

Abstract The Fast Fourier Transform (FFT) and Inverse FFT(IFFT) are used in most of the digital signal processing

applications. Real time implementation of FFT/IFFT is required in many of these applications. In this paper, an

FPGA reconfigurable fixed point implementation of FFT/IFFT is presented. A manually VHDL codes are written to

model the proposed FFT/IFFT processor. Two CORDIC-based FFT/IFFT processors based on radix-2and radix-4

architecture are designed. They have one butterfly processing unit. An efficient In-place memory assignment and

addressing for the shared memory of FFT/IFFT processors are proposed to reduce the complexity of memory

scheme. With "in-place" strategy, the outputs of butterfly operation are stored back to the same memory location of

the inputs. Because of using DIF FFT, the output was to be in reverse order. To solve this issue, we have re-use the

block RAM that used for storing the input sample as reordering unit to reduce hardware cost of the proposed

processor. The Spartan-3E FPGA of 500,000 gates is employed to synthesize and implement the proposed

architecture. The CORDIC based processors can save 40% of power consumption as compared with Xilinx logic

core architectures of system generator.

Index Terms— Fast Fourier Transform, CORDIC, Field Programmable Gate Array, In-Place RAM.

I. INTRODUCTION

Many applications of digital signal processing

applications such as linear filtering [1], spectrum

analysis [2], digital video broadcasting [3] and

Orthogonal Frequency Division Multiplexing

(OFDM) [4] employ the Discrete Fourier

Transform (DFT) as a significant part of their

design. However, an efficient algorithm for

calculating the (DFT) is The Fast Fourier

Transform (FFT). Only O(N log N) multiply and

add operations are required in FFT to implement

the DFT algorithm, vs. N2 operations in the basic

DFT. The difference in speed can be enormous,

especially for long data sets where N may be in

the thousands or millions. The Fast Fourier

Transform (FFT) and its Inverse (IFFT) are

widely used in communication system especially

in orthogonal frequency division

multiplexing(OFDM) systems (Wi‐Fi) , wireless-

LAN, ADSL, VDSL systems and WIMAX.

Therefore, the attention to the real-time

implementation of FFT/IFFT processors has

been directed and efficient implementation of it

became a significant topic of nowadays

researches [5]. Many different hardware

architectures for FFT/IFFT have been proposed

for different applications and implemented in

FPGAs. The small area, low power, and high-

throughput is a significant challenge for efficient

hardware realization of FFT/IFFT. The challenge

is even more pronounced when large transform

lengths (>1024 points) need to be realized in

embedded hardware. The architectures of FFT

processors mainly labeled as three types: the

parallel architecture, the pipeline architecture and

the sequential architecture. The parallel and

pipeline architecture have more butterfly

processing units to achieve high performance but

they consume larger area than the sequential

architecture. On the other hand, the sequential

architecture requires only one butterfly

processing unit and has the advantage of area

efficiency. But the sequential architecture has a

Reduced Area and Low Power Implementation of

FFT/IFFT Processor
Shefa A. Dawwd Suha. M. Nori

Computer Engineering Department Computer Engineering Department

University of Mosul University of Mosul

Mosul-Iraq Mosul-Iraq

shefadawwd@gmail.com suhamudhafer@yahoo.com

Iraqi Journal for Electrical and Electronic Engineering
Original Article

2SHQ�$FFHVV�

Received: 25 August 2018 Revised: 2 October 2018 Accepted: 10 October 2018
DOI: 10.37917/ijeee.14.2.3 Vol. 14| Issue 2 | December 2018

drawback of low throughput and requires a

complex circuit design of memory address

controller. We focus on the sequential

architecture for area efficiency and hardware

simplicity [6].

In FFT/IFFT processor, the butterfly operation is

the most computationally demanding stage.

Traditionally, a butterfly unit is composed a

complex adders and multipliers, and the

multiplier is usually the bottleneck in FFT/IFFT

processor The multiplication is the most

expensive operation in the FFT/IFFT blocks.

When N (the number of points) increases, the area

and power consumption rapidly increases due to

increasing demands of complex multiplier. So

there is a need to reduce or eliminate the

multipliers [3]. Of many ways to achieve this, the

Coordinate Rotation Digital Computer

(CORDIC) algorithm was chosen. In CORDIC

algorithm, add and shift operation is only

required as an alternative to the multiplication.

This leads to reduce the required hardware to

perform the butterfly process in FFT. In addition,

as an alternative of using the ROM-based lookup

table storing twiddle factors that consumes large

area in case of long-length FFT computation, the

CORDIC base FFT/IFFT processor needs to store

only the twiddle factor angles in a small ROM for

butterfly operation.

There is a growing number of recently reported

works on variable length, fixed length, small area,

and low power FFT processors. In what follows,

some of these works are presented. In [7] an

FPGA implementation of 16-point FFT processor

based on radix-2,radix-4, and split-radix is

proposed. Vedic multiplier is used to speed up the

multiplication. A low power 1024-point split-

radix FFT is presented in [8]. The proposed

design achieve over 20% reduction on power

when compare to radix-2 based FFT.

Due to the many advantages of CORDIC

algorithm which helped to achieve low power,

low area, low cost, flexibility and scalability for

FFT/IFFT processor, the CORDIC algorithm has

been shown to be an efficient way to obtain these

specifications. The advantage of this algorithm is

that it can be implemented with a very small

FPGA footprint. It requires only a small lookup

table, along with some other logic to perform

shifts and additions. Importantly, the algorithm

requires no dedicated multipliers or dividers.

However, the large number of iterations that

needed in CORDIC algorithm leads to increase

the latency. Many published works and article

addressed the above issues. Fixed point [9, 10], or

floating point [11] representations of data are

employed. Small size [12], scalable[13],large

size[14,15], and variable size[16] CORDIC based

FFT with different implementation techniques are

designed.

In this paper, two scalable, configurable data

width / sample points of FFT/IFFT processors are

designed using Radix-2/Radix-4 and

implemented in FPGA. The CORDIC algorithm

is used to generate the twiddle factors. To

enhance the speed and reduce the delay, pipeline

CORDIC architecture is used. Also, using higher

radix rather than of lower one will enhance the

computation time for large number of points. The

FFT/IFFT processor is designed using radix-4

and radix-2 algorithms.

The paper is organized as follow: section 2

presents the mathematic and background of

CORDIC and different FFT/IFFT techniques. The

CORDIC based FFT design and architecture of

the proposed processor is given in some details in

section 3. While the most important experimental

results, discussions, and comparisons are

presented in section 4. Finally, the proposed work

is concluded in section 5.

II. FFT/IFFT ALGORITHM

A. FFT Butterfly Algorithm

The theoretical background and representation of

different FFT algorithms, each with its

advantages and disadvantages are presented in

this section. Fast Fourier Transform is an efficient

method for calculating the Discrete Fourier

Transform (DFT) and it's inverse [17]:

1-Nk0)(][
1

0






N

n

nk

NWnxkX (1)

WN is shorthand for exp-i2π/N and represents the

twiddle factor. The most common FFT algorithms

is Cooley–Tukey FFT algorithm, which is called

the divide and conquer algorithm that recursively

breaks down a DFT of any composite size into

many smaller DFTs sizes and combining them to

get the total transform. There are basically two

109

Shefa A. DawwdVol. 14| Issue 2 | December 2018

typical forms of Cooley–Tukey FFT

algorithm:the Decimation In Time(DIT) and the

Decimation In Frequency(DIF). These two types

are categorized according to the order of input

and output samples.

A radix-2 DIT FFT is the simplest and most

common form of the Cooley–Tukey algorithm.

Radix-2 divides a DFT of size N into two

interleaved DFTs (hence the name "radix-2") of

size N/2 with each recursive stage [2]. If N=2v,

then v=log2 N. Now, the number of complex

multiplication and the number of complex

addition are reduced to (N/2 log2 N) and (N log2

N) respectively in comparison with the order of

N2 in DFT[18]. The butterflies for DIF and DIT

are shown in Fig. 1a and Fig. 1b respectively.

The radix-4 FFT algorithm decimates the N-point

input sequence of the discrete Fourier transform

(DFT) equation into 4 subsequences (x(4n),

x(4n+1), x(4n+2), x(4n+3), n = 0, 1, ... , N/4-1).

The radix-4 butterfly is depicted in Fig.1(c,d). It

should be noticed that WN
0=1, three complex

multiplications and twelve complex additions are

involved for each butterfly. For radix-4, v equal

to 4 , then, the number of points N=4v. v stages,

each of N/4 butterflies are consisted in FFT

algorithm. Consequently, 3vN/4=(3N/8)log2N

complex multiplications and (3N/2)log2N

complex additions are required. In comparison

with radix-2, a 25% reduction of multiplications

is achieved, but, only 50% of additions are

required in radix-2 (Nlog2 N) vs. (3N/2)log2N

additions in radix-4[19].

Using radix-4 algorithm has the advantage of

additional savings in the required number of

complex multiplications as compared to radix-2

algorithm but it needs 3N complex additions. So

there is another decomposition similar to radix-4,

it is radix-22 algorithm [20] which simplifies the

complex radix-4 butterfly by reducing the number

of complex additions to 2N. Radix-22 and radix-4

requires the same number of complex

multiplications. Fig.1(e), illustrates the basic

butterfly for radix-22 DIF FFT algorithm. In

radix-22 algorithm, there are N/4 butterflies for

each stage as radix- 4 FFT algorithm but with

good regularity. So, it has the same structure of

radix-2 algorithm and the same identical

computational requirement of radix-4 algorithm.

Fig. 1 Different butterfly configuration, (a) DIF radix-2 (b)

DIT radix-2 (c) DIF radix-4 (d) DIT radix-4 (e) Radix22 (f)

Split radix.

It can be observed that the even and odd-

numbered points of the DFT can be computed

independently, therefore the idea of using

different computational methods for independent

parts of radix-2 algorithm was suggested, with the

objective of reducing the number of

computations. The Split Radix FFT (SRFFT)

algorithm was developed by Duhamel and

Hollmann in 1984 [21]. It combines radix-2 and

radix-4 decompositions. The SRFFT algorithm is

based on decomposing an N-point DFT into an

N/2-point DFT and two N/4-point DFTs (see Fig.

1f). The split-radix algorithm can be also derived

by combining the radix-2 and radix-8

decompositions. The multiplicative complexity of

the split-radix algorithm is (N/3)log2N. It is only

about two-thirds that of the radix-2 FFT, and it is

better than the radix-4 FFT or any higher radix as

well. Moreover, the addition complexity remains

the same as radix-2 FFT about (Nlog2 N).

Despite the advantage of SRFFT in that it has

considerably fewer number of arithmetic

computations compared to that of radix-4 and

radix-2 FFT, it has irregular butterfly (L-shaped

butterfly) which yields irregular hardware.

The irregular shape has uneven latencies between

w0

x0

x1

X0

X1
w0

x0

x1

X0

X1

w0

w0

w0

w0

x0

x1

x2

x3

X0

X1

X2

X3

j

1
j

1

1

j

1

j

w0

w0

w0

w0

x0

x1

x2

x3

X0

X1

X2

X3

j

1
j

1

1

j

1

j

1

1

1

j

j

x0

x1

x2

x3

X0

X1

X2

X3

1

1

j

j

w0

w0

x0

x1

x2

x3

X0

X1

X2

X3

(a) (b)

(c) (d)

(e) (f)

110

Shefa A. DawwdVol. 14| Issue 2 | December 2018

data paths and is not suited for high throughput

operation. Higher-radix algorithms, such as the

radix-8, radix-16 require fewer computations and

can produce simple but worthwhile savings

(reduced memory accesses so power consumption

can be reduce). However, the disadvantages are

that traditional direct mapping implementation of

high-radix butterfly element requires more

complex operations and thus large silicon area

will be consumed [22]. There isn't much

difference among them, except that the series 32

division is N/8 and N/16 instead of N/4 or N/2 as

in radix-2 and radix-4, the number of inputs being

processed in a single butterfly (8-points and 16-

points), the addressing of twiddle factors and the

number of stages being log8(N) and log16(N)

respectively, etc.

B. CORDIC Algorithm

CORDIC is defined as an iterative algorithm

designed to calculate mathematical, hyperbolic,

and trigonometric functions. It is a set of shift-

add algorithms for rotating vectors in a 2D plane.

It uses simple shift, add, subtract and table look-

up operations to achieve the objective. The FFT

complex twiddle factor multiplications can be

eliminated by transforming them into CORDIC

operations(Any complex multiplier based FFT

architecture has its CORDIC based equivalent).

This can simply be implemented. The

representation of the following complex

multiplication:

jexjxXjX )].Im()[Re()Im()(Re (2)

is represented in matrix form as follows:
















 










)Im(

)Re(

cossin

sincos

)Im(

)Re(

x

x

X

X




 (3)

However, Generalized equation governing

CORDIC operation is given by[23]:
















 














i

i

i

i

y

x

y

x





cossin

sincos

1

1
 (4)





sin.cos.

sin.cos.

1

1

iii

iii

xyy

yxx









This algorithm is generalized to evaluate a set of

arithmetic functions such as multiplication,

division, arctangent, sine, cosine, etc. No

multipliers and dividers are required. A given

rotation transform equation is used in this

algorithm. A new vector Vi+1(xi+1,yi+1) is

obtained by rotating a vector Vi(xi,yi) over an

arbitrary angle θ (see Fig.2).

Fig. 2 Vector Vi(xi,yi) is rotated to Vi+1(xi+1,yi+1).

The equation above can be rearranged so that:

)tan.(cos

)tan.(cos

1

1





iii

iii

xyy

yxx








 (5)

If the rotation angles are restricted to tan θ , the

multiplication is simply reduced to shift

operation. Arbitrary angles of rotation are

attainable by performing a series of successively

smaller elementary rotations. If the decision at

each iteration i is in which direction to rotate,

then the term cosθi becomes a constant (because

cos θi= cos(-θi)). Now, the iterative rotation can

be represented as:

)2(

)2(

1

1

i

iiiii

i

iiiii

xdyKy

ydxKx












 (6)

And

i

i

iK







21

1
)2cos(tan 1

 (7)

rotate direction(di)=±1

The product of the Ki represents the K value or

scaling factor. It can be removed from the

equation. The value of K is treated as part of

system processing gain.

i

iiii

i

iiii

xdyy

ydxx













2

2

1

1
 (8)









 


1

0

1

0 21

1w

i
i

w

i

iKK

111

Shefa A. DawwdVol. 14| Issue 2 | December 2018

w represent number of iterations. The K

represents the gain and it's approximately 1.647 if

i goes to infinity. The angle of a combination

rotation is uniquely determined by the series of

directions of the elementary rotations. That series

can be performed by a decision vector. The set of

all possible decision vectors can be accomplished

using small look-up table so the angle

accumulator adds a third difference equation to

the CORDIC algorithm:

iiii

i

iii

dzz

dzz











1

1

1)2(tan
 (9)

 The sum of rotating angles give the desired

angle:

i

id 

 2tan 1 (10)

Radix-4 CORDIC algorithm is an extension of

the radix-2 algorithm. The powers of four is used

instead of powers of two so the number of

iterations is reduced to half, therefore the speed of

CORDIC algorithm implementation can be

improved by using radix-4 CORDIC algorithm.

The iteration equations for the radix-4 CORDIC

algorithm in rotation mode are derived at the (+1)

th and are given by:

)4(tan

4

4

1

1

1

1

i

iii

i

iiii

i

iiii

dzz

xdyy

ydxx



















 (11)

where d𝑖 ∈ { − 2 , − 1 , 0 , 1 , 2 }. The final and

coordinates are scaled by:









 


1

0
22

1

0 41

1w

i
i

i

w

i

i

d
KK (12)

C. IFFT Algorithm

The IFFT of N oint sequence X(k), k=0,1,…..,N-

1 is defined as:

1-Nk0)(
1

][
1

0

 





N

n

nk

NWkx
N

nX (13)

Looking at FFT and IFFT equations (1)&(13),

they look very similar but with two differences:

they are divided by N and the sign of the twiddle

factor. |Inverse FFT can be implemented by using

the following technique which is shown in Fig.3.

The inverse FFT scheme can be got without

Fig. 3 IFFT circuit made by FFT module.

bothering with conjugation. Instead, swapping the

real and imaginary parts of sequences of complex

data will be taken.

III. THE FFT/IFFT PROCESSOR

To generate the twiddle factors in the butterfly

unit, and instead of storing it in the ROM, the

CORDIC algorithm has been used. Another

advantage of CORDIC algorithm is to realize the

butterfly operation without using any devoted

multiplier hardware. Two FFT/IFFT processors

are designed, the first one uses radix-2 and the

other uses radix-4 structure. Two scalable,

configurable data width and configurable sample

points of FFT/IFFT processors are designed using

Radix-2/Radix-4 and implemented in FPGA. The

FFT is computed using the decimation-in

frequency algorithm. The two processors are

capable of performing IFFT without changing the

internal coefficients because of the use of the

swapping method as mentioned in last section.

Input/output pins of FFT/IFFT processors are

shown in Fig 4.

Fig 4 The CORDIC based FFT/IFFT chip.

Where: Iin, Qin pins are used to represent the real

and imaginary part of input samples respectively.

The clk pin is the clock of processor. The rest pin

is the reset. The start pin is used to trigger

beginning of computation. The invert pin is used

to assign FFT or IFFT operation. The input_busy

pin becomes active during the computation. The

clk

invert

inI

inQ

start
rest

outI

outQ

endataout __

busyinput_

positionout_

CORDIC

based FFT

processor

input

unit

output

unit

FFT

I I

Q Q

1/N

1/N

Re[X(k)]I 

Im[X(k)]Q Im[x(n)]Q

Re[x(n)]I 

IFFT

112

Shefa A. DawwdVol. 14| Issue 2 | December 2018

out_data_en pin becomes active at the beginning

of output data. The out_position is used to display

the output index. The Iout , Qout pins represent the

real and imaginary part of output signal

respectively.

The CORDIC algorithm is used to generate the

twiddle factors as shown in Fig.5. The address

generation unit generate addresses to the dual

ported RAM which fetch the input samples from

the selector unit that is functioned as a memory

buffer and used to determine the memory

allocated for the written input samples. Start

signal is then sent from the control unit to the

radix-2/radix-4 butterfly and rotate factor

generation unit to compute the 2 or 4-points FFT

in radix-2/radix-4. The phase that required is

generated using the rotate factor generation unit.

The truncate and round unit is employed to resize

the width of data. In what follows, some details

are presented for the above units.

Fig 5 Architecture of CORDIC based FFT/IFFT processor

A. Butterfly Unit

The butterfly unit was designed to support radix-

2/radix-4 DIF butterfly operation and based on

CORDIC algorithm. The radix-2 butterfly unit

requires only one complex addition and one

complex subtraction while twelve complex

addition/subtraction are required in radix-4

butterfly. The complex multipliers was eliminated

by using the CORDIC algorithm.

B. CORDIC Unit

The CORDIC unit used to generate the twiddle

factor through using it in rotation mode. It

generates the cosine and sine function, which are

the main components of the twiddle factor:

)]
2

sin()
2

[cos(/2

N

kn
j

N

kn
eW Nknnk

N

  
 (13)

Another advantage of CORDIC unit is that it

eliminates complex multiplication. The

expression of complex multiplication can be

defined as follows:

)]
2

cos()()
2

sin()([

)
2

sin()()
2

cos()(

)
2

sin()
2

cos(

)].(.)([).(

N

kn
Gimag

N

kn
Grealj

N

kn
Gimag

N

kn
Greal

N

kn
j

N

kn

GimagjGrealWkG nk

N















 (14)

In return to section 2, θ=-2πkn/N, x =imag(G) , y

= real(G) , then is the real result of complex

multiplication, xi+1 and yi+1 are the resulted real

and image of complex multiplication

respectively. There are three types of CORDIC

architectures in rotation mode: Sequential /

iterative, Parallel / cascaded and Pipelined. Each

one of them has its own advantages and

disadvantages depending upon the type of use

intended. Based on the study of these advantages

and disadvantages Pipelined architecture is

chosen because it is comparatively the most

efficient one.

Pipelined CORDIC architecture uses the basic

CORDIC architecture that was described above.

If a Sequential / iterative architecture was used,

the generator unit would take n clock cycles to

build a single output sample, where n represents

the number of iterations. But using pipeline

converts iterations into pipeline phases, and thus

an output is obtained at every clock cycle after

pipeline stages propagation delay which takes n

clock cycles. It provides much faster throughput

but it needs more hardware resources as

compared to the Sequential module. Pipelined

CORDIC contains n number of CORDIC module

which is cascaded. It contains fixed shift registers

at each pipelined stage and performs fixed

number of shifts every time. It contains registers

113

Shefa A. DawwdVol. 14| Issue 2 | December 2018

at every stage to store the fixed angle for the

particular micro rotation at each block in pipeline

architecture. Fig.6 shows the architecture.

C.

 Angele

Fig 6 The pipelined CORDIC architecture.

C. Generator Unit

The Angle generator Unit generates the angle

sequence that is required to generate the twiddle

factor of the CORDIC unit. An N-point FFT can

be divided into n = log2N stages in radix-2

algorithm. In this case, the twiddle factor angle

sequence at the stage S ∈ {1 . . . n} has a length L

= 2s and is repeated N/2s times in order to perform

the N required rotations. A counter with n bits

will be used to generate the angle sequence, The

most significant bit of the counter at each stage

will be multiplied with the rest of counter's bits to

obtain the angle sequence for that stage. During

the transition from one stage to another, the

number of bits for counter will be decreased by

one bit in each stage, even it reaches the last stage

with one bit of counter. Where no angle sequence

will be generated in the last stage because the

twiddle factors in last stage for DIF FFT will be

zero.

In radix-4 FFT algorithm, an N-point FFT can be

divided into n = log4N stages. In this case, the

twiddle factor angle sequence at the stage S ∈ {1 .

. . n} has a length L = 4s and is repeated N/4s

times in order to perform the N required rotations.

The Sth stage has N/4s unique twiddle factor. A

counter with n bits will be used to generate the

angle sequence. The counter will count from 0 to

N−1 of an N-point FFT to obtain these

sequences.Fig.7 shows the mechanism that used

for angle generating. In radix-4 FFT, the most

significant bit of the counter and its next bit will

be multiplied at each stage with the rest of

counter's bits to obtain the angle sequence for that

stage. Here the number of bits for counter will be

decreased by two bits in each stage even reaches

the last stage with two bit of counter. Where no

angle sequence will be generated in the last stage

because the twiddle factors in last stage for DIF

FFT will be zero.

Fig.7 shows the mechanism that used for angle

generating in radix-2 and radix-4.

Fig 7 The mechanism of angle generation for radix-2(left)

and radix-4 (right) architectures.

D. Data memory (Dual port RAM)

The input samples, intermediate samples and the

output samples of FFT computation are stored in

data memory. Data memory is a dual port RAM

(DPRAM). One is used to hold the real

components and the other to hold the imaginary

components. The real and imaginary parts of the

point can be read or written at the same time. The

size and the data width of the dual port RAM are

reconfigurable. The FFT algorithm uses “in lace”

 / / / /  /  /

 / / / /  /  /

 / / / /  /  /

0x 0y 0z

)(0zsign

)(1zsign

)(1nzsign

arctan (2-1)

arctan (1)

arctan (2-n+1)

1y1x

1nx 1ny 1ny

nx ny ny

114

Shefa A. DawwdVol. 14| Issue 2 | December 2018

com utation, i.e. the data after each butterfly

computation is placed back in the same locations

that the input data was read from, with bit-

reversed addresses. So maximum memory

efficiency will be achieved. This requirement has

no any effect on the specification, but

complicates the design of the address generator.

E. Address generation and Control Unit

The design utilizes two address generators to

control the input and output of data from the dual

port RAM. One is used to generate the read

addresses and the other to generate the write

addresses. Both create the same address pattern.

The Address generation unit performs the

effective address calculations (using counters) to

address data operands in memory and contains

the registers used to generate the addresses. It

also keeps track of which butterfly is being

computed in which stage. For radix-2 of an N

point complex FFT, there are s stages, where

s=log2N, each stage consists of (N/2) butterflies

for radix-2 structure that shown earlier. While for

radix-4 there are v stages where v=log4N. Each

stage consists of (N/4) butterflies.

In the beginning of FFT computation, The write

addresses are generated for the input samples in

sequential (natural) order to store them in the

RAM then bit reverse addressing is used for

intermediate and output samples because DIF

algorithm is used. Table I shows the mechanism

for generating the addresses for the memory. For

example in radix-2, if N=16 , N=24, then s=4,

No. of counter bits (that used to generate write or

read addresses) is also 4 bits. In radix-4,

v=log416,s=2(see Table II).

TABLE I

ADDRESS GENERATION FOR RADIX-2 DIF FFT

Counter

(b3b2b1b

0)

Stage0

(b0b3b2b

1)

Stage1

(b1b0b3b

2)

Stage2

(b2b1b0b

3)

Stage3

(b3b2b1b

0)

0000 0000 0000 0000 0000

0001 1000 0100 0010 0001

0010 0001 1000 0100 0010

0011 1001 1100 0110 0011

0100 0010 0001 1000 0100

….. ….. ….. ….. …..

1110 0111 1011 1101 1110

1111 1111 1111 1111 1111

TABLE II

ADDRESS GENERATION FOR RADIX-4 DIF FFT

The simulation results of the address and control

unit are shown in Fig.8.

Fig 8 Address generation and control unit waveform for

64-points

Where: Iin and Qin represent the real and

imaginary of input signal that come from the

RAM. The RAM is used to store the input points.

The ffti and fftq represent the intermediate values

for real and imaginary of the point during the

calculation. The wdatai and wdataq are used as

registers. At the beginning, they store the real and

imaginary of the input point (Iin and Qin). Then

they store the intermediate result (ffti and fftq) in

the same location of input point in the RAM to

achieve "in place" computation. The raddr and

waddr are used as counters to read and write the

addresses for the memory. wen and ren are used

to enable or disable the read and write process.

The factorstart is used to inform the angle

generator unit to start working. The cfft4start is

used to inform the butterfly unit to start working.

The outdataen becomes active at the beginning of

output data.

Counter

(b3b2b1b0)

Stage0

(b1b0b3b2)

Stage1

(b3b2b1b0

0000 0000 0000

0001 0100 0001

0010 1000 0010

0011 1100 0011

0100 0001 0100

….. ….. …..

1110 1011 1110

1111 1111 1111

115

Shefa A. DawwdVol. 14| Issue 2 | December 2018

F. Truncate and round Unit

 The truncate and round unit is employed for

resizing the word length of intermediate data that

their numbers of bits are extended through the

computation. The reason behind extending the

word length is to get rid from the overflow issue.

So, the intermediate data will be divided by two

to resolve this issue in radix-2 while the

intermediate data will be divided by four in radix-

4 to resize it.

G. Reordering Unit

 Reordering of the output samples in DIF FFT or

reordering the input samples in DIT FFT is an

inherent problem in FFT computation. For the

proposed architecture, the outputs are obtained in

the bit-reversal order. Using a memory of size N

samples will solve the issue. The N samples are

stored in the memory in natural order using a

counter for the addresses and then they are read in

bit-reverse order by reversing the bits of the

counter. For example if N=16, N=24 then No. of

counter bits is 4 i.e. b3b2b1b0. Reversing it will

produce b0b1b2b3.

H. Implementation of IFFT architecture

 The IFFT converts a spectrum (amplitude and

phase of each component) into a time domain

signal. A reverse implementation of butterfly

diagram is done in this algorithm. Radix-2/Radix-

4 Decimation-in-frequency IFFT is implemented.

As mentioned earlier, we can use FFT

architecture to implement IFFT with some

modification, so no need to extra hardware. In

FFT/IFFT processor, invert signal is responsible

for the change between FFT and IFFT.

IV. EXPERIMENTAL RESULTS

The implementation of the CORDIC-based

FFT/IFFT Processor on Spartan 3E-FPGA of

500.000 gates platform with operation frequency

of 50MHz. The maximum operating frequency

achieved after synthesis using XST version 14.2

synthesis tool is 162MHz. The design for

mentioned architecture is modeled by using

VHDL language through ISE12.1 program as a

target technique and tested on different input

signals of large data samples . Fixed point data

representation of 12-bit word length is used for

input data samples and 16-bit word length for

twiddle factor.

The number of clock cycles, and resources usage

required to calculate the FFT using both radix-2

and radix-4 are shown in Fig. 9.

Fig 9 The radix-2 vs. radix-4 required clock cycles as a

function of N.

One can see that the retired number of clock

cycles are greatly reduced in radix-4 in

comparison to radix-2.

Area consumption of FFT/IFFT processor based

on radix-2 and radix-4 architectures (in terms of

number of slices) are discussed below. Fig. 10

represent the resource usage for different FFT

sizes for radix-2 based architecture and radix-4

based architecture.

Figure 10: The radix-2 vs. radix-4 required number of slices

as a function of N (The available slices of Spartan 3E are

4656).

From Fig.10, one can see that about 23% and

25% of the total available slices are only

consumed in radix-2 and radix-4 respectively.

However, the advantage on using radix-4 rather

than radix-2 is clearly shown (the consumed

1

10

100

1000

10000

100000

32 64 256 1024 2048 4096

N:# points

c locks

radix-2

radix-4

0

200

400

600

800

1000

1200

1400

32 64 256 1024 2048 4096
N:# points

slices

radix-2

radix-4

116

Shefa A. DawwdVol. 14| Issue 2 | December 2018

slices are approximately similar in radix-4 4096

points in comparison to radix-2 2048 point FFT).

After the synthesis process of the designs had

been achieved, the Power consumption of

FFT/IFFT processors was analyzed. Designing a

low power FFT/IFFT processor is one of the aims

in this thesis. It is determined using Xilinx Power

Analyzer available in XST synthesis tool. The

Xilinx Power Analyzer tool performs power

analysis on the data obtained after synthesis.

According to the power analysis results obtained

from Xilinx Power Analyzer tool, the power

consumption varies about an average value of

approximately 81mW for different FFT sizes for

each of radix-2 based architecture and radix-4

based architecture. The energy consumption can

be calculated in micro Joules according to the

equation: Energy=power×computation time .

Fig.11 illustrates the total energy consumption

with different FFT size for radix-2 and radix-4

architectures.

Fig 11 Energy consumption for radix-2 vs. radix-4 as a

function of N.

From Fig.11, one can see that the energy

consumption of radix-4 is reduced for larger FFT

size in comparison to radix-2 based architecture.

The simulating and synthesizing Xilinx Logiccore

FFT is performed in this paper for the comparison

purpose. A comparison between our designs and

Xilinx Logiccore FFT architectures is presented

in term of hardware utilization, power

consumption and latency. The system-level

modelling tool (system generator) simplifies

(FPGA) hardware design. It expands Matlab

Simulink and offer an appropriated modelling

environment for hardware design. Fig. 12, show

the above comparisons and the advantage of the

proposed processor is clearly shown.

Figure 12: Comparative studies in terms of hardware

utilization, power consumption and latency between

CORDIC based FFT/IFFT architectures and different

available system generator architectures (N= 1024,

a:pipeline, streaming I/O, b:Radix-4 burst I/O, c:Radix-2

burst I/O, d:Radix-2 Lite burst I/O, e:CORDIC based radix-

4, f:CORDIC based radix-2).

However, it can be noticed that the Pipelined-

Streaming I/O, and Radix-4 burst I/O

architectures have minimum latencies as

compared to the CORDIC because they uses the

pipelining technique and no computation of the

twiddle factors are involved as the calculation

begins.

A comparison of the proposed processors with

previous research work is presented in Table III.

TABLE III

COMPARISON WITH PREVIOUS FFT PROCESSORS

 [11] [8] [13] [16] Our

Design

platform Virtix-

5

Sparta

n-6

Virtix-

5

STRATI

X-III

Sparta

n-3E

N: #

points

4096 1024 16 4096 4096

Data

repr.

Floatin

g point

Fixed

point

Fixed

point

Fixed

point

Fixed

point

fmax(MH

z)

127 100 162 ----- 162

Min.

Power(m

W)

----- 20 4 501 63

Scalabilit

y

yes yes No yes yes

Proc.

Tech.

CORD

IC

Split-

radix

CORD

IC

CORDI

C

CORD

IC

slices ----- 6041 1056 ----- 1200

0.01

0.1

1

10

100

1000

32 64 256 1024 2048 4096

N:# points

Energy

consumption

(micro Joul)

radix-2

radix-4

1

10

100

1000

10000

a b c d e f

slices/Area # RAM Block

Power(mW) Latency(us)

117

Shefa A. DawwdVol. 14| Issue 2 | December 2018

According to the above comparison, the proposed

processor wins in term of power consumption.

The computation time of this processor

approximately equals the computation time of the

previous research, especially for the processor

which has scalability. The other feature of the

proposed processor, which overcomes the

previous processors, can perform the FFT and

IFFT transform using the same hardware.

V. CONCLUSIONS

Two configurable CORDIC-based FFT/IFFT

processors with shared memory architecture

(using In-Place strategy) have been designed. The

configurable data width and number of samples

of radix-2 and radix-4 fixed point FFT are

implemented on FPGA and modeled on VHDL

language. When comparing the results that

obtained, better results are achieved by using the

CORDIC-based FFT/IFFT processor than that

used in FFT Xilinx Logiccore architectures in

terms of area and power consumption because

CORDIC was used for generating the twiddle

factor. So, no ROM are required to store the

twiddle factors. CORDIC also eliminates the need

of complex multiplication. In term of latency, a

reasonable results are also achieved. However,

the implementation using pipeline streaming I/O,

and Radix-4 burst I/O of system generator still

give lower latency than the proposed CORDIC

design. According to simulation and synthesis

results, The proposed architecture gives an

advantage in terms of power consumption, area

and resource usage as compared to literature work

and it meets the timing constraints of different

wireless communication standards that use

OFDM modulation such as IEEE 802.11a, DAB

and VDSL.

REFERENCES

[1] M. Jaing, B. Yang, and W. Fu, "Design of

FFT processor with low power complex

multiplier for OFDM-based high-speed

wireless applications", IEEE International

Symposium on Communications and

Information Technology, 2004, pp. 639 - 641.

[2] L. Lee, and A. Girgis, , "Application of DFT

and FFT algorithms to spectral analysis of

power system load variation", Charlotte, NC,

USA,1988, Proceedings of the Twentieth

Southeastern Symposium on System Theory,

pp. 26 – 29.

[3] Z. Zhou, L. Zhi , D. Yunsongand Z.

Xiaoyang, "DFT-based Carrier Recovery for

Satellite DVB Receivers", Las Vegas, NV,

2007, International Conference on Consumer

Electronics.

[4] F. Wang,and X. Wang,; "Coherent Optical

DFT-Spread OFDM", Advances in Optical

Technologies, Vol(2011), No. 689289, 2011.

[5] A. Cortes, I. Velez, M. Turrillas, and J.

Sevillano, "Implementing FFT and IFFT Cores

for OFDM Communication Systems", Fourier

Transform - Signal Processing, InTech, 2012.

[6] P. Mankar, L. Thakare, and A. Deshmukh

,"Design of Reconfigurable FFT for Wireless

Communication Application", IJARCSSE,

2014, vol. 4, Issue 4, pp.319-323.

[7] A. Chavan, K. Sowmya, and S. Mishra,”VLSI

Implementation of Split-radix FFT for High

Speed Applications”, International Journal of

Computer Applications ,Vol.157 , No. 7,

January 2017.pp.22-26.

[8] Z. Qian, and M. Margala, “Low-Power Split-

Radix FFT Processors Using Radix-2 Butterfly

Units”, IEEE Transactions on Very Large

Scale Integration (VLSI)

Systems, Vol.24, Issue: 9, Sept. 2016.

[9] S. Park, and Y. Yu, “Fixed-Point Analysis

and Parameter Selections of MSR-CORDIC

with Applications to FFT Design”, IEEE

Transactions on Signal Processing,

Vol.60, Issue: 12, Dec. 2012.

[10] M. Garrido, R. Andersson, and F. Qureshi,

,”Multiplierless Unity-Gain SDF FFTs”,

IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, Vol. 24, Issue: 9,

Sept. 2016.

[11] J. Chen, Y. Lei, Y. Peng, T. He, and Z.

 Deng, “Configurable Floating –Point FFT

Accelerator FPGA Based Multiple-Rotation

CORDIC”. Chinese Journal of Electronics,
Vol. 25, Issue 6, November 2016, p. 1063 –

1070

[12] A. Malashri, and C. Paramasivam, “Low

Power and Memory Efficient FFT Architecture

118

Shefa A. DawwdVol. 14| Issue 2 | December 2018

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=92
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=92
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=92
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7549121
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=78
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=78
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6357313
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=92
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=92
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7549121
http://digital-library.theiet.org/search;jsessionid=lq394p60nj7a.x-iet-live-01?value1=&option1=all&value2=Jiyang+Chen&option2=author
http://digital-library.theiet.org/search;jsessionid=lq394p60nj7a.x-iet-live-01?value1=&option1=all&value2=Yuanwu+Lei&option2=author
http://digital-library.theiet.org/search;jsessionid=lq394p60nj7a.x-iet-live-01?value1=&option1=all&value2=Yuanxi+Peng&option2=author
http://digital-library.theiet.org/search;jsessionid=lq394p60nj7a.x-iet-live-01?value1=&option1=all&value2=Tingting+He&option2=author
http://digital-library.theiet.org/search;jsessionid=lq394p60nj7a.x-iet-live-01?value1=&option1=all&value2=Ziye+Deng&option2=author
http://digital-library.theiet.org/content/journals/cje/25/6;jsessionid=lq394p60nj7a.x-iet-live-01

Using Modified CORDIC Algorithm”,

International Conference on Information

Communication and Embedded Systems

(ICICES), 2013.

[13] C. Paramasivam, and K. Jayanthi, “Modified

Scaling-Free CORDIC Based Pipelined

Parallel MDC FFT and IFFT Architecture for

Radix 22 Algorithm”, World Academy of

Science, Engineering and Technology

International Journal of Electronics and

Communication Engineering, Vol.9, No:12,

2015.

[14] J. Zhang, H. Liu,T. Chen, D. liu,and B.

Zhang, “Enhanced Hardware Efficient FFT

Processor based on Adaptive Recoding

CORDIC”, Electronika IR Eletrotechnika,

Vol. 19, No. 9, 2013, pp. 97-103 .

[15] M. Garrido, and J. Grajal, “Efficient

Memoryless Cordic for FFT Computation”,

IEEE International Conference on Acoustics,

Speech and Signal Processing, 2007. ICASSP

2007.

[16] Oruklu, E.; Xiao, X.; Saniie, J.;”Reduced

Memory and Low Power Architecture for

CORDIC-based FFT Processors”, Journal of

Signal Processing System, February

2012, Volume 66, Issue 2, pp 129–134.

[17] D. Lyon, "The Discrete Fourier Transform,

Part 1", Journal Of Object Technology, Vol.

8, No. 3, May-June 2009, pp. 17-26.

[18] W. Cooley, and W. Tukey, "An algorithm

for the machine calculation of complex Fourier

series", Mathematics of Computation,Vol. 19,

No. 90 (Apr., 1965), pp. 297-301

[19] G. Proakis , "Digital signal processing" third

edition, Prenticed Hall International, 1996.

[20] S. Sukhsawas, and K. Benkrid, "A High-level

Implementation of a High Performance

Pipeline FFT on Virtex-E FPGAs",

Proceedings of the IEEE Comp. Society

Annual Symp. on VLSI Emerging Trends in

Systems Design, 2004, pp. 229 – 232.

[21] P. Duhamel and H. Hollmann, “S lit-radix

FFT algorithm,” Electron. Lett., vol. 20, no. 1,

Jan. 1984, pp 14-16.

[22] T. Widhe, J. Melander, and L. Wanhammar,

"Design of Efficient Radix-8 Butterfly PEs

for VLSI", Circuits and Systems, Sweden, 9

Jun 1997, pp. 2084 – 2087.

[23] J. E. Volder, “The CORDIC trigonometric

computing technique,” IRE Transactions on

Electronic Computers, Vol. 8, No. 3, pp. 330–

334, 1959.

119

Shefa A. DawwdVol. 14| Issue 2 | December 2018

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4216989
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4216989
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4216989
https://link.springer.com/journal/11265/66/2/page/1

