies [1]. The nonlinear 

interactions of a system give rise to chaos. Also, it 

is very sensitive to the system parameters and 

initial conditions of states. Small variations of 

these parameters result in great changes in system 

dynamics [2]. Nowadays, the engineers and 

industries have paid a lot of attention to the results 

of specific researches of real systems. Bifurcation 

is a subfield in nonlinear dynamical systems topics 

and represents a quantitative measure. The 

observation of bifurcation diagrams enables one to 

make a qualitative and quantitative deduction 

about the behavior and dynamics of the systems. 

Many theoretical and numerical types of research 

have been carried out for several qualitative 

problems in such topics. Practically, the analysis 

of bifurcation has been applied as a helpful method 

for exploring the behavior of such systems. They 

exhibit varieties of bifurcation and chaotic 

oscillations subjected to period-doubling 

bifurcation route to chaos [3-5]. 

Indirect filed oriented controlled (IFOC) induction 

motor is mostly utilized in industries due to its high 

torque operation. The parameters of the induction 

motor may alter with temperature, senility, 

variation error because of the weakness in 

valuation algorithms, and other circumferential 

reasons [6-13]. The IFOC induction motor 

dynamics is extremely susceptible to differences in 

the motor configuration; rotor resistance, mutual 

inductance, stator resistance, inertia, PI controller 

parameters, and load torque. The performance of a 

steady-state may have violated due to these 

variations. Also, the dynamic of the induction 

motor drive system and may lead to bifurcation in 

the motor dynamics and consequence; speed and 

currents fluctuations, variations, or even standing 

the damage of the motor [14,15]. A quantitative 

bifurcation can be used for obtaining: 1) the  
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Fig. 1: Speed control scheme of induction motor drive with IFOC system.

stability and robustness; 2) the limiting control 

gains; 3) the limiting variations in rotor time 

constant; 4) dangerous bifurcations for avoidance, 

and 5) the design of efficient controllers for 

different applications [16-18]. 

The main objective of this brief will be the 

bifurcation exploring in the reduced model of 

current fed induction motor. It is carried out due to 

the effect of alteration in the PI controller gains 

and load torque. Bifurcation values of parameters 

are obtained based on the linearization of the 

system model near the stationary point. The 

equilibrium point locus with load torque is also 

presented. Lyapunov exponents spectrum will be 

included to confirm the chaotic behavior.  The 

following observations are got from the analysis: 

1) the stationary point locus depends on the load

torque and rotor resistance estimation; 2) the 

necessary and sufficient conditions for uniqueness 

of stationary point; 3) Hopf bifurcation is notable 

for a specific range of load torque; 4) the 

avoidance of period-doubling bifurcation can be 

achieved for higher proportional and lower 

integral control parameters in the speed feedback.  

The remnant of this paper is arranged as follows: 

In Section II, the induction motor adopting IFOC 

with current fed will be modelled. Based on this 

model, the stationary points and stability 

boundaries are discussed. Section III will include 

the bifurcation diagrams obtained by the numerical 

simulations due to the effect of PI parameters and 

load torque. Finally, Section VI draws the paper 

conclusions. 

II.  IFOC INDUCTION MOTOR MODEL

A general IFOC on the current-fed induction motor 

system for speed regulation is shown in Fig.1. The 

control scheme has a PI controller for speed 

regulation.  The controller output is utilized to 

produce the torque reference component. The 

model of IFOC current-driven induction motor can 

be characterized by [14] 

𝑑𝜓𝑞𝑟

𝑑𝑡
= −

𝑅𝑟

𝐿𝑟
𝜓𝑞𝑟 − 𝜔𝑠𝑙𝜓𝑑𝑟 + 𝐿𝑚

𝑅𝑟

𝐿𝑟
𝑖𝑞𝑠              (1)

𝑑𝜓𝑑𝑟

𝑑𝑡
= −

𝑅𝑟

𝐿𝑟
𝜓𝑑𝑟 + 𝜔𝑠𝑙𝜓𝑞𝑟 + 𝐿𝑚

𝑅𝑟

𝐿𝑟
𝑖𝑑𝑠              (2)

𝑑𝜔𝑟

𝑑𝑡
= 

3𝑝

4

𝐿𝑚

𝐿𝑟𝐽
(𝑖𝑞𝑠 𝜓𝑑𝑟 − 𝑖𝑑𝑠𝜓𝑞𝑟) −

𝐵 

𝐽
𝜔𝑟 −

𝑇𝐿

𝐽
 (3)

where the subscripts 𝑑 and 𝑞 represent the 

corresponding the direct-axis and quadrature-axis 

quantities, respectively; 𝜓𝑞𝑟 and 𝜓𝑑𝑟  are the 

components of the rotor flux;  𝜔𝑟 is the mechanical 

rotor speed; 𝜔𝑠𝑙 is the slip speed, and 𝑅𝑟/𝐿𝑟 is the 

inverse of rotor time constant. The system 

parameters are identified in Table 1. 
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Table 1 System parameters notation 

Notation Description Notation Description 

𝑹𝒓 Rotor resistance 𝑩 Friction coeff.

𝑳𝒎 Mutual 

inductance 
𝑱 Inertia

𝒑 Number of poles 𝑻𝑳 Load torque

𝑳𝒓 Rotor inductance 𝝎𝒓𝒆𝒇 Reference speed

The state variables of IFOC induction motor are 

defined as 𝑥1 = 𝜓𝑞𝑟, 𝑥2 = 𝜓𝑑𝑟, 𝑥3 = (𝜔𝑟𝑒𝑓 −

𝜔𝑟), 𝑥4 = (𝑘𝑝 + 𝑘𝑖 ∫𝑑𝑡)(𝜔𝑟𝑒𝑓 − 𝜔𝑟). Following 

Fig.1, (1), (2), and (3), the model of IFOC current-

driven induction motor can be given as: 

𝑥̇1 = −𝑐1𝑥1 + 𝑐2𝑥4 −
𝑘𝑐1

𝑢2
0 𝑥2𝑥4                          (4) 

𝑥̇2 = −𝑐1𝑥2 + 𝑐2𝑢2
0 +

𝑘𝑐1

𝑢2
0 𝑥1𝑥4                          (5) 

𝑥̇3 = −𝑐3𝑥3 − 𝑐4 [ 𝑐5(𝑥2𝑥4 −  𝑢2
0𝑥1) − 𝑇𝐿 −

𝑐3

𝑐4
𝜔𝑟𝑒𝑓]     (6)

𝑥̇4 = (𝑘𝑖 − 𝑘𝑝𝑐3)𝑥3 − 𝑘𝑝𝑐4 [ 𝑐5(𝑥2𝑥4 −  𝑢2
0𝑥1) −

        𝑇𝐿 −  
𝑐3

𝑐4
𝜔𝑟𝑒𝑓]    (7) 

where 

𝑐1 =
𝑅𝑟

𝐿𝑟
, 𝑐2 =

𝐿𝑚

𝐿𝑚
𝑅𝑟, 𝑐3 =

𝐵

𝐽
, 𝑐4 =

1

𝐽
, 𝑐5 = 

3𝑝

4

𝐿𝑚

𝐿𝑟
,  

𝑘𝑝, and 𝑘𝑖 are the speed PI controller gains, 𝑘 =

𝑐̂1/𝑐1 is the measure between estimated and real 

rotor time constant. In general, the IFOC induction 

motor is fully fluxed by exciting it with a constant 

𝑖𝑑𝑠 = 𝑢2
0 while the torque is regulated by

controlling 𝑖𝑞𝑠.     

III. Equilibria and  Bifurcations

A. Equilibria 

It is essential to characterize the locus, uniqueness, 

and stability of the equilibrium points of the 

system (4) - (7) and their dependence on the load 

torque. The equilibrium point can be deduced by 

the solutions  𝐱𝑒 = [𝑥1
𝑒 𝑥2

𝑒  𝑥3
𝑒 𝑥4

𝑒]𝑇 of the system

equations: 

−𝑐1𝑥1
𝑒 + 𝑐2𝑥4

𝑒 −
𝑘𝑐1

𝑢2
0 𝑥2

𝑒𝑥4
𝑒 = 0                          (8)

−𝑐1𝑥2
𝑒 + 𝑐2𝑢2

0 +
𝑘𝑐1

𝑢2
0 𝑥1

𝑒𝑥4
𝑒 = 0                          (9)

−𝑐3𝑥3
𝑒 − 𝑐4 [ 𝑐5(𝑥2

𝑒𝑥4
𝑒 −  𝑢2

0𝑥1
𝑒) − 𝑇𝐿 −
𝑐3

𝑐4
𝜔𝑟𝑒𝑓] = 0      (10)       

(𝑘𝑖 − 𝑘𝑝𝑐3)𝑥3
𝑒 − 𝑘𝑝𝑐4 [ 𝑐5(𝑥2

𝑒𝑥4
𝑒 −  𝑢2

0𝑥1
𝑒) −

 𝑇𝐿 −  
𝑐3

𝑐4
𝜔𝑟𝑒𝑓] = 0  (11) 

The fluxes equilibrium values can be obtained 

from (8) and (9) as  

𝑥1
𝑒 =

𝑐2

𝑐1
𝑢2

0 1−𝑘

1+𝑘2𝑧2 𝑧 (12) 

𝑥2
𝑒 =

𝑐2

𝑐1
𝑢2

0 1+𝑘𝑧2

1+𝑘2𝑧2 (13) 

where the diemensionless variable   𝑧 = (𝑥4
𝑒 𝑢2

0⁄ ).

It is clear that from (10) and (11) one can get 

𝑥3
𝑒 = 0 (14) 

𝑐5(𝑥2
𝑒𝑧 − 𝑥1

𝑒)𝑢2
0 = 𝑇𝐿 + 

𝑐3

𝑐4
𝜔𝑟𝑒𝑓                    (15) 

From the definition of 𝑧 and  collecting (12)-(14), 

the equilibrium point can be deduced  as 

[

𝑥1
𝑒

𝑥2
𝑒

𝑥3
𝑒

𝑥4
𝑒]

=

[
 

𝑐2

𝑐1

1−𝑘

1+𝑘2𝑧2 𝑢2
0𝑧

𝑐2

𝑐1

1+𝑘𝑧2

1+𝑘2𝑧2 𝑢2
0

0
𝑢2

0𝑧 ]

. (16) 

Which gives a nonunique equilibrium point, which 

is dependent on a dimensionless variable 𝑧. It 

satisfies the following polynomial equation 

𝑘𝑧3 − 𝑧∗𝑘2𝑧2 + 𝑘𝑧 − 𝑧∗ = 0.        (17) 

This a third-order polynomial with dimensionless 

coefficients depend on the tunning gain 𝑘 and load 

torque denoted as        

𝑧∗ = [(𝑇𝐿 + 
𝑐3

𝑐4
𝜔𝑟𝑒𝑓)𝑐1 𝑐5𝑐2(𝑢2

0)2⁄ ]. The real

roots of (17) give equilibrium points values for any 

given gain 𝑘 and any given load 𝑧∗. It is noticed

that (17) has at least one and at 
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(a) (b) 

Fig. 2. Locus of the system equilibria as a function of load torque 𝑇𝐿. (a)  𝑘 = 3 and (b) 𝑘 = 4.

most three real solutions. The roots can be 

obtained by using of root locus method for the 

appropriate form of (17) as  

1 − 𝑧∗ (𝑘2𝑧2+1)

𝑘𝑧3+𝑘𝑧
= 0. (18) 

Fig. (2a) proofs that the uniqueness of the 

equilibrium point for 𝑘 ≤ 3. It is clear that three 

corresponding real equilibria are there for the 

single value of 𝑧∗.  For different other values of 𝑧∗,

there is a singular real equilibrium point. It is 

evident from Fig. (2b),  the nonuniqueness of 

equilibria for 𝑘 > 3. Three distinct real 

equilibrium points for a definite range of 𝑧∗.

B. Local stability Analysis 

The stability of the equilibrium point is  

investigated according to  the eigenvalues of the 

characteristic equation  

          |λ𝐈 − 𝐉| = 0                                   (19) 

where λ, 𝐈, and 𝐉 are the eigenvalue, identity 

matrix, and the Jacobian matrix, respectively,  of 

the system (4)-(7)  

evaluated at the equilibrium point (𝑥1
𝑒 , 𝑥2

𝑒 , 𝑥3
𝑒 , 𝑥4

𝑒)
which has the expression given by (20), as 

illustrated at the undermost of this page. 

The model has been simulated for the value of 

parameters 𝑐1 = 13.67 s−1, 𝑐2 = 1.56 Hs−1, 𝑐3 =
0.59 s−1, 𝑐4 = 1176 kg−1m−2, 𝑐5 = 2.86, 𝑢2

𝑜 =
4 A, 𝜔𝑟𝑒𝑓181.1 rad/s. For different values of 𝑘, 

𝑘𝑝, 𝑇𝐿 and including 𝑘𝑖 = 0.2, the solution of (19) 

will lead to fourth-order polynomial. 

Consequently, the equilibrium point   

(𝑥1
𝑒 , 𝑥2

𝑒 , 𝑥3
𝑒 , 𝑥4

𝑒)  has four possible roots; two pairs

of complex conjugate roots, or two real roots plus 

pair of complex conjugate roots, or four real roots. 

Numerical analysis can be achieved and is 

focussed on the influence of the varying the 

proportional controller gain 𝑘𝑝. The simulation

results are observed for different cases of load 

torque as listed in Table 2. The dynamics undergo 

qualitative changes due to the variations of 

parameter 𝑘𝑝. When load torque 𝑇𝐿 = 2.3 Nm and 

𝑘𝑝 = 0.002,  a stable limit cycle is observed. 

However, for 𝑘𝑝 = 0.008, the limit cycle 

disappears and the stable equilibrium point occurs. 

𝐽(𝑘, 𝑧) =

[

−𝑐1    −𝑘𝑐1𝑧    0  𝑐2
(1−𝑘)

1+𝑘2𝑧2

𝑘𝑐1𝑧   −𝑐1     0   𝑘𝑐2
(1−𝑘)

1+𝑘2𝑧2 𝑧 

𝑐4𝑐5𝑢2
0 −𝑐4𝑐5𝑢2

0𝑧      −𝑐3     −𝑐4𝑐5
𝑐2

𝑐1
𝑢2

0 (1+𝑘𝑧2)

1+𝑘2𝑧2

 𝑘𝑝𝑐4𝑐5𝑢2  
0      −𝑘𝑝𝑐4𝑐5𝑢2 

0 𝑧      𝑘𝑖 − 𝑘𝑝𝑐3    −𝑘𝑝𝑐4𝑐5
𝑐2

𝑐1
𝑢2

0 (1+𝑘𝑧2)

1+𝑘2𝑧
    ]

(20)
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Fig.3(a) Bifurcation diagram and (b) corresponding 

Lyapunov exponents spectrum versus 𝑘𝑝.

Table 2 Eigenvalues corresponding for 𝑘𝑝, 𝑇𝐿, and 𝑘. 

𝑇𝐿 Equilibrium point 
𝑘𝑝 

0.002 0.008 

Eigenvalues Type of 
attractor 

Eigenvalues Type of 
attractor 

𝑘 = 3 2.3 (−0.13,0.37,0,0.8) 0.247 + 20.93𝑖, 0.247 − 20.93𝑖, 
−19.51,−11.44 

Limit 
cycle 

−5.56 + 22.42𝑖, −5.56 − 22.42𝑖 
−13.46 +  1.54𝑖, −13.46 − 1.54𝑖 

Spiral 
node 

2.8 (−0.13,0.23,0,2.28) −11.81 + 25.86𝑖,−11.81 − 25.86𝑖 
−5.83 ,−0.006 

Spiral 
node 

-14.51+26.77i, -14.51 -26.77i 
 -5.07 , -0.006 

Spiral 
node 

3 (−0.09,0.18,0,4) −13.94 + 41.94𝑖,−13.94 − 41.94𝑖 
−0.63 + 5.9𝑖, −0.63 − 5.9𝑖 

Spiral 
node 

−15.28 + 41.67𝑖,−15.28 − 41.67𝑖 
  −1.13 +  5.8𝑖, −1.13 −  5.8𝑖 

Spiral 
node 

𝑘 = 4 2.4 (−0.07,0.13,0,4.5) −14.07 + 62.01𝑖,−14.07 − 62.01𝑖 
−0.33 + 5.21𝑖, −0.33 − 5.21𝑖 

Spiral 
node 

−14.97 + 61.59𝑖, −14.97
− 61.59𝑖 

 −0.74 +  5.2𝑖, −0.74 −  5.2𝑖 

Spiral 
node 

(−0.11,0.16,0,2.48) −13.39 + 35.81𝑖,−13.39 − 35.81𝑖 
−7.19, 4.97 

Spiral 
focus 

−15.56 + 36.08𝑖, −15.56 − 36.08𝑖 
  −6.4208,   5.2710  

Spiral 
focus 

(−0.15,0.34,0,0.68) 0.45 + 22.13𝑖, 0.45 − 22.13𝑖 
−22 ,−9.15 

Limit 
cycle 

−5.72 + 24.43𝑖,−5.72 − 24.43𝑖 
  −9.76,−16.06 

Spiral 
node 

It is evident that the complex eigenvalue crosses 

the imaginary axis and causes a Hopf bifurcation 

occurs.  

C. Bifurcations 

In this subsection, characterization of various 

dynamical behaviors obtained concerning the 

system parameters; 𝑘, 𝑇𝐿, 𝑘𝑝, 𝑘𝑖, is reported. The 

various bifurcation behaviors which can be 

obtained from IFOC current-driven induction 

motor. System (4)-(7) is solved numerically using 

the 4th order Rung-Kutta method. The time step is 

always ∆𝑡 = 0.002 𝑠𝑒𝑐. for each set of parameters 

used in this paper. The system model is integrated 

for a long time. The bifurcation diagram is used to 

define the scenario type giving rise to complex 

dynamics. Also, the dynamics of the system can be 

identified using its spectrum of Lyapunov 

exponents. For fixed points, 𝐿𝑒𝑥4 < 𝐿𝑒𝑥3 <
𝐿𝑒𝑥2 < 𝐿𝑒𝑥1 < 0,  for periodic  orbits, 𝐿𝑒𝑥1 =
0, 𝐿𝑒𝑥4 < 𝐿𝑒𝑥3 < 𝐿𝑒𝑥2 < 0, for quasiperiodic 

orbits 𝐿𝑒𝑥1 = 𝐿𝑒𝑥2 = 0, 𝐿𝑒𝑥4 < 𝐿𝑒𝑥3 < 0, and for 

chaotic dynamics, 𝐿𝑒𝑥1 > 0, 𝐿𝑒𝑥2 = 0, 𝐿𝑒𝑥4 <
𝐿𝑒𝑥3 < 0.  

The main bifurcation parameter 𝑘𝑝 is considered, 

the system  parameters are keeping at the values 

as defined in the previous subsection.  
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In the case of load torque value 𝑇𝐿 = 2 Nm, 𝑘𝑖 =
0.55, and 𝑘 = 3, the bifurcation diagram and 

corresponding Lyapunov exponents spectrum for 

varying 𝑘𝑝 are depicted in Figs. 3a and 3b, 

respectively. The bifurcation diagram is observed 

by capturing and plotting the maximum points of 

the speed difference in as a function of the 

parameter 𝑘𝑝 in the range of 0 < 𝑘𝑝 ≤ 0.003. 

According to Figs. 3a and 3b, when the bifurcation 

parameter 𝑘𝑝 is heavily increased, the following 

bifurcation sequence emerges. For 𝑘𝑝 ≥ 0, the 

system displays chaotic dynamics. Further 

increasing the bifurcation parameter 𝑘𝑝 beyond the 

critical valu 𝑘𝑝𝑐𝑟1 ≈ 10−3, a period-8 oscillation

appears.  

When increasing up to  𝑘𝑝𝑐𝑟1 ≈ 1.2 ∗ 10−3,

period-4 becomes clear. Thus, a period-doubling 

sequence leading to a quasi-periodic oscillation. It 

is clear that the bifurcation diagram and Lyapunov 

exponents spectrum are well agreed. Different 

numerical phase portraits on the 𝑖𝑞𝑠 − (𝜔𝑟𝑒𝑓 −

𝜔𝑟) plane and corresponding speed difference 

time domain waveform that observed are 

justifying the bifurcation sequences as illustrated 

in Fig.4.  Which shows clearly that the speed 

difference goes to chaos through the route of 

period-doubling bifurcation with the parameter 

gain 𝑘𝑝 decreasing gradually.  As can be seen from 

Fig. 4a, the trajectory settles into a stable 

Fig.4 Phase portraite projected on (current, speed difference)  plane (left column) and speed difference time response (right 

column): (a) stable equilibruim point for 𝑘𝑝 = 0.008, ,(b) period-1; 𝑘𝑝 = 0.0025, (c) period-2; 𝑘𝑝 = 0.00156, (d) period-

4; 𝑘𝑝 = 0.00129, ( e )  chaotic attractor;  𝑘𝑝 = 0.0005.
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Fig. 5. Bifurcation diagrams showing local maxima of the coordinate  speed difference (𝜔𝑟𝑒𝑓 − 𝜔𝑟) of the attractor obtained 
for varying, respectively, 𝑇𝐿 , 𝑘𝑖 , 𝑘  and 𝑘𝑝: (a) 𝑇𝐿 is a parameter an d 𝑘𝑖 = 0.55, 𝑘 = 3, 𝑘𝑝 = 0.001, (b) 𝑘𝑖 is a parameter

and 𝑇𝐿  = 2 𝑁𝑚, 𝑘 = 3, 𝑘𝑝 = 0.001,  (c) 𝑘 is a parameter and 𝑘𝑖 = 0.55, 𝑇𝐿 = 2 Nm, 𝑘𝑝 = 0.001, (d) 𝑘𝑝 is a parameter and

𝑘𝑖 = 0.55, 𝑇𝐿 = 2 Nm, 𝑘 = 4.

equilibrium point, but there exists long-time 

transient behavior.   

Next, the verification of Hopf bifurcation. For the 

values of 𝑘𝑝 below the critical value 𝑘𝑝𝐻𝑜𝑝𝑓 ≈

0.006, the IFOC induction motor exhibits limit 

cycle operation (i.e. oscillations). The 

corresponding behavior is depicted in Fig. 4b. It 

can be seen that (𝜔𝑟𝑒𝑓 − 𝜔𝑟) oscillates with a 

constant speed when 𝑘𝑝 = 0.0025. Along with the 

decreasing bifurcation parameter 𝑘𝑝, the speed 

difference exhibits the stable period-2 orbits, as 

shown in Fig. 4c. The onset of the period-4 

solution is predicted for 𝑘𝑝 = 0.00129. This is 

shown in Fig. 4d. The collision between the 

period-4 limit cycle.  

 

and unstable equilibrium point takes place for 

𝑘𝑝 = 0.0005, as shown in Fig.4e. This gives rise 

to the chaotic attractor. 

The dynamics sensitivity of IFOC induction motor 

system concerning control parameters 𝑘𝑖, 𝑘𝑝, load 

torque 𝑇𝐿, and the ratio 𝑘, analyzed through the

bifurcation diagrams as shown in  Fig.5. It highlights 

the symmetry, periodic windows, and period-doubling 

bifurcations. According to the bifurcation diagram 

of Fig.5b, a certain range of multiple attractors can 

be specified for 𝑘𝑖 near 0.76. For the values of 𝑘𝑖 

in this domain, the behavior of the system 

dynamics extremely influences in the initial 

conditions of states.   

 (d)
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Fig. 6. Coexistence of multiple attarctors; chaotic attractor with  period-3 for  𝑘𝑖 = 0.764. The initial states values 
(𝑥1(0), 𝑥2(0), 𝑥3(0), 𝑥4(0)) are:(a) (0, 0.4,150, 1) for the  chaotic attarctor and (b) (0, 0.4099,119.99, 1) for 
period-3 limit cycles. 𝑘𝑝 = 0.001, 𝑇𝐿 = 2 Nm, 𝑘 = 3.

The system has notable phenomena of multiple 

coexisting attractors.  Two different attractors can 

be obtained (see Fig.6) concerning different initial 

state values. For example, the chaotic attractor of  

Fig. 6a generated from the initial conditions 

𝑥1(0) = 0, 𝑥2(0) = 0.4, 𝑥3(0) = 150, and

𝑥4(0) = 1; while Fig. 6b  is obtained from the

initial values 𝑥1(0) = 0, 𝑥2(0) = 0.4099,

𝑥3(0) = 119.99, and  𝑥4(0) = 1, a period-3

attractor is observed.  It is important to confirm 

that, the phenomena of multiple stability involving 

the coexistence of two different attractors were not 

previously reported in an IFOC induction motor 

drive system. Therefore, it appears as a good 

contribution related to the dynamics of the 

induction motor drive system. Also, the 

appearance of coexistence multiple attractors is 

not desirable and solely the need for control.   

VI.  CONCLUSION

In this brief, the dynamical analysis of IFOC 

current fed induction motor system model has been 

achieved. The equilibrium uniqueness and non-

uniqueness have been investigated according to 

the estimated rotor resistance ratio.  The 

uniqueness of equilibrium points is ensured for the 

estimated rotor resistance ratio located in the range 

of  300%. For a high value of rotor resistance ratio, 

𝑘, three equilibrium points are created. Two of the 

equilibrium points are asymptotically stable and 

the other one is unstable. The effect of PI controller 

gains parameters and load torque on the 

bifurcations has been addressed more specifically. 

The bifurcation analysis shows that the complex 

dynamics and nonlinear oscillations can be grown 

in the IFOC induction motor system following the 

period-doubling bifurcation. It is clear that the 

IFOC induction motor drive system suffers from 

the uncommon behavior of coexistence multiple 

attractors for a certain range of integral gain 𝑘𝑖 of 

the PI controller.   
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