
 

Abstract The Fast Fourier Transform (FFT) and Inverse FFT(IFFT) are used in most of the digital signal processing 

applications. Real time implementation of FFT/IFFT is required in many of these applications. In this paper, an 

FPGA reconfigurable fixed point implementation of FFT/IFFT is presented. A manually VHDL codes are written to 

model the proposed FFT/IFFT processor. Two CORDIC-based FFT/IFFT processors based on radix-2and radix-4 

architecture are designed. They have one butterfly processing unit. An efficient In-place memory assignment and 

addressing for the shared memory of FFT/IFFT processors are proposed to reduce the complexity of memory 

scheme. With "in-place" strategy, the outputs of butterfly operation are stored back to the same memory location of 

the inputs. Because of using DIF FFT, the output was to be in reverse order. To solve this issue, we have re-use the 

block RAM that used for storing the input sample as reordering unit to reduce hardware cost of the proposed 

processor. The Spartan-3E FPGA of 500,000 gates is employed to synthesize and implement the proposed 

architecture. The CORDIC based processors can save 40% of power consumption as compared with Xilinx logic 

core architectures of system generator. 

 
 

Index Terms— Fast Fourier Transform, CORDIC, Field Programmable Gate Array, In-Place RAM. 

 

 

I.  INTRODUCTION 

Many applications of digital signal processing 

applications such as linear filtering [1], spectrum 

analysis [2], digital video broadcasting [3] and 

Orthogonal Frequency Division Multiplexing 

(OFDM) [4] employ the Discrete Fourier 

Transform (DFT) as a significant part of their 

design. However, an efficient algorithm for 

calculating the (DFT) is The Fast Fourier 

Transform (FFT). Only O(N log N) multiply and 

add operations are required in FFT to implement 

the DFT algorithm, vs. N2 operations in the basic 

DFT.   The difference in speed can be enormous, 

especially for long data sets where N may be in 

the thousands or millions. The Fast Fourier 

Transform (FFT) and its Inverse (IFFT) are 

widely used in communication system especially 

in orthogonal frequency division 

multiplexing(OFDM) systems (Wi‐Fi) , wireless-

LAN, ADSL, VDSL systems and WIMAX. 

Therefore, the attention to the real-time 

implementation of FFT/IFFT  processors has 

been directed and efficient implementation of it 

became a significant topic of nowadays 

researches [5]. Many different hardware 

architectures for FFT/IFFT have been proposed 

for different applications and implemented in 

FPGAs. The small area, low power, and high-

throughput is a significant challenge for efficient 

hardware realization of FFT/IFFT. The challenge 

is even more pronounced when large transform 

lengths (>1024 points) need to be realized in 

embedded hardware. The architectures of FFT 

processors mainly labeled as three types: the 

parallel architecture, the pipeline architecture and 

the sequential architecture. The parallel and 

pipeline architecture have more butterfly 

processing units to achieve high performance but 

they consume larger area than the sequential 

architecture. On the other hand, the sequential 

architecture requires only one butterfly 

processing unit and has the advantage of area 

efficiency. But the sequential architecture has a 
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drawback of low throughput and requires a 

complex circuit design of memory address 

controller. We focus on the sequential 

architecture for area efficiency and hardware 

simplicity [6].  

In FFT/IFFT processor, the butterfly operation is 

the most computationally demanding stage. 

Traditionally, a butterfly unit is composed a 

complex adders and multipliers, and the 

multiplier is usually the bottleneck in FFT/IFFT 

processor The multiplication is the most 

expensive operation in the FFT/IFFT blocks. 

When N (the number of points) increases, the area 

and power consumption rapidly increases due to 

increasing demands of complex multiplier.  So 

there is a need to reduce or eliminate the 

multipliers [3]. Of many ways to achieve this, the 

Coordinate Rotation Digital Computer 

(CORDIC) algorithm was chosen.  In CORDIC 

algorithm, add and shift operation is only 

required  as an alternative to the multiplication. 

This leads to reduce the required hardware to 

perform the butterfly  process in FFT. In addition,  

as an alternative of using the ROM-based lookup 

table storing twiddle factors that consumes large 

area in case of long-length FFT computation, the 

CORDIC base FFT/IFFT processor needs to store 

only the twiddle factor angles in a small ROM for 

butterfly operation. 

There is a growing number of recently reported 

works on variable length, fixed length, small area, 

and low power  FFT processors. In what follows, 

some of these works are presented. In [7] an 

FPGA implementation of 16-point FFT processor 

based on radix-2,radix-4, and split-radix is 

proposed. Vedic multiplier is used to speed up the 

multiplication. A low power 1024-point split-

radix FFT is presented in [8]. The proposed 

design achieve over 20% reduction on power 

when compare to radix-2 based FFT.  

Due to the many advantages of CORDIC 

algorithm which helped to achieve low power, 

low area, low cost, flexibility and scalability for 

FFT/IFFT processor, the CORDIC algorithm has 

been shown to be an efficient way to obtain these 

specifications. The advantage of this algorithm is 

that it can be implemented with a very small 

FPGA footprint. It requires only a small lookup 

table, along with some other logic to perform 

shifts and additions. Importantly, the algorithm 

requires no dedicated multipliers or dividers. 

However, the large number of iterations that 

needed in CORDIC algorithm leads to increase 

the latency.  Many published works and article 

addressed the above issues. Fixed point [9, 10], or 

floating point [11] representations of data are 

employed. Small size [12], scalable[13],large 

size[14,15], and variable size[16] CORDIC based 

FFT with different implementation techniques are 

designed. 

In this paper, two scalable, configurable data 

width / sample points of FFT/IFFT processors are 

designed using Radix-2/Radix-4 and 

implemented in FPGA. The CORDIC algorithm 

is used to generate the twiddle factors. To 

enhance the speed and reduce the delay, pipeline 

CORDIC architecture is used. Also, using higher 

radix rather than of lower one will enhance the 

computation time for large number of points. The 

FFT/IFFT processor is designed using radix-4 

and radix-2 algorithms. 

The paper is organized as follow: section 2 

presents the mathematic and background of  

CORDIC and different FFT/IFFT techniques. The  

CORDIC based FFT design and architecture of 

the proposed processor is given in some details in 

section 3. While the most important experimental 

results, discussions, and comparisons are 

presented in section 4. Finally, the proposed work 

is concluded in section 5. 

 

 

II.  FFT/IFFT ALGORITHM 

A. FFT Butterfly Algorithm  

The theoretical background and representation of 

different FFT algorithms, each with its 

advantages and disadvantages are presented in 

this section. Fast Fourier Transform is an efficient 

method for calculating the Discrete Fourier 

Transform (DFT) and it's inverse [17]: 

1-Nk0    )(][
1

0






N

n

nk

NWnxkX                    (1) 

WN is shorthand for exp-i2π/N and represents the 

twiddle factor. The most common FFT algorithms 

is Cooley–Tukey FFT algorithm, which is called 

the divide and conquer algorithm that recursively 

breaks down a DFT of any composite size into 

many smaller DFTs sizes and combining them to 

get the total transform. There are basically two 
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typical forms of Cooley–Tukey FFT 

algorithm:the Decimation In Time(DIT) and the 

Decimation In Frequency(DIF). These two types 

are categorized according to the order of input 

and output samples. 

A radix-2 DIT FFT is the simplest and most 

common form of the Cooley–Tukey algorithm. 

Radix-2 divides a DFT of size N into two 

interleaved DFTs (hence the name "radix-2") of 

size N/2 with each recursive stage [2]. If N=2v, 

then v=log2 N. Now, the number of complex 

multiplication  and the number of complex 

addition are reduced to (N/2 log2 N) and (N log2 

N) respectively in comparison with the order of 

N2 in DFT[18]. The butterflies for  DIF and DIT 

are shown in Fig. 1a and Fig. 1b respectively. 

The radix-4 FFT algorithm decimates the N-point 

input sequence of the discrete Fourier transform 

(DFT) equation into 4 subsequences (x(4n), 

x(4n+1), x(4n+2), x(4n+3), n = 0, 1, ... , N/4-1). 

The radix-4 butterfly is depicted in Fig.1(c,d). It 

should be noticed that WN
0=1, three complex 

multiplications and twelve complex additions are 

involved for each butterfly. For radix-4, v equal 

to 4 , then, the number of points N=4v.  v stages, 

each of N/4 butterflies are consisted in FFT 

algorithm. Consequently, 3vN/4=(3N/8)log2N 

complex multiplications and (3N/2)log2N 

complex additions are required. In comparison 

with radix-2, a 25% reduction of multiplications 

is achieved, but, only 50% of additions are 

required in radix-2 (Nlog2 N) vs. (3N/2)log2N  

additions in radix-4[19]. 

Using radix-4 algorithm has the advantage of 

additional savings in the required number of 

complex multiplications as compared to radix-2 

algorithm but it needs 3N complex additions. So 

there is another decomposition similar to radix-4, 

it is radix-22 algorithm [20] which simplifies the 

complex radix-4 butterfly by reducing the number 

of complex additions to 2N. Radix-22 and radix-4 

requires the same number of complex 

multiplications. Fig.1(e), illustrates the basic 

butterfly for radix-22 DIF FFT algorithm. In 

radix-22 algorithm, there are N/4 butterflies for 

each stage as radix- 4 FFT algorithm but with 

good regularity. So, it has the same structure of 

radix-2 algorithm and the same identical 

computational requirement of radix-4 algorithm. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1 Different butterfly configuration, (a) DIF radix-2 (b) 

DIT radix-2 (c) DIF radix-4 (d) DIT radix-4 (e) Radix22 (f) 

Split radix. 

 

It can be observed that the even and odd-

numbered points of the DFT can be computed 

independently, therefore the idea of using 

different computational methods for independent 

parts of radix-2 algorithm was suggested, with the 

objective of reducing the number of 

computations. The Split Radix FFT (SRFFT) 

algorithm was developed by Duhamel and 

Hollmann in 1984 [21]. It combines radix-2 and 

radix-4 decompositions. The SRFFT algorithm is 

based on decomposing an N-point DFT into an 

N/2-point DFT and two N/4-point DFTs (see Fig. 

1f). The split-radix algorithm can be also derived 

by combining the radix-2 and radix-8 

decompositions. The multiplicative complexity of 

the split-radix algorithm is (N/3)log2N. It is only 

about two-thirds that of the radix-2 FFT, and it is 

better than the radix-4 FFT or any higher radix as 

well. Moreover, the addition complexity remains 

the same as radix-2 FFT about (Nlog2 N). 

Despite the advantage of SRFFT in that it has 

considerably fewer number of arithmetic 

computations compared to that of radix-4 and 

radix-2 FFT, it has irregular butterfly (L-shaped 

butterfly) which yields irregular hardware.  

The irregular shape has uneven latencies between 
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data paths and is not suited for high throughput 

operation. Higher-radix algorithms, such as the 

radix-8, radix-16 require fewer computations and 

can produce simple but worthwhile savings 

(reduced memory accesses so power consumption 

can be reduce). However, the disadvantages are 

that traditional direct mapping implementation of 

high-radix butterfly element requires more 

complex operations and thus large silicon area 

will be consumed [22]. There isn't much 

difference among them, except that the series 32 

division is N/8 and N/16 instead of N/4 or N/2 as 

in radix-2 and radix-4, the number of inputs being 

processed in a single butterfly (8-points and 16-

points), the addressing of twiddle factors and the 

number of stages being log8(N) and log16(N) 

respectively, etc. 

 

B. CORDIC Algorithm 

CORDIC is  defined as an iterative algorithm 

designed to calculate mathematical, hyperbolic, 

and  trigonometric functions. It is  a set of shift-

add algorithms for rotating vectors in a 2D plane. 

It uses simple shift, add, subtract and table look-

up operations to achieve the objective. The FFT 

complex twiddle factor multiplications can be 

eliminated by transforming them into CORDIC 

operations(Any complex multiplier based FFT 

architecture has its CORDIC based equivalent). 

This can simply be implemented. The 

representation of the following complex 

multiplication: 

jexjxXjX  )].Im()[Re()Im()(Re           (2) 

is represented in matrix form as follows: 
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However, Generalized equation governing 

CORDIC operation is given by[23]: 
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This algorithm is generalized to evaluate a set of 

arithmetic functions such as multiplication, 

division, arctangent, sine, cosine, etc. No 

multipliers and dividers are required. A given 

rotation transform equation is used in this 

algorithm. A new vector Vi+1(xi+1,yi+1) is 

obtained by rotating a vector Vi(xi,yi) over an 

arbitrary angle θ (see Fig.2). 

 

Fig. 2 Vector Vi(xi,yi) is rotated to Vi+1(xi+1,yi+1). 

The equation above can be rearranged so that: 
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If the rotation angles are restricted to tan θ , the 

multiplication is simply reduced to shift 

operation. Arbitrary angles of rotation are 

attainable by performing a series of successively 

smaller elementary rotations. If the decision at 

each iteration i  is in which direction to rotate, 

then the term cosθi becomes a constant (because 

cos θi= cos(-θi)). Now, the iterative rotation can  

be represented as: 
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rotate direction(di)=±1 

The product of the Ki represents the K value or 

scaling factor. It can be removed from the 

equation. The value of K is treated as part of 

system processing gain. 
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w represent number of iterations. The K 

represents the gain and it's approximately 1.647 if 

i goes to infinity. The angle of a combination 

rotation is uniquely determined by the series of 

directions of the elementary rotations. That series 

can be performed by a decision vector. The set of 

all possible decision vectors can be accomplished 

using small look-up table so the angle 

accumulator adds a third difference equation to 

the CORDIC algorithm: 

iiii

i

iii

dzz

dzz











1

1

1 )2(tan
                                    (9) 

 The sum of rotating angles give the desired 

angle: 

i

id 

 2tan 1                                            (10) 

Radix-4 CORDIC algorithm is an extension of 

the radix-2 algorithm. The powers of four is used 

instead of powers of two so the number of 

iterations is reduced to half, therefore the speed of 

CORDIC algorithm implementation can be 

improved by using radix-4 CORDIC algorithm.  

The iteration equations for the radix-4 CORDIC 

algorithm in rotation mode are derived at the (+1) 

th and are given by: 
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where d𝑖 ∈ { − 2 , − 1 , 0 , 1 , 2 }. The final and 

coordinates are scaled by: 
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C. IFFT Algorithm 

The IFFT of N oint sequence X(k), k=0,1,…..,N-

1 is defined as: 
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Looking at FFT and IFFT equations (1)&(13), 

they look very similar but with two differences: 

they are divided by N and the sign of the twiddle 

factor. |Inverse FFT can be implemented by using 

the following technique which is shown in Fig.3. 

The inverse FFT scheme can be got without  

 

 

 

Fig. 3  IFFT circuit made by FFT module. 

bothering with conjugation. Instead, swapping the 

real and imaginary parts of sequences of complex 

data will be taken. 

 

III.  THE FFT/IFFT PROCESSOR 

To generate the twiddle factors in the butterfly 

unit, and instead of storing it in the ROM, the 

CORDIC algorithm has been used. Another 

advantage of CORDIC algorithm is to realize the 

butterfly operation without using any devoted 

multiplier hardware. Two FFT/IFFT processors 

are designed, the first one uses radix-2 and the 

other uses radix-4 structure. Two scalable, 

configurable data width and configurable sample 

points of FFT/IFFT processors are designed using 

Radix-2/Radix-4 and implemented in FPGA. The 

FFT is computed using the decimation-in 

frequency algorithm. The two processors are 

capable of performing IFFT without changing the 

internal coefficients because of the use of the 

swapping method as mentioned in last section. 

Input/output pins of FFT/IFFT processors are 

shown in Fig 4. 

 

 

 

 

 

 

 

Fig 4 The CORDIC based FFT/IFFT chip. 

 

Where:  Iin, Qin pins are used to represent the real 

and imaginary part of input samples respectively.  

The clk pin is the clock of processor. The rest pin 

is the reset. The start pin is used to trigger 

beginning of computation. The invert pin is used 

to assign FFT or IFFT operation. The input_busy 

pin becomes active during the computation. The 
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out_data_en  pin becomes active at the beginning 

of output data. The out_position is used to display 

the output index. The Iout , Qout pins represent the 

real and imaginary part of output signal 

respectively. 

The CORDIC algorithm is used to generate the 

twiddle factors as shown in Fig.5. The address 

generation unit generate addresses to the dual 

ported RAM which fetch the input samples from 

the selector unit that is functioned as a memory 

buffer and used to determine the memory 

allocated for  the written input samples. Start 

signal is then sent from the control unit to the 

radix-2/radix-4 butterfly and rotate factor 

generation unit to compute the 2 or 4-points FFT 

in radix-2/radix-4. The phase that required is 

generated using the rotate factor generation unit. 

The truncate and round unit is employed to resize 

the width of data. In what follows, some details 

are presented for the above units. 

 

 
Fig 5 Architecture of CORDIC based FFT/IFFT processor  

 

A. Butterfly Unit 

The butterfly unit was designed to support radix-

2/radix-4 DIF butterfly operation and based on 

CORDIC algorithm. The radix-2 butterfly unit 

requires only one complex addition and one 

complex subtraction while twelve complex 

addition/subtraction are required in radix-4 

butterfly. The complex multipliers was eliminated 

by using the CORDIC algorithm.  

 

 

B. CORDIC Unit 

The CORDIC unit used to generate the twiddle 

factor through using it in rotation mode. It 

generates the cosine and sine function, which are 

the main components of the twiddle factor: 
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Another advantage of CORDIC unit is that it 

eliminates complex multiplication. The 

expression of complex multiplication can be 

defined as follows: 
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In return to section 2, θ=-2πkn/N,  x =imag(G) , y 

= real(G) , then is the real result of complex 

multiplication, xi+1 and yi+1 are the resulted real 

and image of complex multiplication 

respectively. There are three types of CORDIC 

architectures in rotation mode: Sequential / 

iterative, Parallel / cascaded and Pipelined. Each 

one of them has its own advantages and 

disadvantages depending upon the type of use 

intended. Based on the study of these advantages 

and disadvantages Pipelined architecture is 

chosen because it is comparatively the most 

efficient one. 

Pipelined CORDIC architecture uses the basic 

CORDIC architecture that was described above. 

If a Sequential / iterative architecture was used, 

the generator unit would take n clock cycles to 

build a single output sample, where n represents 

the number of iterations. But using pipeline 

converts iterations into pipeline phases, and thus 

an output is obtained at every clock cycle after 

pipeline stages propagation delay which takes n 

clock cycles. It provides much faster throughput 

but it needs more hardware resources as 

compared to the Sequential module. Pipelined 

CORDIC contains n number of CORDIC module 

which is cascaded. It contains fixed shift registers 

at each pipelined stage and performs fixed 

number of shifts every time. It contains registers 
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at every stage to store the fixed angle for the 

particular micro rotation at each block in pipeline 

architecture. Fig.6 shows the architecture. 

 

C.

 Angele  

 

 

 

 
 

Fig 6 The pipelined CORDIC architecture.  

 

C. Generator Unit 

The Angle generator Unit generates the angle 

sequence that is required to generate the twiddle 

factor of the CORDIC unit.  An N-point FFT can 

be divided into n = log2N stages in radix-2 

algorithm. In this case, the twiddle factor angle 

sequence at the stage S ∈ {1 . . . n} has a length L 

= 2s and is repeated N/2s times in order to perform 

the N required rotations. A counter with n bits 

will be used to generate the angle sequence, The 

most significant bit of the counter at each stage 

will be multiplied with the rest of counter's bits to 

obtain the angle sequence for that stage. During 

the transition from one stage to another, the 

number of bits for counter will be decreased by 

one bit in each stage, even it reaches the last stage 

with one bit of counter. Where no angle sequence 

will be generated in the last stage because the 

twiddle factors in last stage for DIF FFT will be 

zero. 

In radix-4 FFT algorithm, an N-point FFT can be 

divided into n = log4N stages. In this case, the 

twiddle factor angle sequence at the stage S ∈ {1 . 

. . n} has a length L = 4s and is repeated N/4s 

times in order to perform the N required rotations. 

The Sth stage has N/4s unique twiddle factor. A 

counter with n bits will be used to generate the 

angle sequence. The counter will count from 0 to 

N−1 of an N-point FFT to obtain these 

sequences.Fig.7 shows the mechanism that used 

for angle generating. In radix-4 FFT, the most 

significant bit of the counter and its next bit will 

be multiplied at each stage with the rest of 

counter's bits to obtain the angle sequence for that 

stage. Here the number of bits for counter will be 

decreased by two bits in each stage even reaches 

the last stage with two bit of counter. Where no 

angle sequence will be generated in the last stage 

because the twiddle factors in last stage for DIF 

FFT will be zero. 

Fig.7 shows the mechanism that used for angle 

generating in radix-2 and radix-4. 

 

 

Fig 7 The mechanism of angle generation for radix-2(left) 

and radix-4 (right) architectures. 

 

D. Data memory (Dual port RAM) 

The input samples, intermediate samples and the 

output samples of FFT computation are stored in 

data memory. Data memory is a dual port RAM 

(DPRAM). One is used to hold the real 

components and the other to hold the imaginary 

components. The real and imaginary parts of the 

point can be read or written at the same time. The 

size and the data width of the dual port RAM are 

reconfigurable. The FFT algorithm uses “in lace” 
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com utation, i.e. the data after each butterfly 

computation is placed back in the same locations 

that the input data was read from, with bit-

reversed addresses. So maximum memory 

efficiency will be achieved. This requirement has 

no any effect on the specification, but 

complicates the design of the address generator. 

 

E. Address generation and Control Unit 

The design utilizes two address generators to 

control the input and output of data from the dual 

port RAM. One is used to generate the read 

addresses and the other to generate the write 

addresses. Both create the same address pattern. 

The Address generation unit performs the 

effective address calculations (using counters) to 

address data operands in memory and contains 

the registers used to generate the addresses. It 

also keeps track of which butterfly is being 

computed in which stage. For radix-2 of an N 

point complex FFT, there are s stages, where 

s=log2N, each stage consists of (N/2) butterflies 

for radix-2 structure that shown earlier. While for 

radix-4 there are v stages where v=log4N. Each 

stage consists of (N/4) butterflies. 

In the beginning of FFT computation, The write 

addresses are generated for the input samples in 

sequential (natural) order to store them in the 

RAM then bit reverse addressing is used for 

intermediate and output samples because DIF 

algorithm is used. Table I shows the mechanism 

for generating the addresses for the memory. For 

example in radix-2, if N=16 , N=24, then s=4, 

No. of counter bits (that used to generate write or 

read addresses) is also 4 bits. In radix-4, 

v=log416,s=2(see Table II). 

 
TABLE I 

ADDRESS GENERATION FOR RADIX-2 DIF FFT 

Counter  

(b3b2b1b

0)  

Stage0  

(b0b3b2b

1)  

Stage1  

(b1b0b3b

2)  

Stage2  

(b2b1b0b

3)  

Stage3  

(b3b2b1b

0)  

0000  0000  0000  0000  0000  

0001  1000  0100  0010  0001  

0010  0001  1000  0100  0010  

0011  1001  1100  0110  0011  

0100  0010  0001  1000  0100  

….. ….. ….. ….. ….. 

1110  0111  1011  1101  1110  

1111  1111  1111  1111  1111  

 
 

TABLE II 

ADDRESS GENERATION FOR RADIX-4 DIF FFT 

 

 

  

 

 

 

 

 
 

 

 

The simulation results of the address and control 

unit are shown in Fig.8. 

 

Fig 8  Address generation and control unit waveform for 

64-points 

 

Where: Iin and Qin represent the real and 

imaginary of input signal that come from the 

RAM. The RAM is used to store the input points. 

The ffti and fftq represent the intermediate values 

for real and imaginary of the point during the 

calculation.  The wdatai and wdataq are used as 

registers. At the beginning, they store the real and 

imaginary of the input point (Iin and Qin). Then 

they store the intermediate result (ffti and fftq) in 

the same location of input point in the RAM to 

achieve "in place" computation. The raddr and 

waddr are used as counters to read and write the 

addresses for the memory. wen and ren are used 

to enable or disable the read and write process. 

The  factorstart is used to inform the angle 

generator unit to start working. The cfft4start is 

used to inform the butterfly unit to start working. 

The outdataen becomes active at the beginning of 

output data.  

Counter  

(b3b2b1b0)  

Stage0  

(b1b0b3b2)  

Stage1  

(b3b2b1b0  

0000  0000  0000  

0001  0100  0001  

0010  1000  0010  

0011  1100  0011  

0100  0001  0100  

….. ….. ….. 

1110  1011  1110  

1111  1111  1111  
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F. Truncate and round Unit  

   The truncate and round unit is employed for 

resizing the word length of intermediate data that 

their numbers of bits are extended through the 

computation. The reason behind extending the 

word length is to get rid from the overflow issue. 

So, the intermediate data will be divided by two 

to resolve this issue in radix-2 while the 

intermediate data will be divided by four in radix-

4 to resize it. 

 

G. Reordering Unit  

   Reordering of the output samples in DIF FFT or 

reordering the input samples in DIT FFT is an 

inherent problem in FFT computation. For the 

proposed architecture, the outputs are obtained in 

the bit-reversal order. Using a memory of size N 

samples will solve the issue. The N samples are 

stored in the memory in natural order using a 

counter for the addresses and then they are read in 

bit-reverse order by reversing the bits of the 

counter. For example if N=16, N=24 then No. of 

counter bits is 4 i.e. b3b2b1b0. Reversing it will 

produce b0b1b2b3. 

 

H. Implementation of IFFT architecture  

  The IFFT converts a spectrum (amplitude and 

phase of each component) into a time domain 

signal. A reverse implementation of butterfly 

diagram is done in this algorithm. Radix-2/Radix-

4 Decimation-in-frequency IFFT is implemented. 

As mentioned earlier, we can use FFT 

architecture to implement IFFT with some 

modification, so no need to extra hardware. In 

FFT/IFFT processor, invert signal is responsible 

for the change between FFT and IFFT. 

 

 

IV.  EXPERIMENTAL RESULTS 

The implementation of the CORDIC-based 

FFT/IFFT Processor on Spartan 3E-FPGA of 

500.000 gates platform with operation frequency 

of 50MHz. The maximum operating frequency 

achieved after synthesis using  XST version 14.2 

synthesis tool  is 162MHz. The design for 

mentioned architecture is modeled by using 

VHDL language through ISE12.1 program as a 

target technique and tested on different input 

signals of large data samples . Fixed point data 

representation of 12-bit word length is used for 

input data samples and 16-bit word length for 

twiddle factor. 

The number of clock cycles, and resources usage 

required to calculate the FFT using both radix-2 

and radix-4 are shown in Fig. 9. 

 

 

 

 

 

 
Fig  9 The radix-2 vs. radix-4 required clock cycles as a 

function of N. 

 

One can see that the retired number of clock 

cycles are greatly reduced in radix-4 in 

comparison to radix-2. 

Area consumption of FFT/IFFT processor based 

on radix-2 and radix-4 architectures (in terms of 

number of slices) are discussed below. Fig. 10 

represent the resource usage for different FFT 

sizes for radix-2 based architecture and radix-4 

based architecture. 

 

 

 

 

 

 

 

 

 
Figure 10: The radix-2 vs. radix-4 required number of slices 

as a function of N (The available slices of Spartan 3E are 

4656). 

 

From Fig.10, one can see that about 23% and 

25% of the total available slices are only 

consumed in radix-2 and radix-4 respectively. 

However, the advantage on using radix-4 rather 

than radix-2 is clearly shown ( the consumed 
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slices are approximately similar in radix-4 4096 

points in comparison to radix-2 2048 point FFT). 

After the synthesis process of the designs had 

been achieved, the Power consumption of 

FFT/IFFT processors was analyzed. Designing a 

low power FFT/IFFT processor is one of the aims 

in this thesis. It is determined using Xilinx Power  

Analyzer available in XST synthesis tool. The 

Xilinx Power Analyzer tool performs power 

analysis on the data obtained after synthesis. 

According to the power analysis results obtained 

from Xilinx Power Analyzer tool, the power 

consumption varies about an average value of 

approximately 81mW for different FFT sizes for 

each of radix-2 based architecture and radix-4 

based architecture. The energy consumption can 

be calculated in micro Joules according to the 

equation:  Energy=power×computation time . 

Fig.11 illustrates the total energy consumption 

with different FFT size for radix-2 and radix-4 

architectures. 

 

 

 

 

 

Fig 11 Energy consumption for radix-2 vs. radix-4 as a 

function of N. 

From Fig.11, one can see that the energy 

consumption of radix-4 is reduced for larger FFT 

size in comparison to radix-2 based architecture.  

The simulating and synthesizing Xilinx Logiccore 

FFT is performed in this paper for the comparison 

purpose. A comparison between our designs and 

Xilinx Logiccore FFT architectures is presented  

in term of hardware utilization, power 

consumption and latency. The system-level 

modelling tool (system generator) simplifies 

(FPGA) hardware design. It expands Matlab 

Simulink and offer an appropriated  modelling 

environment for hardware design. Fig. 12, show 

the above comparisons and the advantage of the 

proposed processor is clearly shown.  

 

 

 

 
Figure 12: Comparative studies in terms of hardware 

utilization, power consumption and latency between 

CORDIC based FFT/IFFT architectures and different 

available system generator architectures (N= 1024, 

a:pipeline, streaming I/O, b:Radix-4 burst I/O, c:Radix-2 

burst I/O, d:Radix-2 Lite burst I/O, e:CORDIC based radix-

4, f:CORDIC based radix-2). 

However, it can be noticed that the Pipelined-

Streaming I/O, and Radix-4 burst I/O 

architectures have minimum latencies as 

compared to the CORDIC because they uses the 

pipelining technique and no computation of the 

twiddle factors are involved as the calculation 

begins. 

A comparison of the proposed processors with 

previous research work is presented in Table III. 

 

TABLE III 

COMPARISON WITH PREVIOUS FFT  PROCESSORS 

 [11] [8] [13] [16] Our 

Design 

platform Virtix-

5 

Sparta

n-6 

Virtix-

5 

STRATI

X-III 

Sparta

n-3E 

N: # 

points 

4096 1024 16 4096 4096 

Data 

repr. 

Floatin

g point 

Fixed 

point 

Fixed 

point 

Fixed 

point 

Fixed 

point 

fmax(MH

z) 

127 100  162 ----- 162 

Min. 

Power(m

W) 

----- 20 4 501 63 

Scalabilit

y 

yes yes No yes yes 

Proc. 

Tech. 

CORD

IC 

Split-

radix 

CORD

IC 

CORDI

C 

CORD

IC 

# slices ----- 6041 1056 ----- 1200 
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According to the above comparison, the proposed 

processor wins in term of power consumption. 

The computation time of this processor 

approximately equals the computation time of the 

previous research, especially for the processor 

which has scalability. The other feature of the 

proposed processor, which overcomes the 

previous processors, can perform the FFT and 

IFFT transform using the same hardware. 

 

V.  CONCLUSIONS 

Two configurable CORDIC-based FFT/IFFT 

processors with shared memory architecture 

(using In-Place strategy) have been designed. The 

configurable data width and number of samples 

of radix-2 and radix-4 fixed point FFT are 

implemented on FPGA and modeled on VHDL 

language. When comparing the results that 

obtained, better results are achieved by using the 

CORDIC-based FFT/IFFT processor than that 

used in FFT Xilinx Logiccore architectures in 

terms of area and power consumption because 

CORDIC was used for generating the twiddle 

factor. So, no ROM  are required  to store the 

twiddle factors. CORDIC also eliminates the need 

of complex multiplication. In term of latency, a 

reasonable results are also achieved. However, 

the implementation using pipeline streaming I/O, 

and Radix-4 burst I/O of system generator still 

give lower latency than the proposed CORDIC 

design. According to simulation and synthesis 

results, The proposed architecture gives an 

advantage in terms of power consumption, area 

and resource usage as compared to literature work 

and it meets the timing constraints of different 

wireless communication standards that use 

OFDM modulation such as IEEE 802.11a, DAB 

and VDSL. 
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