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Abstract—In this paper a radial distribution feeder protection scheme against short circuit faults is introduced. It is based on 

utilizing the substation measured current signals in detecting faults and obtaining useful information about their types and 

locations. In order to facilitate important measurement signals features extraction such that better diagnosis of faults can be 

achieved, the discrete wavelet transform is exploited. The captured features are then utilized in detecting, identifying the 

faulted phases (fault type), and fault location. In case of a fault occurrence, the detection scheme will make a decision to trip 

out a circuit breaker residing at the feeder mains. This decision is made based on a criteria that is set to distinguish between 

the various system states in a reliable and accurate manner. After that, the fault type and location are predicted making use 

of the cascade forward neural networks learning and generalization capabilities. Useful information about the fault location 

can be obtained provided that the fault distance from source, as well as whether it resides on the main feeder or on one of the 

laterals can be predicted. By testing the functionality of the proposed scheme, it is found that the detection of faults is done 

fastly and reliably from the view point of power system protection relaying requirements. It also proves to overcome the 

complexities provided by the feeder structure to the accuracy of the identification process of fault types and locations. All the 

simulations and analysis are performed utilizing MATLAB R2016b version software package. 

 

Index Terms—distribution feeder, wavelets, fault detection, fault classification, fault location, cascade forward neural 

networks, IEEE 34 test feeder. 

 

I. INTRODUCTION 

Owing to the exposure to natural environment, the 

overhead distribution feeders are prone to external fault 

causes including rain, wind, lightning and interference 

with objects like trees and vehicles. Fault causes can also 

be internal such as insulation degradation and failure. The 

formation of a conducting path between phase conductors 

and ground or between one phase conductor and another, 

will usually cause the flow of high amounts of short 

circuit currents. Consequently, a risk may be imposed on 

humans and power system equipments if the isolation 

process was slow or absent. This has led to the proposal 

of many fault identification techniques in an effort to 

reduce fault risk circumstances. The use of wavelet 

analysis introduces a powerful tool to extract important 

fault signatures and facilitate fault diagnosis. The results 

are fast response, cost effectiveness and accuracy. A lot 

of the researches work made use of the discrete wavelet 

transform (DWT) at high stages, wherein, the fault 

signatures can be more significant such that more 

accuracy can be obtained. However, the choice of the 

most suitable stage is dependent on the application, on 

the chosen mother wavelet, on the sampling frequency, 

and on the length of the signal to be analysed. The large 

number of decompositions, filter length and the nature of 

the extracted feature can impose more processing time 

which is non preferable for the detection of faults process 

[1]. As a result, building a scheme for which good 

accuracy of decisions, as well as fast responsiveness is 

desirable in the field of protection relaying. The reviewed 

techniques are based mostly on studies of the detection, 

classification, and localization of faults or a combination 

between the three schemes. References [2]-[3] presented 

a study of the detection of faults, whereas [4]-[6] 

presented the classification of faults. A combination 

between the detection and classification of faults is 

introduced in [7]-[9]. These techniques are dependent 

mostly on the artificial intelligence. A number of fault 

localization schemes are introduced in [10]-[19]. Out of 

these schemes, Four methods of faults localization can be 

recognized. They can be based on the travelling wave 

equation application as in [10]-[11], or on calculating the 
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apparent impedance up to the point of fault as in [12]-

[13], on a ranking analysis according to a previously 

stored database as given by [14]-[15], or on the artificial 

intelligence applications as can be seen in [16]-[19]. An 

overall protection scheme that utilizes the artificial neural 

networks (ANNs) in building the detection, type 

recognition and localization of faults is presented in [20]-

[21]. 
 

 It can be seen from the literature survey that some of 

the techniques are dedicated for the protection of 

transmission lines, others are dedicated for protection of 

the distribution feeders. The techniques applicable to the 

protection of transmission lines may be inaccurate for the 

protection of distribution feeders. This is due to the usual 

complexity in distribution feeders structure provided by 

the non-homogeneity of feeder lines ( the difference in 

impedances between the different line sections) and the 

presence of laterals and load branches [16][22]. In the last 

few years, the advancements in signal processing and 

artificial intelligence techniques are utilized in the field of 

power systems digital protection relaying. The less 

complexity in fault diagnosis approaches, the improved 

accuracy in the decisions and predictions made, as well as 

the fast responsiveness provided a superiority over the 

old protection relaying techniques [23]. 
 

     In this paper, a standard distribution feeder system 

having the characteristics of being long, lightly loaded, 

non-homogeneous, and branched with a number of 

laterals is built and simulated. Measurement current 

signals obtained at the substation are collected and 

analysed with the help of the discrete wavelet transform 

(DWT). Based on the various signals DWT extracted 

features variations with faulty and healthy feeder states, 

as well as with fault types and locations, a protection 

scheme is built and tested. The proposed protection 

scheme is built based on three stages. The first stage is 

the detection of faults scheme that is based on utilizing a 

specific function characteristics to facilitate faster and 

accurate faults occurrence or absence diagnosis. With the 

help of the moving frame technique [24], further 

improvement in the speed of faults detection can be 

obtained. The second stage of the protection scheme is 

based on the classification of shunt faults ten types, i.e. 

finding the faulted phases involved. The third stage is the 

localization of faults scheme that indicate the distance of 

faults from the main substation in meters. In addition to 

providing an information of whether the faults are 

localized at the main feeder or on one of the laterals. The 

fault type and localization schemes are built based on a 

specific type of neural networks called the cascade 

forward neural nets (CFNN). Such neural networks prove 

to have the capability to capture the complex relationship 

between the signals extracted features with fault type 

once and location secondly.  

II.  A GENERAL OVERVIEW OF WAVELET ANALYSIS 

In power system fault analysis, it is important to detect 

certain trends in the signals to be analysed to improve the 

detection process. Wavelet transform (WT) analysis have 

proven to be the best choice for fault identification 

techniques; wherein, a variable windowing technique is 

utilized to analyse non-stationary signals (having 

localized changes which is the dominant behaviour of 

faulty signals). In this technique, accuracies in both time 

and frequency can be gained as compared to discrete 

Fourier transform (DFT) that has one fixed resolution in 

time and frequency which is regarded as a drawback. The 

major advantage of the WT is its capability in revealing 

aspects like trends, breakdown points and discontinuities. 

The basis function used by wavelet analysis is called 

wavelets which they are waveforms of finite duration 

with irregularity trends and an average value of zero. 

There are several types of Wavelet transform that 

originated from a basic one called continuous wavelet 

transform (CWT). The CWT is defined as the sum over 

all time of the analysed signal multiplied by shifted and 

scaled versions of the basis function (mother wavelet 

function Ψ) as following: 

                    Ψ( a, b ) = a -1/2
  Ψ( a -1 ( t ― b ))                (1)                                       

          C( a, b) = -∞ʃ+∞ f ( t ) a -1/2
  Ψ(a -1 (( t ― b))  dt      (2)                     

Where, C: the wavelet coefficient that represents how 

closely the wavelet is correlated with that part of the 

signal f (t).  a: scaling parameter, b: shifting parameter. 

     Since Any signal processing method performed in a 

computer using real world data must be accomplished in 

a discrete state, and since calculating CWT provides 

redundancy of values because of the small shifting and 

dilating steps, the choice of a finite number of scale and 

position steps based on a power of 2 (dyadic steps) has 

been introduced as following : 

                               a = 2 j,  b =  µ 2 j                            (3)   

               W ( j, µ ) =Ʃk  f (k) 2 -j/2 Ψ (2 -j k ― µ)           (4)       

Where, W ( j, µ): the DWT coefficients as a function 

of the new scaling and shifting parameters j and µ.  

     This approach is called the discrete wavelet transform 

(DWT) that can be realized using a set of filters into 

which the signal is passed and out of which the 

coefficients are emerged. Multi Resolution Analysis 

(MRA) is the iterative process of decomposing the 

analysed signal by the DWT filters into approximation 

and detail components. Approximations represent low 

frequency components of the signal whereas details 

represent high frequency components. The signal that 

enters the DWT filters will be decomposed according to 

the MRA as shown in Fig. 1. Where, cA: is the 

approximation coefficients, cD: detail coefficients, h(k) 

and g(k): the low and high pass filters coefficients 

respectively.  

     It can be seen through the figure that the signal after 

being convolved with the filters transfer functions, is 

down sampled by 2 in order to avoid duplication of the 

samples at each stage. The result is equal amount of 

samples as that of input signal.  
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The frequency division of a signal by the MRA 

analysis is shown in Fig. 2, where fs: is the sampling 

frequency that satisfies Nyquist’s sampling criteria. The 

first decomposition stage will divide the signal in the 

frequency domain into two halves. The second stage will 

decompose the first stage approximations frequency 

range into other two halves and so on. 
 

The DWT is chosen in this work to analyse the current 

signals due its superiority as a pre-processing tool that 

can capture the useful signals aspects and reduce the 

needs to the unnecessary redundant data. Besides it is 

widely used in the field of power systems protection 

relaying for the detection, type classification, or 

localization of faults in both transmission and distribution 

systems as can be seen in the reviewed literature.  

III.  DISTRIBUTION FEEDER MODEL 

In order to perform fault test cases, a standard 

distribution feeder of an overhead radial type is built with 

MATLAB SimPowerSystems toolbox. The model is 

chosen to be the IEEE 34 node test feeder which is a 

long, lightly loaded feeder with many laterals. The 

original model specifications are given in [25], the 

modelled feeder in this paper is scaled down to the 11 kV 

system instead of 24.9 KV system keeping the current 

value the same. The line series impedances and load 

power ratings are multiplied by a factor (k = 11/24.9 = 

0.4418) and the shunt capacitance values are divided by 

the same factor, the scaling method is provided in [26]. 

The topology of the feeder is shown in Fig. 3. For 

accurate representation of feeder conductors impedances, 

the pi section block is used. The loads are modelled as 

given in [25], [27]. 

 

 
Figure 1.  DWT MRA analysis 

 

Figure 2.  Frequency band division by the DWT   
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        Figure 3.  Feeder Topology 

IV. THE SIGNAL PROCESSING REQUIREMENTS FOR THE 

PROPOSED SCHEME 

In order to build a fast and reliable protection scheme, 

the following considerations must to be taken into 

account:  

A. Sampling Frequency 
 

In order to correctly represent any signal in the 

discrete state, the sampling frequency (fs) has to be equal 

to or larger than double the highest frequency content of 

the signal. This is how the successful sampling of signals 

is governed by the Nyquist’s sampling criteria. The range 

of frequencies contained in faulty power system transient 

signals usually lies between 0.1-1000 Hz [28]. Therefore, 

(fs) has to be chosen such that it can be larger than or 

equal to 2 kHz. Consequently, the measurement signals in 

this work are sampled at an (fs) of 6.4 kHz, which means 

having a simulation sampling time (Ts) of 1.563e-4 

seconds. The value of (fs) is calculated based on the 

following: 
 

    The number of samples per cycle has to be chosen 

firstly based on a power of two as required by the DWT 

of signals. In this work, the chosen number of samples 

per cycle is 128. This choice provides the enough 

accuracy required by the protection scheme stages as will 

be shown later in the test results. Multiplying 128 

samples/cycle by the fundamental frequency of signals 

(50 Hz) will provide the mentioned (fs) [29].  

B.  The Suitable Mother Wavelet Test  

     The accuracy of the wavelet transform analysis can be 

greatly affected by the choice of the mother wavelet. A 

number of tests exists for the purpose of choosing the 

best mother wavelet for the analysis of specific type of 

signals. Since the WT coefficients values represent a 

measure of how the analysed signal is similar to the 

analysing mother wavelet, having the analysed signal 

important aspects condensed within a few number of 

coefficients can define the effectiveness of the analysing 

mother wavelet. This is how the maximum energy to 

Shannon entropy (MESE) criteria can identify the 

suitability of the mother wavelet function for a specific 

analysis [30][31]. MESE is chosen to be the criteria to 

test for the suitable mother wavelets dedicated for the 

analysis in this work. It is calculated as given in (5), 

where the energy content of coefficients can be calculated 

according to Parseval’s formula as given in (6), and he 

normalized Shannon entropy is calculated as given in (7).  

 

                                                                     (5)                

                                                                  (6) 

 

                                    (7) 

    

  Where, Ej: is Parseval’s energy of coefficients related to 

a specific analysis resolution (j), Sj: is the Shannon 

entropy of coefficients related to the resolution ( j). M: is 

the total number of analysis resolutions. cjk: is the 

individual WT coefficient that related to the resolution 

(j) and of a sequence (k). N: is the total number of 

coefficients at the resolution (j). 

The MESE is performed in this work as follows: 

 Two sets of measurement signals of a length of 8 

cycles (having 1024 samples) are collected, one to test 

the most suitable mother wavelet for the detection 

scheme, and the other to perform the test for the type 

and location schemes. The total number of signals 

collected for the detection scheme is 9 signals that 

involve the healthy state, as well as the faulty and non-

faulty transient states (like capacitor and feeder 

energization events). On the other hand, the total 

number of signals collected for the type and location 

schemes is 50 signals that result from simulating faults 

at 5 different locations on the feeder involving the 10 

types of faults.  

 Each signal will be decomposed up to the 7th level to 

get 14 resolutions (7 approximations and 7 details) by 

a set of test mother wavelets. 
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 Ej and Sj will be calculated for each resolution 

according to (6) & (7) respectively. 

 MESE will be calculated as given in (5), where the 

obtained Ej and Sj will be summed for all resolutions 

and the ratio between them will be obtained. 

 The average of the MESE of the set of signals will be 

calculated to obtain one value specific to each tested 

mother wavelet. 

 The above steps will be repeated for each test mother 

wavelet.  
 

The test results are shown in Table I for the detection 

scheme signals analysis, and in Table II for the fault type 

and localization schemes signals analysis. The best 

mother wavelet is the one that have the maximum MESE. 

 

TABLE I. THE TEST RESULTS OF THE MESE FOR THE 

DETECTION SCHEME SIGNALS ANALYSIS 
 

Mother Wavelet MESE Measure 

Db1 1.1742e+6 

Db2 2.0131e+6 

Db3 1.7977e+6 

Db4 1.9608e+6 

Db5 1.9401e+6 

Sym1 1.1742e+6 

Sym2 2.0131e+6 

Sym3 1.7977e+6 

Sym4 1.9423e+6 

Sym5 1.9051e+6 

Coif1 1.8022e+6 

Coif2 1.9399e+6 

Bior 1.1 1.1742e+6 

Bior 1.3 1.6083e+6 

 
 

TABLE II. TEST RESULTS FOR THE MESE OF THE FAULT TYPE AND 

LOCALIZATION SCHEMES SIGNALS ANALYSIS 
 

Mother Wavelet MESE Measure 

Db1 2.5556e+7 

Db2 3.787e+7 

Db3 4.1205e+7 

Db4 4.3197e+7 

Db5 3.6666e+7 

Sym1 2.5556e+7 

Sym2 3.787e+7 

Sym3 4.1205e+7 

Sym4 4.2612e+7 

Sym5 3.245e+7 

Coif1 3.462e+7 

Coif3 4.2316e+7 

Bior 1.1 2.5556e+7 

Bior 1.3 3.7266e+7 

      

     It can be seen that the best mother wavelet that has the 

maximum value of MESE is the Db2 for the detection of 

faults scheme signals analysis, and the Db4 for the fault 

type classification and localization schemes signals 

analysis.  
 

C. Frame Size:  
 

The window length at which the current signals will be 

analysed is chosen to be of 128 samples, i.e. of a length 

of one cycle. This choice is made based on many tests 

regarding the accuracy of the built protection schemes.          
 

D. Framing Technique 

     Since the current samples must be processed in 

frames, the framing method can increase or decrease the 

processing speed. The moving frame method is 

implemented in this work to keep the detection speed as 

fast as possible [24]. This method is based on entering 

one sample at a time to the analysis window (the frame) 

at the same time of leaving one sample behind. The 

resultant is the least amount of delay time as compared to 

the original framing method that requires for the whole 

frame to be collected for processing. Figs. 4 & 5 

represent the original framing technique and the moving 

frame techniques respectively. Figs. 6 & 7 show the high 

improvement of detection speed by the application of the 

moving frame technique.  
 

E. The Number of Decomposition Stages 
 

The highest number of decomposition stages depends 

on the length of the analysed  signal as given in (8): 
 

                                 D = log 2  (L)                                  (8) 

Where, D: the highest number of decomposition 

stages, L: the length of the analysed signal.          

Reducing the number of decomposition stages will 

provide a reduction in the number of convolutions and 

down sampling processes performed within the DWT. As 

a result, the processing time will be reduced and the 

detection of faults will be faster. Therefore, the detection 

scheme is built based on the first analysis stage. This 

choice provides the required accuracy and reduction in 

computational burden. As regard to the fault type and 

location identification schemes, a three stages of DWT 

decompositions are found to yield the best accuracy in the 

predictions of such schemes.   

F. Features Representation 

In order to introduce the DWT coefficients as a 

measure of the various  feeder system states, there must 

be a certain representation of their variations. In this 

work, Parseval’s formula that calculates the energy of 

coefficients presented at a specific resolution as given in 

(6) is utilized. 
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  Figure 4. The original framing technique                         

 
Figure 5. The moving frame technique 

    
Figure 6. Faults detection and tripping after utilizing the old framing  technique 

 
Figure 7. Faults detection and tripping after utilizing the moving frame  technique 

 

V. THE PROPOSED PROTECTION SCHEME 
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The proposed fault protection scheme  is based onto 

three  stages: 

A.  The Fault Detection Stage 

     The requirement of a  fast and reliable detection 

scheme has led to the utilization of a function provided in 

[1]. Where the phase currents are root squared summed to 

form one waveform that concentrate the fault transients 

and facilitate faster detection of faults. The function 

formula is given in (9): 

                      f[n] = ( Ia[n] 2 + Ib[n] 2+ Ic[n] 2 ) 1/2             (9)                                         

The provision of some healthy feeder state transient 

events such as those caused by the energization of the 

feeder or a power factor correcting capacitor bank can 

produce a high frequency components in the measured 

current signals. These components affect the detail 

coefficients obtained by the DWT analysis in a manner 

that it can exceed those related to the faulty states. 

However, the approximation coefficients will still within 

the normal limits during the healthy state transient events. 

On the other hand, the faulty states will cause a rise in 

both the approximation and detail coefficients of the 

analysed current signals. A number of feeder states 

presented in Table III, where  f[n] for a one cycle of 

measurements is analysed by the Db2 related DWT filters 

for the first stage to reveal the effects of the various 

healthy and faulty events on the energy of the obtained 

coefficients. All the presented faulty cases are simulated 

at node 812 regarding a zero fault resistance. Based on 

the data presented in the previous table and other data 

provided by performing many faulty cases tests on 

various feeder locations regarding various fault types and 

fault resistances, two thresholds are set to distinguish 

between healthy and faulty feeder states. These 

thresholds are based on the values given by: 
 

Threshold1 =4.0425e+6; Threshold2 =8.25 
 

The DWT analysis performed on f[n] to detect faults 

are provided in Fig. 8. The flow chart for the detection of 

faults stage is provided in Fig. 9, where the Db2 related 

DWT first stage approximation and detail coefficients 

energies eA1 and eD1 are calculated and compared with 

the thresholds to diagnose the feeder state.   

 
TABLE III. THE DIFFERENT FEEDER STATES REPRESENTED BY THE 

ENERGY OF  DWT COEFFICIENTS OBTAINED AT THE FIRST STAGE 

OF f[n] ANALYSIS WITH THE HELP OF DB2 
 

Feeder States 
DWT 

Coefficients 

Energy of Coefficients 

After the Disturbance 

Healthy 
cA1 5.8828e+05 

cD1 0.1984 

Capacitor Energization 
cA1 7.3732e+05 

cD1 297.3107 

Feeder Energization. 
cA1 7.7711e+05 

cD1 779.218 

Single Line to Ground 

Fault at Node 812 

cA1 2.4792e+07 

cD1 261.6058 

Double Line to Ground 

Fault at Node 812 

cA1 1.1997e+08 

cD1 1.2246e+03 

Double Line Fault at 

Node 812 

cA1 1.1494e+08 

cD1 2.3689e+03 

Three Line Fault at 

Node 812 

cA1 1.708e+08 

cD1 5.0149e+03 
 

 

Figure 8. f(n) related DWT first stage analysis with the help of Db2 for 
the detection of faults scheme 

 

Figure 9. The flowchart for the fault detection procedure 

B.  The Fault Type and Localization stages 

    1)  Artificial neural Networks  Application: 

The CFNNs are used to indicate fault type and 

location. These type of neural networks are a feed 

forward nets with additional weight connections between 

layers, adding the connections will provide better 

learning capabilities as compared to ordinary feed 

forward nets [32].  
 

    To build the network the following considerations 

must be taken into account [32]:  

 Choose the features to be extracted from the current 

signals and feed it to the ANN. 

 The provided data for the network must be divided 

into training, validation and test sets. A specific 

neural network toolbox built-in function called divide 

random is used such that the provided set of simulated 

fault cases extracted features are divided randomly to 

80% training and 20% validation data with an 

individual set provided to test for the network 

generalization. 

 The inputs will be pre-processed by another built-in 

functions such as map min-max that transforms input 

data such that all their values will fall in the interval  

[-1,1], the other function is remove constant rows that 

removes duplicated input values. The targets will 
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have the same processing functions in order to 

transform the provided targets to useful values for the 

network use, after that the network outputs will be 

reverse processed to provide the same user provided 

output data. The provision of such functions is to 

improve network learning capabilities. 

 Decide the number of neurons and the structure of the 

hidden layer. 

 Train the network by a chosen training function to 

have the least mean squared error (mse).  
      

    Tables IV and  V provide faults simulations locations 

and their distances provided for the ANN training and 

testing procedures. The faults resistances are taken into 

account such that the CFNNs are trained regarding fault 

resistances ranging from 1-50 in steps of  5 ohms. The 

test sets are provided for fault resistances which are: 3, 7, 

21 and  33 ohms. 
 

2)  Fault Type stage: 

     After performing a number of tests, the fault type 

ANN input features are chosen as the energy 

representation of the first stage approximations, second 

and third stage details of the db4 decomposed three phase 

and zero sequence current samples. As a result, the fault 

type ANN will have 12 inputs. The inputs of the network 

are obtained after performing the analysis shown in     

Fig. 10, where the shaded features are the ones used in 

the fault type classification procedure. The fault type 

ANN specifications are given in Table VI.  
 

3)  Fault Localization Stage: 

     A modular type ANN [20], consisting of individual 

ANNs of CFNN type for each type of fault is used for 

finding fault locations as shown in Fig. 11. For this type 

of network, there will be an improvement in the learning 

process and the accuracy of the results as compared to 

using a network consisting of one block for estimating 

the location for all fault types. The inputs of the fault 

location network are the same 12 extracted features 

provided for the fault type scheme. The fault location 

ANNs will predict the fault distance from source in 

meters and their locations if they were on the main feeder 

or laterals. The flow chart of the fault location process is 

shown in Fig. 12. The network specifications are shown 

in Tables VII & VIII respectively. 

 

TABLE IV. THE LOCATIONS AT WHICH FAULT SIMULATIONS ARE PERFORMED IN ORDER TO COLLECT SUBSTATION MEASUREMENT 
SIGNALS FOR LATER UTILIZATION IN THE TRAINING PROCESS OF FAULT TYPE AND LOCATION NEURAL NETS 

Main Location Distances in (km) 

Main Feeder 0.3474 2 4.92 6 8 12 15.388 15.501 18.282 22 24 24.683 25.353 25.424 

Lateral.1 5.702              

Lateral.2 14.243 16 20 21.189 21.419          

Lateral.3 15.796              

Lateral.4 19.137 21.493             

Lateral.5 24.191              

Lateral.6 24.917 25.278 25.979            

TABLE V. THE NODES AT WHICH FAULT SIMULATIONS ARE PERFORMED IN ORDER TO COLLECT SUBSTATION MEASUREMENT SIGNALS FOR 
LATER UTILIZATION IN THE TESTING PROCESS OF FAULT TYPE AND LOCATION NEURAL NETS 

Main Location Distances in (km) 

Main feeder 4 9.97 13.97 16 20 23.3115 24.8636 

Lateral.1 5.1157       

Lateral.2 15.864 18 20.727     

Lateral.3 15.49       

Lateral.4 20       

Lateral.5 24.0273       

Lateral.6 25.4788       
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Figure 10. The three phase and zero sequence current signals Db4 related DWT first, second, and third stage analysis coefficients obtained for the 

utilization in the fault type classification and localization schemes   

TABLE VI. FAULT TYPE NEURAL NETWORK SPESIFICATIONS 

Type of ANN Cascade forward net 

No. of hidden layer neurons 48 

Network structure 12-12-12-12-12-1 

Hidden layer transfer function Tan Sigmoid 

Output layer transfer function Linear 

Performance function Mean squared error (MSE) 

Training function Trainlm 

Training  performance 3.4312e-7 

Best validation performance 3.99e-7 

Test performance 9.2064e-5 

Epochs 366 

 

 
 

Figure 11. Fault location neural network modular structure  
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Figure 12. Fault type and location indication flow chart 

TABLE VII. DISTANCE PREDICTING FAULT LOCATION NEURAL NETS SPECIFICATIONS 

Type of ANNs Cascade forward net 

Hidden layer transfer function Tan sigmoid 

Output layer transfer function Linear 

Training function Trainlm 

Performance function Mean squared error (MSE) 

Individual ANN dedicated for a 
specific fault type localization 

No. of hidden 
Layers neurons 

Network structure 
Training  

performance 
Best validation 
performance 

Test 
performance 

Epochs 

AG 64 12-16-16-16-16-1 1.65e-5 2.3804e-5 9.6299e-4 1673 

BG 64 12-16-16-16-16-1 1.79e-7 6.5471e-5 7.9361e-4 2510 

CG 64 12-16-16-16-16-1 8.05e-6 7.1609e-5 3.4148e-4 3000 

ABG 72 12-12-12-12-12-24-1 2.82e-7 7.6533e-7 1.2034e-4 2711 

ACG 72 12-12-12-12-12-24-1 6.8988e-7 6.9e-7 1.3088e-4 3000 

BCG 72 12-12-12-12-12-24-1 7.49e-6 7.491e-6 1.3568e-4 2568 

AB 72 12-12-12-12-12-24-1 3.36e-6 3.3646e-6 1.3314e-4 1532 

AC 60 12-12-12-12-24-1 1.013e-7 1.2764e-7 1.3713e-4 1223 

BC 60 12-12-12-12-24-1 1.727e-6 2.06e-6 2.1987e-4 1610 

ABC 72 12-12-12-12-12-24-1 9.2179e-7 1.18e-6 2.148e-4 2121 

 

TABLE VIII. MAIN FEEDER OR LATERALS PREDICTING FAULT LOCATION NEURAL NETS SPECIFICATIONS 

Type of ANNs Cascade forward nets 

Hidden layer transfer function Tan sigmoid 

Output layer transfer function Linear 

Training function Trainlm 

Performance function Mean squared error (MSE) 

Individual ANN dedicated for 
a specific fault type 

localization 

No. of hidden 

neurons 
Network structure 

Training  

performance 

Best validation 

performance 

Test 

performance 
Epochs 

AG 64 12-16-16-16-16-1 3.6082e-5 3.6082e-5 4.1753e-5 3000 

BG 64 12-16-16-16-16-1 1.45e-4 5.29e-4 7.77e-4 1524 

CG 64 12-16-16-16-16-1 4.3094e-7 6.2e-7 4.3613e-7 3000 

ABG 64 12-16-16-16-16-1 7.6533e-7 3.257e-5 1.2034e-4 2350 

ACG 64 12-16-16-16-16-1 1.6587e-4 1.66e-4 1.6848e-4 1045 

BCG 64 12-16-16-16-16-1 5.208e-4 6.43e-4 5.618e-4 1092 

AB 50 12-15-20-15-1 8.3076e-5 8.311e-5 9.1616e-5 2233 

AC 64 12-16-16-16-16-1 1.5449e-5 2.2764e-5 3.1259e-5 1416 

BC 64 12-16-16-16-16-1 6.32e-11 6.3233e-11 1.0507e-7 3284 

ABC 64 12-16-16-16-16-1 1.18e-5 9.2179e-4 1.589e-5 2013 

 

VI. TEST RESULTS AND DISCUSSION      An S-function block with a program written in 

MATLAB editor environment are used to emulate the 

74

Sara J. Authafa   Vol. 14 | Issue 1 | June 2018



protection scheme built-in functions. The test interval 

consists of 6 cycles; all the faults are initiated at the 

beginning of the third cycle. The effect of feeder 

energization and capacitor switching transients on the 

protection scheme along with various faults test cases 

are provided in this section. System condition is 

declared through an instant message box that contains 

information of the fault type and location in case of the 

detection of faults,  healthy state declaration in case of 

no detection of faults. 
 

A. Healthy State Tests 
 

 Capacitor Energization at Node 844 

   

         

      Figure 13. Node 844 Capacitor energization test 

 Capacitor Energization at Node  848 

 

 
 

Figure 14. Node 848 capacitor energization test 

 

 Feeder Energization  

 

            

Figure 15. Feeder Energization test

B. Faulty State Tests 

 Phase A to Ground Fault 
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Figure 16. AG fault performed at distance 20727.1 m far from 

substation and on the lateral 2, the detection of fault is done within 

13.805 ms 

 Phase B to Ground Fault 

         

 
Figure 17. BG fault performed at distance 20000m far from substation 

and on lateral 4,  the detection of fault is done within 11.894 ms 

 

 

 Phase C to Ground Fault 

 

Figure 18. CG fault performed at node 9970 m far from substation on 

the main feeder, the detection of fault is done within 7.858 ms 

 A Double Line Fault Involving Phases A & B to 

Ground  

 
Figure 19. ABG fault performed at 4000 m far from substation on the 

main feeder, the detection of fault is done within 1.388 ms 

 

 

 A Double Line Fault Involving Phases A & C to 

Ground  
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Figure 20. ACG fault performed at distance 20000m far from substation 

on the main feeder, the fault is detected within 7.117 ms 

 A Double Line Fault Involving Phases B & C to 

Ground  

 

 

Figure 21. BCG fault performed at 23311 m far from substation on the 
main feeder, the fault is detected within 7.538 ms 

 A Double Line Fault Involving Phases A & B  

 

      
 

Figure 22. AB fault performed at distance 25478.8 m far from source on 

lateral 6, the fault is detected within 5.698 ms 

 A Double Line Fault Involving Phases A & C 

 

      

Figure 23. AC fault performed at distance 13970 m far from substation 
on the main feeder, the fault is detected within 6.163 ms 
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 A Double Line Fault Involving Phases B & C 

 

 

Figure 24. BC fault performed at distance 24863.6 m far from 
substation on the main feeder, the fault is detected within 3.023 ms 

 Three Phase Fault 

 

       

Figure 25.  ABC fault  performed at 16000 m distant from substation on 
the main feeder, the fault is detected within 2.907 ms 

 

VII.  CONCLUISIONS 

    The test results of the proposed scheme have shown 

satisfactory results from the point of view of power 

system relaying. The first two important characteristics of 

any protection scheme is that to accomplish the 

dependability and security during performance. The 

proposed scheme has proven high dependability in 

detection such that all tested faults have been investigated 

properly. The scheme also works securely in a manner 

that no healthy state has been falsely diagnosed as a 

faulty state. Another important feature is the ability to 

diagnose and make a decision in a small amount of time. 

Response time of the order of few milliseconds is the 

most preferable in order to isolate and reduce faults 

severity to humans and power system equipment [33]. 

With the utilization of the wavelet transform as well as 

the moving frame technique, major improvements of the 

speed of fault diagnosis has been experienced.  

    Obtaining accurate prediction of fault type and location 

in distribution feeders is a crucial task due to the usual 

complexity in their structure. Therefore, building a 

scheme that overcome such complexity is a major 

requirement in distribution systems protection relaying 

field. By utilizing the powerful features extraction of the 

DWT, along with the learning and generalization 

capabilities of the CFNNs, the task of obtaining useful 

information about the fault type and location is made 

possible. The test results show the successful 

classification and localization of faults without regard to 

the variation in fault resistances and the presence of 

structural complexities.  

    By exploiting the powerful aspects of the proposed 

protection scheme in protecting distribution feeders, a 

fast detection of faults can be obtained. Also, a useful 

information about the faulted phases and the location at 

which the fault reside can be obtained such that a 

dispatched maintenance team can find the faulted feeder 

conductors within less time and effort.  
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