
Abstract—Independent Component Analysis (ICA) has been successfully applied to a variety of problems, from 

speaker identification and image processing to functional magnetic resonance imaging (fMRI) of the brain. In 

particular, it has been applied to analyze EEG data in order to estimate the sources form the measurements. 

However, it soon became clear that for EEG signals the solutions found by ICA often depends on the particular ICA 

algorithm, and that the solutions may not always have a physiologically plausible interpretation. Therefore, nowadays 

many researchers are using ICA largely for artifact detection and removal from EEG, but not for the actual analysis of 

signals from cortical sources. However, a recent modification of an ICA algorithm has been applied successfully to 

EEG signals from the resting state. The key idea was to perform a particular preprocessing and then apply a complex-

valued ICA algorithm. 

In this paper, we consider multiple complex-valued ICA algorithms and compare their performance on real-world 

resting state EEG data. Such a comparison is problematic because the way of mixing the original sources (the “ground 

truth”) is not known. We address this by developing proper measures to compare the results from multiple algorithms. 

The comparisons consider the ability of an algorithm to find interesting independent sources, i.e. those related to brain 

activity and not to artifact activity. The performance of locating a dipole for each separated independent component is 

considered in the comparison as well. 

Our results suggest that when using complex-valued ICA algorithms on preprocessed signals the resting state EEG 

activity can be analyzed in terms of physiological properties. This reestablishes the suitability of ICA for EEG analysis 

beyond the detection and removal of artifacts with real-valued ICA applied to the signals in the time-domain. 

Index Terms—Blind source separation, cocktail party problem, complex, dipole localization, EEG, 

electroencephalography, ICA, independent component analysis, inverse problem, real, signal processing. 

I. INTRODUCTION 

Independent component analysis (ICA) is a 

mathematical model for estimating underlying 

components in a high-density mixed data with the 

aim of estimating components as independent as 

possible [1]. The blind source separation problem 

(BSS), sometimes called the blind signal separation 

problem, is a general form of ICA. BSS is about 

estimating the original signals (components) from 

their observed mixture data depending on several 

assumptions about the mixing process, the word 

“blind” denotes that it is known very little if nothing 

about the original components. BSS has been used 

in a vast number of situations in which observed 

mixed data is originating such as convoluted 

mixtures of images [2], psychometric 

measurements, stock market indicators [1], and 

artifacts removal from EEG recordings [3], etc.  

The cocktail party problem is one of the most used 

examples for demonstrating the problem of finding 

hidden variables in the mixed data. In this case, we 

can imagine that we have three persons sitting in a 

room and talking to each other simultaneously, also 

there are three microphones fixed at different 

positions in the room recording mixed voices from 

the three persons. The recorded voice signals are of 

course not clear to a listener.  
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In this paper considers multiple complex-valued 

ICA algorithms and compare their performance on 

real-world resting state EEG data. Such a 

comparison is problematic because the way of 

mixing the original sources (the “ground truth”) is 

not known. We address this by developing proper 

measures to compare the results from multiple 

algorithms. 

The mathematical ICA model is given in (1) where 

𝑥1, ⋯ , 𝑥𝑛 are the observed mixed signals, 𝑠1, ⋯ , 𝑠𝑛 

are the unrelated original signals, and 𝑎𝑖𝑗 are some 

real coefficients that represent the weights of mixing 

the original signals [4]. This equation can be written 

in a vector-matrix representation as in (2). There are 

several approaches that are used for estimating the 

unmixing matrix 𝑾 (an estimation for the inverse of 

the mixing matrix 𝑨−1) such that 𝒚 =  𝑾𝒙 where 𝑦𝑖

are the estimated variables of the original variables 

𝑠𝑖 up to scaling and permutation of the rows of 𝑾. 

All of the ICA algorithms that have been used in this 

study are presented in section III with their 

principles of estimating the Independent 

Components (ICs).  

𝑥𝑖(𝑡) = 𝑎𝑖1𝑠1(𝑡) + 𝑎𝑖2𝑠2(𝑡) + ⋯ + 𝑎𝑖𝑛𝑠𝑛(𝑡);  𝑖 = 1, … , 𝑛 (1) 

𝒙 = 𝑨𝒔 (2) 

The German psychiatrist Hans Berger was the 

pioneer of the human electroencephalogram (EEG) 

when first discovered it in 1929 [5]. This technique 

records the electrical activities generated by the 

brain via a number of electrodes (channels) fixed on 

the scalp. The EEG recording technique is most 

suitable in cases where high temporal resolution is 

required. The main contributing brain sources to the 

EEG recorded data are emitted from different small 

places within the brain called patches. Those patches 

are normally modeled as electrical dipoles. 

Modeling the dipoles requires a solution for both 

volume conductor model of the brain and the 

behavior of current sources in the brain. This can be 

achieved by solving the Poisson's equation as it 

relates the current sources and potentials formed in 

the volume conductor [6]. Ideally, the process of 

locating sources within the brain (dipoles) using 

EEG signals involves the inverse solution of 

Poisson's equation for parceling the brain, then 

followed by an iterative procedure of locating the 

sources.  

II. COMPLEX-VALUED ICA

Complex-valued signals often occur in 

applications such as communications, radar, images, 

and biomedicine. Complex-valued ICA has been 

widely dealt with in research and practical work. In 

this study, we were interested in analyzing rest-state 

EEG data using complex-valued ICA and then 

comparing the performance of different algorithms 

based on some criteria.  

Analyzing complex-valued EEG signals through 

the frequency-domain representation of the signals 

have advantages over time-domain as several 

scientists have shown that EEG activities have 

specific features in different frequency bands which 

might be related to different physiological activities 

[7]. Moreover, real-valued ICA does not consider 

the propagation delay to the recording electrodes and 

that each oscillatory signal is recorded at the same 

phase. This leads to assigning a single current dipole 

for only one source, whereas there might exist 

sources that are spatially more distributed which are 

recorded with small a time difference and, therefore, 

assigning several dipoles for each of them is more 

reasonable. Those spatially extended sources can 

also be gathered in a single component rather than 

having them separated into different components 

[8]. This requires modeling the mixing matrix as 

complex-valued rather than real-valued mixing 

matrix as in the case of real-valued ICA. We use the 

short-time Fourier transform (STFT) in order to 

decompose the EEG signals into different spectral 

bands then investigate the oscillatory activity. Based 

on the common property of the linear time-filtering, 

such decomposition does not in any way alter the 

linear mixing model and its specifications as well 

[8]. Hence, further analysis and results are 

considered trustworthy. 

The classical linear mixing model for EEG data is 

given in (3), indicating by 𝑥𝑐,𝜏 the EEG data matrix 

where 𝑐 is the channel index and 𝜏 is the time index, 

𝑠𝑝 are the source signals (or the ICs) where 𝑝 is an 

index for the IC. 
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𝑥𝑐,𝜏 = ∑ 𝑎𝑐,𝑝𝑠𝑝,𝜏

𝑃

𝑝=1

 (3) 

STFT is applied to the raw EEG data with fixed 

spaced temporal indices 𝑡𝜏 and then the new 

resulting matrix 𝑥𝑐,𝑡𝑓 is adopted for further analysis. 

This step transforms the two-dimensional data 

matrix into another two-dimensional matrix but with 

the three indices: 𝑐 is the channel index, 𝑡 is the 

STFT’s window index with a lower resolution than 

𝜏, and 𝑓 is the Fourier coefficient index within the 

Fourier transformed window. The short-time Fourier 

transformed windows taken from each row in the 

raw data matrix are arranged one-by-one in the 

corresponding row of the new matrix, therefore, the 

transformed matrix is still with two-dimensions. 

Thus, the linear mixing model after the STFT of the 

data becomes as stated in (4). The data matrix 𝑿 in 

the new model is complex-valued by the definition 

of the Fourier transform, whereas the matrix of 

mixing coefficients 𝐴 is still real-valued as in (3). 

However, the process of modeling the very small 

delays 𝛿(𝑐, 𝑝) of recording brain signals at different 

electrodes represents a transformation of the real-

valued mixing matrix to a complex-valued one. 

Modeling these delays means that a source signal is 

observed in different electrodes with different 

phases. The derivation of the complete complex-

valued mixing model (5) is given in [8]. Each of the 

derived mixing parameters in this equation is 

complex-valued, its real part is the old real-valued 

mixing coefficients 𝑎𝑐,𝑝 and its imaginary part is the 

new term 𝑒(2𝜋𝑖𝑓0(𝑝)𝛿(𝑐,𝑝)).

𝑥𝑐,𝑡𝑓 = ∑ 𝑎𝑐,𝑝𝑠𝑝,𝑡𝑓

𝑃

𝑝=1

 (4) 

𝑥𝑐,𝑡𝑓 = ∑ 𝑎𝑐,𝑝𝑒(2𝜋𝑖𝑓0(𝑝)𝛿(𝑐,𝑝))𝑠𝑝,𝑡𝑓

𝑃

𝑝=1

(5) 

The Fourier coefficients retrieved after applying 

the STFT to the raw EEG data may be sparsely 

distributed when most of the coefficients 

corresponding to some frequency bands are with 

zero energy and only a few of them are with nonzero. 

This gives the analysis of complex-valued EEG 

signal more advantages in finding sources of 

oscillatory activity that belong to the brain but not to 

the artifacts [7], [8]. 

III. MATERIALS AND METHODS

A. The Complex-Valued ICA Algorithms 

A large number of ICA algorithms have been 

developed for analyzing data in different fields. The 

ICA algorithms can be generally classified 

according to the principal they are based on such as 

negentropy or nongaussianity maximization, 

maximum-likelihood estimation, or mutual 

information minimization. In this study, we selected 

five of the recent algorithms based on different 

estimating approaches. Here, we present the 

algorithms in a systematic manner by describing the 

contrast function of the algorithm and the estimation 

procedure and its optimization condition. The 

algorithms with their references are: Adaptive 

Complex Maximization of Nongaussianity (A-

CMN) [9], Complex ICA by Entropy Bound 

Minimization (cICA-EBM) [10], Complex FastICA 

(c-FastICA) [8], Kurtosis Maximization using 

Fixed-point update (KM-F) [11], and Generalized 

Uncorrelating Transformation (GUT) [12]. Please 

note that all given mathematical equations that are 

related to the algorithms can be found in those 

references. 

1) Adaptive Complex Maximization of

Nongaussianity (A-CMN) 

Complex Maximization of Nongaussianity 

(CMN) algorithm uses the contrast function given in 

(6), where 𝒙 is the vector of observed data, 𝒘 is an 

unmixing vector, and 𝐻 is the Hermitian transpose 

of 𝒘. The function 𝐺(𝑧) = 𝑧𝐾 √2𝐾⁄  is used in order

to derive the adaptive CMN (A-CMN) algorithm by 

submitting it into (6) and get the nonlinearity given 

in (8), 𝑧 is a complex random variable and 𝐾 is the 

number of source variables. 

𝐽(𝒘) = 𝐸{|𝐺(𝒘𝐻𝒙)|2} (6)
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𝐽(𝑧) =
𝑧𝐾

√2𝐾
(

𝑧𝐾

√2𝐾
)

∗

= 𝑒𝐾 log(𝑧)𝑒𝐾 log(𝑧∗) 2𝐾⁄

= 𝑒𝐾 log|𝑧|+𝑗 arg(𝑧)𝑒𝐾 log|z|−𝑗 arg(𝑧) 2𝐾⁄  

= |𝑧|2𝐾 2𝐾⁄  

(7) 

(8) 

The ideal weight for the CMN that maximizes the 

contrast function under the unit norm restriction is 

given as: 

𝒘𝑜𝑝𝑡 = arg max
‖𝒘‖2=1

𝐸{|𝐺(𝒘𝐻𝒙)|2} (9)

In CMN algorithm, every source 𝑠̂𝑘 is estimated 

individually by finding a vector 𝒘 such that 

𝑠̂𝑘 = 𝒘𝑘
𝐻𝒙 = 𝒘𝑘

𝐻𝑨𝑠 = 𝒒𝑘
𝐻𝑠 (10)

where 𝑨 is the mixing matrix, and 𝒒𝑘 =
[0, … , 𝑞𝑘, 0, … ]𝑇.

The fixed-point update for the optimization 

problem which is defined in (9) is given in (11), 

where 𝐺 is defined in (6), 𝑔 is the derivative of 𝐺, 

and 𝑦 = 𝒘𝐻𝒙.

𝒘𝑛+1 = −𝐸{𝐺∗(𝑦)𝑔(𝑦)𝒙}
+ 𝐸{𝑔(𝑦)𝑔∗(𝑦)}𝒘𝑛 + 𝐸{𝒙𝒙𝑻}
+ 𝐸{𝐺∗(𝑦)𝑔′(𝑦)}(𝒘𝑛)∗ 

(11) 

We do not move into all the details of deriving the 

whole algorithm which can be found in the stated 

reference. The A-CMN algorithm can be 

summarized in two steps: the first one is the 

estimation of 𝐾 using (13), and the second one is to 

use the nonlinearity in the fixed-point algorithm 

(11); where 𝑝 is a shape function for determining the 

distribution type as supergaussian, subgaussian, or 

Gaussian. 

𝑝𝑛+1 = 𝑝𝑛 − (
𝜕 log 𝐸{𝑦𝟐}

𝜕𝑝
)

−1

log 𝐸{𝑦𝟐} 

𝐾𝑛+1 =
𝑝𝑛+1

2

(12) 

(13) 

2) Complex ICA by Entropy Bound Minimization

(cICA-EBM) 

The cICA-EBM algorithm uses the contrast 

function given in (14), where 𝑁 is the number of 

complex sources 𝑠(𝑡) =
[𝑠1(𝑡), … , 𝑠𝑁(𝑡)], 𝐼(𝑧1; … ; 𝑧𝑁) represents the mutual

information among 𝑁 random variables 𝑧𝑁 to be 

estimated where 𝑛 =  1, … , 𝑁, 𝑾 is the unmixing 

matrix, 𝐻 (𝑧𝑁) is the entropy of the 𝑛th source, and 

𝐻(𝑥) is the entropy of observations. 

𝐼(𝑧1; … ; 𝑧𝑁) = ∑ 𝐻(𝑧𝑁)

𝑁

𝑛=1

− 2log|det(𝑾)| − 𝐻(𝑥) (14) 

The optimization problem given in (15) is a 

function of 𝒘𝑛. Where 𝐻̂(𝑧𝑛) is the entropy

estimator [10], 𝑧𝑛 = 𝒘𝑛
𝐻𝒙, 𝐶 is a quantity

independent of 𝒘𝑛, and −2log|ℎ𝑛
𝐻𝒘𝒏| is a function

that attempts to constrain 𝒘𝑛 to be orthogonal to all 

the other row vectors of the unmixing matrix 𝑾. 

min
‖𝒘𝑛‖=1

𝐽𝑛(𝒘𝑛) = 𝐻̂(𝑧𝑛) − 2log|ℎ𝑛
𝐻𝒘𝒏| + 𝐶 (15)

The line search algorithm is given as: 

𝒘𝑛
+ = 𝒘𝑛 − 𝜇𝒖𝑛 (16)

𝒘𝑛
[𝑛𝑒𝑤]

=
𝒘𝑛

+

‖𝒘𝑛
+‖

(17) 

where 𝜇 > 0 is the step size, and 𝒖𝑛 is computed 

using the normalized projected conjugate gradient in 

(19). 

𝒖𝑛
+ =

𝜕𝐽𝑛(𝒘𝑛)

𝜕𝒘𝑛
∗

− ℜ {𝒘𝑛
𝐻

𝜕𝐽𝑛(𝒘𝑛)

𝜕𝒘𝑛
∗

} 𝒘𝑛 (18)

𝒖𝑛 =
𝒖𝑛

+

‖𝒖𝑛
+‖

(19) 

The line search procedure outlined in (17) is 

repeated over different row vectors of 𝑾 until 

convergence. 
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3) Complex FastICA (c-FastICA)

The c-FastICA algorithm uses the contrast 

function given in (20). The function 𝐺 = (1 2⁄ )𝑦3

that is motivated by kurtosis is used as a nonlinear 

objective function. 

The optimization problem is formulated as: 

The derived fixed-point update for the constrained 

optimization problem could be written as: 

where 𝑦 = 𝒘𝐻𝒙. Symmetric orthogonalization is

implemented in this algorithm, such that all sources 

are estimated in parallel. 

4) Kurtosis Maximization using Fixed-point update

(KM-F) 

The contrast function for this algorithm tries to 

maximize the complex kurtosis or the fourth-order 

cumulant of a zero-mean random variable which is 

defined for random variable 𝑦 as the real number: 

𝜅(𝑦) = 𝐸{|𝑦|2} − 2(𝐸{|𝑦|2})2 − |𝐸{𝑦2}|2 (23)

The kurtosis for the unit-norm vectors 𝑾𝑡 and 

𝑾𝑡+1 is 

∆𝜅 = 𝜅(𝑾𝑡+1) − 𝜅(𝑾𝑡) 

= 2 Re{⟨∇𝐰 ∗ κ|𝐰𝑡, (𝑾𝑡+1 − 𝑾𝑡)⟩} (24)

Given 𝑾𝑡, we use the Cauchy-Schwarz inequality 

in order to find 𝑾𝑡+1 such that ∆𝜅 is maximized: 

|⟨∇𝐰 ∗ κ|𝐰𝑡, 𝐖⟩| ≤ ‖∇𝐰 ∗ κ|𝐰𝑡‖ (25)

where the maximum value is achieved if and only if 

𝑾𝑡+1 = ∇𝐰 ∗ κ|𝐰𝑡 ‖∇𝐰 ∗ κ|𝐰𝑡‖⁄ , so that the KM

update is given as 𝑾𝑡+1 =
∇𝐰 ∗ κ|𝐰𝑡 ‖∇𝐰 ∗ κ|𝐰𝑡‖⁄  to maximize ∆𝜅. The

complex fixed-point KM update is formulated as: 

𝑾 ← ∇𝐰 ∗ κ(𝒘𝐻𝒙)    𝑾 ←
𝑾

‖𝑾‖
(26) 

5) Generalized Uncorrelating Transformation

(GUT) 

The GUT algorithm is considered as an expansion 

of the whitening conversion process for complex-

valued random vectors. It is a second-order ICA 

model and it is a generalized form of the strong-

uncorrelating transform (SUT) algorithm that is 

proposed by Eriksson and Koivunen [13]. GUT aims 

to find uncorrelated components based upon the 

estimation of the covariance and pseudo-covariance 

matrices. The GUT matrix can be calculated by first 

calculating the square-root matrix 𝑩(𝒛) of 𝑪(𝒛)−𝟏,

so 𝑩(𝒛)𝑯𝑩(𝒛) = 𝑪(𝒛)−𝟏 and the whitened data

𝒗 =  𝑩(𝒛)𝒛; where 𝑪(𝒛) is the scatter matrix of the 

complex random vector 𝒛. This step represents a 

whitening for the data such that 𝑪(𝒗) = 𝑰. 

Then we use a distinct form of the singular valued 

decomposition namely the Takagi's factorization for 

the whitened data 𝒗 such that 𝑷(𝒗) = 𝑼𝚲𝑼𝑇 where

𝑷 is a spatial pseudo-scatter matrix, 𝑼 = 𝑼(𝒗) is the 

Takagi factor of 𝑷(𝒗), and 𝚲 is the singular values 

𝜆𝑖 = [𝑷(𝒔)]𝑖𝑖. The whitening transformation GUT

matrix is found as 𝑾(𝒛)  = 𝑼(𝒗)𝐻𝑩(𝒛).

B. Comparison Criteria 

The decision factors within this study are 

quantification for the separation quality and 

quantification for the solution of the inverse 

problem. The comparison criteria we have used do 

not depend on the ground truth of the ICA model 

because the concrete structure of the interacting 

sources in the real EEG data and the way they have 

been mixed are unknown for us. We emphasize that 

the assumptions related to the ICA model may not 

exactly hold because we are trying to estimate the 

original sources from the real-world and not 

synthesized data. Following is a brief description of 

each of the used criteria. 

𝐽(𝒘) = 𝐸{𝐺(|𝒘𝐻𝒙|2)} (20)

𝒘𝑜𝑝𝑡 = arg max
‖𝒘‖2=1

𝐸{|𝐺(𝒘𝐻𝒙)|2} (21)

𝒘𝑛+1 = −𝐸{𝑔(|𝑦|2)𝑦∗𝒙}
+ 𝐸{𝑔′(|𝑦|2)|𝑦|2 + 𝑔(|𝑦|2)}𝒘𝑛

+ 𝐸{𝒙𝒙𝑻}𝐸{𝑔′(|𝑦|2𝑦∗2
)}𝒘𝑛

∗

(22) 
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1) Degree of Separation

The measure of statistical independence is 

computed in order to quantify the separation 

goodness that is achieved by each of the used 

algorithms. The degree of dependency between each 

pair of the estimated sources was considered at each 

frequency 𝑓 within the adopted frequency band (0 −
50𝐻𝑧) by computing the mean 𝜌(𝑓) of the absolute 

values of correlation coefficients 𝜌𝑖𝑗(𝑓) over all 

different estimated source pairs 𝑖 ≠ 𝑗 as shown 

below: 

𝜌(𝑓) =
1

𝑁(𝑁 − 1)
∑ 𝜌𝑖𝑗(𝑓)

𝑖≠𝑗

 (27) 

𝜌𝑖𝑗(𝑓) = |

⟨|𝑠𝑖(𝑇, 𝑓)|2|𝑠𝑗(𝑇, 𝑓)|
2

⟩
𝑇

− 𝜇𝑖(𝑓)𝜇𝑗(𝑓)

𝜎𝑖(𝑓)𝜎𝑗(𝑓)
| (28)

𝜇𝑖(𝑓) = ⟨|𝑠𝑖(𝑇, 𝑓)|2⟩𝑇 (29)

𝜎𝑖(𝑓) = √⟨(|𝑠𝑖(𝑇, 𝑓)|2 − 𝜇𝑖(𝑓))
2

⟩
𝑇

(30) 

where ⟨. ⟩𝑇 indicates the expectation which is

calculated as the sample average over the number of 

time points 𝑇 of the estimated source signal, 𝜇𝑖(𝑓)

and 𝜎𝑖(𝑓) are respectively the mean and the standard

deviation of the 𝑖th component. Equation (28) [1] 

measures the degree of dependency between each 

pair of ICs [1]. For independent signals, the index 

𝜌𝑖𝑗(𝑓) reaches its minimum (zero) whereas it

reaches its maximum (one) only when the signals are 

proportional. 

2) Measure of Sparseness

The procedure of ICA estimation always looks for 

nongaussian sources. In practice, most of the sources 

are supergaussian or sparse [8]. A random variable 

is said to be sparse when it is occurring at widely 

spaced intervals and it is most of the time close to 

zero. The Fourier coefficients returned after 

applying the STFT on the raw EEG data can also be 

sparsely distributed when most of the coefficients 

corresponding to some frequency bands are with 

zero energy and only a few of them are with nonzero. 

Therefore, this measure attains its maximum (one) 

for those sources with the highest supergaussianity 

or sparseness. We use the objective function in (31) 

to measure how much an estimated source (𝑠𝑖,𝑡𝑓) 

sparse is [14], where 𝐹 is the number of STFT’s 

coefficients. 

𝐼(𝑠𝑖) =
1

𝑇𝐹
∑ − log (1 + |𝑠𝑖,𝑡𝑓|

2
)

𝑡,𝑓

(31) 

3) Residual Variance of Dipole Localization

The process of decomposing multichannel EEG 

signals using ICA determines temporally 

independent components and their projection form 

on the scalp surface. Whereas each column in the 

resulting mixing matrix (𝑊−1) denotes, for an IC,

the proportional projection weight at each of the 

recording electrodes. Charting the elements of these 

columns to the related electrodes on a head model 

gives an imaging of the scalp projection for each of 

the estimated sources. This proposes a favorable 

approach for solving the inverse problem of EEG, 

specifically by achieving inverse modeling of the 

separated IC scalp projection. The most interesting 

thing is that those IC scalp projections or scalp maps 

have been found to be more localized or dipole-like 

on the head model than the raw EEG [3], [15]; which 

could make it easier to model the corresponding 

dipoles. Detailed information concerning the inverse 

problem and modeling of ICs can be found in [15]. 

During the dipole localization procedure, each of 

the observed scalp maps is assigned the best-

representing dipole(s) located in a 3D head model at 

some location(s) and orientations. This matching 

process is solved up to some error or residual 

variance between the observed scalp map and the 

scalp projection of the assigned dipole. That error 

(𝐸) for each IC can be calculated using (32), where 

each column of 𝐹 represents the best-fitting dipole 

for an IC in a 3D head model, and 𝑁 is the number 

of estimated sources. The less the value of the 

residual variance is, the better is the fitted dipole(s) 

for an estimated component. 
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𝐸(𝑗) =
∑ (𝑊−1(𝑖, 𝑗) − 𝐹(𝑖, 𝑗))

2𝑁
𝑖=1

∑ (𝑊−1(𝑖, 𝑗))
2𝑁

𝑖=1

, 𝑗 = 1, … , 𝑁 (32) 

C. The EEG Datasets 

The used EEG datasets are taken from 105 elderly 

subjects. The subjects were in resting state, where 

the eyes were closed and nearly without any 

movements at the body parts. The length of the 

signals is around 10 minutes. Some of the datasets 

were recorded using a head cap equipped with 22 

electrodes and the others with 32 electrodes. The 

amplified EEG signals were sampled and stored at 

either 250 or 1000 samples per second. We 

processed all EEG datasets as stated in the following 

steps: 

1) The raw EEG datasets contain channel labels

only, we added the international 10-20 standard 

channel location information [16] to the data as 

it is necessary for plotting EEG scalp maps in 

either 2D or 3D format or to estimate source 

locations for data components. 

2) Common average reference (CAR) is used as a

re-reference for the recorded data in order to 

obtain plain EEG. 

3) STFT is applied with windows of 1 sec duration

with half overlapping. Then only coefficients in 

the range of (0 − 50𝐻𝑧) were adopted. 

4) All the Fourier transformed signals were forced

to zero-mean. 

5) Then we applied the ICA algorithms.

6) Dipole localization procedure is applied in order

to assign one or two dipoles for each of the 

estimated sources. 

7) We used the EEGLAB toolbox as an assistant

tool. It is available on 

(https://sccn.ucsd.edu/eeglab/index.php) for 

free. 

IV. RESULTS

Following is a presentation of the experimental 

comparison results, we grouped the results 

according to the important criteria.  

1) Degree of Separation

One of the important criteria for quantifying the 

performance of an ICA algorithm is the measure of 

statistical independence between the estimated 

sources.  

Fig. 1 shows the degrees of separation between the 

estimated sources (ICs) which are obtained from the 

five ICA algorithms. Each of the drawn traces 

represents the dependencies obtained from one 

algorithm over the frequency band (0 − 50𝐻𝑧) that 

is adopted from the Fourier transformed original 

data prior to the ICA. So that, the separation index at 

each frequency is computed by averaging the 

correlations for all different pairs of the estimated 

sources. Then, the obtained correlation index at each 

frequency component is averaged over all analyzed 

EEG signals which are recorded from the different 

subjects. The black trace represents the amount of 

dependency between the Fourier transformed data 

channels, i.e. before applying any of the ICA 

algorithms. 

As mentioned before, the smaller value of the 

separation index is, the better is the performance of 

the algorithm.  Hence, these results show that all the 

algorithms, except GUT, were able to separate the 

observed mixed EEG data into their independent 

sources with a lower degree of dependency than the 

exists within the original EEG data channels. It is 

clear that the performance of GUT was not satisfied 

as other algorithms. Although the performance of the 

other algorithms is almost the same however, at 

some frequency bands both cICA-EBM and A-CMN 

did slightly better separation than both c-FastICA 

and KM-F. 

2) Component Source Modeling

The EEG channel locations are considered as 

useful markers when giving the locations and 

strengths of emitted signals by the brain patches. 

However, EEG recordings do not contain any 

information about the physical locations of those 

EEG recording channels. The solution to this 

problem is to inversely model each of the estimated 

scalp maps as one or more dipoles located in a 3D 

head model. The solution for the inverse problem 

has been discussed earlier in this paper, we 

mentioned that each column in the estimated mixing 

matrix represents a scalp map.  

After analyzing the EEG data with the ICA 
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algorithms, we used the EEGLAB Matlab toolbox 

with the DIPFIT (an EEGLAB plugin) in order to 

model dipoles for the estimated sources. The 

available EEG inverse model with the EEGLAB 

toolbox tries to assign one or two best fitting dipoles 

for each estimated source. 

Fig. 2 shows example results for some of the fitted 

dipoles with their scalp maps. A three-shell 

boundary element model for the 3D head model is 

used for modeling and visualizing the locations of 

dipoles in the head. The numbers nearby the dipoles 

represent the index of the estimated IC. The 

locations and directions of the dipoles indicate the 

amount of planned electric field on the scalp. Such 

that, those scalp maps that demonstrate more 

localized brain activities are assigned single-dipole 

as it is shown for ICs: 2, 13, 19, 22, 25, and 26. 

Whereas those scalp maps which somehow 

demonstrate left-right symmetric activity cannot be 

accurately modeled with a single-dipole, therefore, 

they are assigned a dual-dipole as it is the case with 

ICs: 17 and 27.  

Also, the residual variance between the IC scalp 

map and the dipole scalp projection is shown nearby 

each scalp map. The values of residual variance for 

most of the fitted dipoles were close to the minimum 

predictable level of error, the statistics for that is 

shown in Fig. 3 and will be discussed next. We think 

that this variance occurs due to the probable 

drawbacks in the 3D head modeling as a set of 

conductive spheres (brain, skull, and scalp), also the 

possible inadequate setting up of the EEG recording 

cap on the subject's head has a big effect on the 

dipoles modeling. 

Fig. 3 shows statistics concerning the residual 

variance of the fitted dipoles for all the estimated 

sources in all analyzed EEG datasets (105 subjects). 

We notice that around 75% of the estimated sources 

were assigned dipole(s) with residual variance of 

less than 20%, around 20% of the estimated sources 

were assigned dipole(s) with residual variance in the 

range of 20% −  50%, around 5% of the estimated 

sources were assigned dipole(s) with residual 

variance of greater than 50%, and around 3% of the 

estimated sources were failed to converge. 

This index shows no big difference in the 

performance of the different algorithms, and the 

fitting process was able to assign dipoles with low 

residual variances to a large number of the estimated 

sources. We think this is not unexpected results 

because in the case of resting-state EEG analysis it 

is more likely to estimate an IC that is representing 

a brain activity but not an artifact activity. Normally, 

Fig. 1.  Statistical dependencies at the frequency band (0 − 50𝐻𝑧). The 

degrees of dependency between the estimated sources which are achieved by 

cICA-EBM, A-CMN, c-FastICA, and KM-F are lower than those exist in EEG 

data channels; this means that these algorithms were able to separate the mixed 
EEG data into their original sources. While GUT was able to estimate the 

original sources at low-frequency bands. 

Fig. 2.  The 3D scalp maps for the estimated ICs are linked by lines to their 

respective modeled dipole(s). The dipoles within the 3D head model were 

found by inversely modeling of those scalp maps. The more localized brain 
activities are assigned a single-dipole as it is the case with the ICs: 2, 13, 19, 

22, 25, and 26; whereas the more distributed brain activities are assigned a 

dual-dipole as it is the case with the ICs: 17 and 27. 
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the scalp map for the brain activity is more localized 

than the one for an artifact activity, and it seems that 

most of the estimated scalp maps had localized 

activities which can be easily modeled by the dipole 

fitting algorithm with even low residual variances. 

3) Estimation of Sources

This section shows the performance of different 

complex-valued ICA algorithms for estimating 

hidden sources from high density mixed EEG 

signals. Based on the sparseness index which was 

discussed earlier, we present averaged results in 

order to compare the performance of the algorithms. 

The aim behind using this measure (sparseness) is to 

find the most interesting sources, namely those 

related to brain activity. 

 Fig. 4 shows the performance of the algorithms in 

estimating cerebral ICs. The sparseness index was 

computed for all the estimated sources in all the 

analyzed EEG datasets and then averaged and 

normalized overall 22-channel or 32-channel EEG 

data as shown in the two sub-figures. It is clear from 

the two plots that there is no big difference in the 

performance that is achieved by cICA_EBM, A-

CMN, KM-F, and c-FastICA. However, the 

cICA_EBM algorithm slightly outperformed the 

others; and GUT showed the worst performance 

among the algorithms.  

The numeral results which are returned from 

analyzing all EEG datasets showed no big difference 

from one dataset to another and since it is impossible 

to present details of all those results, therefore, in 

Fig. 5 we show results that are returned from only 

one of the datasets that is recorded using 32-channel 

(i.e. 32 sources were estimated). The figure 

visualizes the performance of the algorithms for 

estimating all the sources. The upper row in the 

image (Orig_Data) represents the sparseness of the 

Fourier transformed original data signals (channels), 

Fig. 4.  Sparseness index that is averaged over all analyzed EEG datasets. These 

are the normalized values returned by the index. The higher the value means 

the sparser the IC is, which in turn means that the IC is more likely to represent 
a cerebral activity. The cICA_EBM outperformed other algorithms, and GUT 

had low performance. The two plots show the consistency of ICA algorithms 

with the different number of EEG recording channels. 

Fig. 3.  Residual variance statistics of the fitted dipoles for the estimated ICs. 

It explains that around 75% of the estimated ICs were assigned dipoles with 

residual variance less than 20%, around 20% of the ICs were assigned dipoles 

with residual variance 20 − 50%, around 5% of the ICs were assigned dipoles 

with residual variance greater than 50%, and around 3% of the ICs had failed 

to converge. 
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whereas the other five rows represent the sparseness 

of the estimated 32-source from the other five 

algorithms. The image demonstrates how good is the 

separation of the original data that is achieved by the 

algorithms. We have mentioned earlier that the 

larger the sparseness index means that the source is 

better estimated. In this 2D image plot, the amount 

of sparseness is color-coded such that the whiter the 

rectangle color is, the sparser is the IC or data 

channel. It is clear that cICA-EBM and A-CMN 

achieved much better results than the other 

algorithms, where the degrees of sparseness for all 

the estimated sources are much larger than of the 

original data. On the other hand, KM-F and c-

FastICA failed in estimating IC1 and IC2, and IC1 

and IC32, respectively. GUT recovered the majority 

of the sources with very low degrees of sparseness. 

Note that all the results were normalized before 

putting them into the image. 

V. DISCUSSION OF RESULTS 

From the preceding shown results and the detailed 

ones which are impossible to be shown in this paper, 

we find that cICA-EBM and A-CMN outperform 

other algorithms, especially cICA-EBM which had 

performance even a bit better than A-CMN in 

estimating sparser components. Generally, both 

were able to estimate sources characterizing with: 

very low degree of dependence, within the range of 

cerebral EEG frequency bands, and clean electrical 

potential distribution on scalp maps.  

Both c-FastICA and KM-F achieved almost the 

same performance as the previous ones. However, 

they both were also able to estimate sources with a 

very low degree of dependence and within the range 

of resting-state EEG frequency bands except some 

of the components which exhibit larger frequency 

bands which may represent some artifactual 

activities. Moreover, the potential distribution for 

most of the estimated sources was localized and 

dipole-like, however, still cICA-EBM and A-CMN 

estimated even more localized scalp maps. 

The performance of GUT was the worst among the 

applied algorithms. The separation degree of the 

estimated sources was not as good as those estimated 

by other algorithms, where there exist some 

correlations between the sources that are found by 

GUT. Sometimes, those correlations become even 

higher than the correlations between the data 

channels themselves. GUT was able to estimate 

sources located within the EEG frequency bands but 

almost all the sources have a significant peak at high 

frequencies and this may have the effect of getting 

very similar scalp maps. 

The second-order complex ICA algorithms, such 

as GUT that performs ICA by joint diagonalization 

of the covariance and pseudo-covariance matrices, 

impose that all the sources have different spectral 

coefficients which means that at most one original 

source can have circular distribution. This may be 

considered as a limitation of this algorithm. 

Moreover, the main work of GUT is to transform the 

data into uncorrelated components, whereas we 

always aim to get as much as possible independent 

components throughout applying ICA.  

The KM-F algorithm utilizes kurtosis or the 

fourth-order cumulant for measuring the degree of 

Gaussianity of sources in order to optimize the 

separation process and it also requires that at most 

one source has to vanish fourth-order statistics. The 

c-FastICA algorithm achieved slightly worse 

separation than both cICA-EBM and A-CMN, this 

may be caused by its parallel separation of the ICs. 

The better performance achieved by the A-CMN 

algorithm may arise from its usage to the ideal 

nonlinearity function in the information theoretic 

framework for dealing with complex sources, the 

function uses the real and imaginary parts of the 

Fig. 5.  Source-algorithm 2D image plot of the sparseness criterion. Each of the 

small rectangular areas in the first row (marked with Orig_Data) represents the 

sparseness for one raw EEG data. Likewise, those marked with A-CMN, cICA-

EBM, c-FastICA, GUT, and KM-F represents the sparseness for one estimated 

IC. The whiter the rectangle color is, the sparser is the IC or data channel. 
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source for computing the log of their joint 

probability density.  

The preceding algorithms have a common 

limitation in matching precise simple bivariate 

distributions only, therefore, they may have a 

limitation in the separation of sources that have a 

richer class of distribution. This is not the case with 

the cICA-EBM algorithm which showed superior 

separation performance due to its ability to match a 

wide range of bivariate distributions. Fig. 6 shows a 

summary of the overall performance of the used 

algorithms in finding sparser sources and localizing 

dipoles for the estimated ICs. 

VI. CONCLUSION

Complex-valued signals often occur in 

applications such as communications, radar, images, 

and biomedicine. Complex-valued ICA has been 

widely dealt with in research and practical work 

during the last decade. In this study, we were 

interested in analyzing rest-state EEG data using 

complex-valued ICA and then comparing the 

performance of different algorithms based on some 

criteria. 

We recorded and analyzed EEG data from 105 

subjects using either 22 or 32 recording electrodes in 

order to examine the robustness of the analysis and 

algorithms. The subjects were in rest-state i.e. with 

eyes closed and as less as possible movements in the 

body parts. Then Short-time Fourier transform has 

been used as a time/frequency analysis tool in order 

to exploit the propagation delay for the cerebral 

activity to be recorded via the electrodes, this delay 

was presented as phase information inherent in the 

EEG data. We used five complex-valued ICA 

algorithms based on different mathematical 

principles for analyzing the data. 

In our study, the ground truth of the real EEG data 

is unknown to us, i.e. the real structure of the 

underlying sources in the real EEG data and the way 

they have been mixed are unknown. Hence, it is 

necessary to use some criteria that do not depend on 

the mixing process (mixing matrix) but rather 

depend on the estimated sources. So, we used three 

comparison criteria to assess the performance of the 

different algorithms. The first criterion was for 

assessing the degree of separating the mixed data 

into its original sources, fourth order measure of 

statistical dependency has been used to compute the 

correlation among the estimated sources. The second 

criterion was to assess the correctness of dipoles 

localization for the estimated sources, the residual 

variance between the estimated IC scalp map and the 

dipole scalp projection has been used for that. The 

third criterion was to determine whether an 

estimated source of being related to a brain activity 

or to an artifact activity, sparseness has been used to 

find components with the highest supergaussianity. 

The obtained results showed that the performance 

of cICA-EBM was superior over the other 

algorithms. This algorithm was able to estimate 

sources with very low correlations and present 

localized scalp maps. The performance that is 

achieved by A-CMN was almost the same as in the 

case of cICA-EBM but the latter found ICs with 

lower sparseness values. The performance of c-

FastICA and KM-F was very similar, they both were 

also able to find ICs with very low correlation but 

some of the components had larger frequency bands 

than the normal rest-state EEG frequency bands. 

Such components may represent some artifactual 

activities. The performance of GUT was the worst; 

where there exist some correlations between the 

estimated ICs and sometimes these correlations 

become even higher than the correlations between 

the data channels themselves. 

Fig. 6.  Illustration of overall abilities of the used algorithms. 
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