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Abstract Gait as a biometric can be used to identify subjects at a distance and thus it receives great attention from the 

research community for security and surveillance applications. One of the challenges that affects gait recognition 

performance is view variation. Much work has been done to tackle this challenge. However, the majority of the work 

assumes that gait silhouettes are captured by affine cameras where only the height of silhouettes changes and the 

difference in viewing angle of silhouettes in one gait cycle is relatively small. In this paper, we analyze the variation 

in gait recognition performance when using silhouettes from projective cameras and from affine cameras with 

different distance from the center of a walking path. This is done by using 3D models of walking people in the gallery 

set and 2D gait silhouettes from independent (single) cameras in the probe set. Different factors that affect matching 

3D human models with 2D gait silhouettes from single cameras for view-independent gait recognition are analyzed. 

 In all experiments, we use 258 multi-view sequences belong to 46 subjects from Multi-View Soton gait dataset.  

We evaluate the matching performance for 12 different views using Gait Energy Image (GEI) as gait features. 

Then, we analyze the effect of using different camera configurations for 3D model reconstruction, the GEI from 

cameras with different settings, the upper and lower body parts for recognition and different GEI resolutions. The 

results illustrate that low recognition performance is achieved when using gait silhouettes from affine cameras while 

lower recognition performance is obtained when using gait silhouettes from projective cameras.  
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I.  INTRODUCTION 

Recognizing people by the way they walk, also 

known as gait recognition, achieve considerable 

attention from the research community due to its 

attractive advantage in identifying people at a 

distance and without their cooperation when other 

biometric cues, such as face, iris and fingerprint, 

are inoperative. Gait is hard to conceal and forge. 

It is also unobtrusive and unique for each person. 

Furthermore, it is easy to capture where normal 

cameras can be used to record people’s gait. All 

these advantages give priority for the gait to be 

used in many applications such as visual 

surveillance, security and forensic. 

There are two approaches in gait recognition: 

model-based [1, 2] and appearance-based [3, 4]. 

The former extract static (e.g. lengths of upper 

and lower legs) and dynamic (e.g. joint angles) 

gait features by tracking and modeling the 

movements of different body parts. These 

approaches are more robust to appearance 

changes. However, they require extensive 

computations and accurate silhouettes. 

The latter extract spatio-temporal patterns as gait 

features. These approaches are more sensitive to 

appearance changes but they are simpler and do 

not require any modelling. One of the most 

widely-used gait representations is Gait Energy 

Image (GEI) [4] which encodes shape and motion 

information in a single grayscale image by 

averaging all silhouettes over one gait cycle. A 

similar representation to the GEI is Motion 

Silhouette Image (MSI) [5] where pixel intensity 

in MSI is computed as a function of motion 

history of that pixel in one gait cycle. Another 

representation, called Gait Entropy Image (GEnI) 

[6], computes Shannon entropy for each pixel 

over one gait cycle. This representation shows 

better performance against covariate condition 

changes. Most of these approaches record high 
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recognition rates when gait sequences are 

captured from the same viewing angles, while 

their performance degrades when viewing angles 

are different. 

To deal with the problem of view dependency 

efficiently, several approaches have been 

developed but the majority of these techniques 

assume that view variation in a single gait cycle is 

small where the viewing angle from the first to 

last silhouettes in a single gait cycle slightly 

changes. Iwashita et al. [7] used 3D model 

sequences with adaptive virtual image synthesis 

to identify people walking along curved 

trajectories from single cameras. In this 

technique, the walking direction for a subject is 

estimated in each frame and the corresponding 

virtual image is synthesized from a 3D model. 

The GEI and the Affine Moments Invariants are 

used as gait features. The performance is 

evaluated on the Kyushu University 4D Gait 

Database which consists of 42 subjects. 

Muramatsu et al. [8] proposed a framework to 

identify subjects from an arbitrary view using a 

view transformation model (VTM) with 3D 

model sequences. First, 3D models of training 

subjects, which are different from the test 

subjects in the target scene, are reconstructed and 

then projected onto the target views to generate 

2D gait sequences. Second, gait features are 

extracted and used for part-dependent view 

selection scheme. The technique recorded an 

improved accuracy for cross-view matching. 

López-Fernández et. al. [9] introduced 

appearance-based gait descriptors extracted from 

3D human models. A gait signature is built using 

morphological analysis of a series of 3D 

occupation human models, which is then 

classified using a Support Vector Machine with a 

sliding temporal window for majority voting. 

This strategy is validated on the AVA Multi-

View Gait Dataset and on the Kyushu University 

4D Gait Database, and achieved good recognition 

results. 

Although the previous techniques used 3D 

models, also called 3D gait recognition 

techniques, to solve the problem of view-

dependency, they have the following limitations: 

(1) the technique in [7] did not analyze the effect 

of using independent views in the probe set where 

all the target (test) cameras are also used to build 

3D models of walking people in the gallery 

(training) set, (2) the work in [8] did not analyze 

the effect of using cameras with different settings   

(i.e. affine and projective cameras, far-away and 

near from a walking subject, varying camera 

lenses,…etc.) and (3) the authors in [9] used 3D 

models of people in both gallery and probe sets 

which make gait analysis techniques impractical 

to be applied in practice since they assume that 

multiple synchronous cameras are available 

always.    

Therefore, the main objective of this work is to 

(1) analyze the variation in recognition 

performance when using gait silhouettes from 

affine cameras and gait silhouettes from 

projective cameras, (2) analyze the performance 

of using gait silhouettes from independent 

cameras with different settings in the probe set 

while using 3D models from multiple 

synchronous cameras in the gallery set and (3) 

study the effect of various factors that affect the 

performance of matching 3D gait models with 2D 

gait silhouettes using GEI as gait features. More 

specifically, the following factors will be 

analyzed.  

1- Which camera configuration is effective for 

matching?  

2- Can traditional period-based gait feature 

extraction (e.g. GEI) deal efficiently with 

silhouettes captured with different camera 

settings? 

3- Can efficiently be identified subjects at low 

resolutions using their gait? 

4- Which part in the body is effective for person 

identification? 

 

II. GAIT DATASET 

Gait recognition is a subset of action recognition 

since gait is a behaviour biometric. A few multi-

view datasets are designed for action recognition 

and some of them are synchronous and designed 

specifically for gait recognition. The Kyushu 

University 4D gait dataset [7] which consists of 

3D models and 2D silhouettes captured by 16 

synchronized cameras. The 3D models and 2D 

silhouettes are dependent because all the cameras 

that captured the silhouettes are used to build 3D 

models. The cameras are also arranged around a 

circular studio so that they have the same distance 

to walking subjects and therefore they have the 23
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same settings. Another one is the AVA Multi-

View Dataset for gait recognition [9]. This 

dataset includes 20 subjects recorded by 6 

synchronized cameras. The number of cameras in 

this dataset is not enough to build 3D models and 

2D gait silhouettes from independent cameras.  

Therefore, all the experiments are implemented 

using Soton Multi-View Gait Dataset [10]. This 

dataset was captured using the University of 

Southampton multi-biometric tunnel. The tunnel 

consists of a narrow walkway in the middle 

surrounding by two walls, to represent a walkway 

in airports. There are 12 synchronized cameras to 

record people's gait as they walk from multiple 

viewpoints simultaneously. Four of them in the 

middle of the tunnel (close to a walking subject) 

have wide-angle lenses and capture images from 

approximately side-views. These cameras are 

modelled as projective cameras where silhouettes 

captured by these cameras are distorted according 

to their positions. Fig. 4 (b) shows several 

silhouettes in one gait cycle captured by one of 

the middle cameras in the tunnel.  

The remaining cameras at the far ends of the 

tunnel have narrow-angle lenses and provide 

nearly front/rear views. These cameras are placed 

at two different heights and can be modeled as 

affine cameras. An example of silhouettes 

captured by one of the far-ends cameras is shown 

in Fig. 4(a). As can be seen only the height of the 

silhouettes varies in one gait cycle. 

Fig. 1 shows the positions of the middle and far-

ends cameras in the tunnel with their IDs. A 

subset of 43 subjects and a total of 258 sequences 

are used from this dataset in the experiments. 

Each subject has 6 walking sequences and each 

sequence was recorded using all the twelve 

cameras. 

 

 
Fig. 1 The placement of the middle and far-ends 

synchronized cameras in the tunnel. 

 

III. MATCHING PROCEDURE 

In order to study the effect of 3D human model 

accuracy on the performance of 3D gait 

recognition techniques, the following 

assumptions are considered. First, multiple 

synchronized cameras are installed for access 

control scenarios where a subject walks along a 

straight line of a pre-determined path. Therefore, 

the cameras are distributed at the start, middle 

and end of the walking path [see Fig. 1]. Second, 

the cameras have two different settings as 

explained in section II. Third, all the cameras are 

calibrated (i.e. their intrinsic and extrinsic 

parameters are known).  

The following procedure is implemented to study 

the performance of matching 3D models with 2D 

gait silhouettes using Soton multi-biometrics 

tunnel. 

Step 1: One camera from the tunnel is selected 

each time as a target camera for testing and its 

silhouette sequences are used to build the testing 

dataset (probe) for recognition (identification).  

Step 2: For view independence, 3D human 

models are reconstructed from all the cameras in 

the tunnel except the target camera using a visual 

hull strategy [11] by computing the intersection 

of back-projected silhouettes into 3D space.  

Step 3: To build the training dataset (gallery), 

synthetic silhouettes are generated from the 3D 

models by projecting them onto the target 

camera's viewpoint using its intrinsic and 

extrinsic calibration information.  

Step 4: Gait features are calculated from the 

synthetic silhouettes in the gallery and from the 

real silhouettes in the probe using Gait Energy 

Image (GEI) [4]. The GEI is a widely used gait 

representation in the literature due to its 

robustness and insensitivity to noise in a single 

silhouette. To compute the GEI, one gait cycle is 

extracted from each sequence which defines the 

pattern of walking for an individual. Each 

silhouette in one gait cycle is then cropped and 

resized to a same height by keeping the width-to-

height ratio constant. Finally, the resulting 

silhouettes are averaged to obtain the GEI as 

follows 
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Where C is the number of silhouettes in one gait 

cycle and S(t) is the silhouette image at t index. 

After that all GEIs are resized to 6464 pixels for 

dimensionality reduction.  

Step 5: For recognition, a distance matrix is 

computed by calculating the Euclidean distance 

between each pair of the GEIs in the gallery and 

probe as follows 
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Where D is the distance matrix, i

pGEI is the ith 

GEI in the probe, j

gGEI is the jth GEI in the gallery 

and X and Y are the number of the GEIs in the 

probe and gallery respectively. K-Nearest 

Neighbor classification is then used to find the 

closest GEI in the gallery to each GEI in the 

probe and compute the final recognition results.  

Step 6: To evaluate the recognition performance, 

the Correct Classification Rate (CCR) is used 

because it is a commonly used metric to evaluate 

the performance of a recognition problem. The 

CCR is defined as the percentage of the correctly 

classified samples in the probe. 

 

IV. EXPERIMENTAL RESULTS 

This section displays the recognition results of 

matching 3D human models with 2D gait 

silhouettes. The gallery consists of synthetic 

silhouettes that are generated from projecting 3D 

models onto the same viewing angles as the probe 

silhouettes while the probe consists of real 

silhouettes from the test (target) camera. Fig. 2 

shows the CCR for the matching where the 

results are splited into two groups. High 

recognition performance (the average CCR is 

about 97%) is obtained for identifying the 

silhouettes from the far-ends cameras (3f0595, 

3f0606, 3f0604, 3f0593, 7112ec, 7112d9, 

7112d9, 7112dd, 7112e0) while low recognition 

performance (the average CCR is about 42%) is 

recorded for the silhouettes from the middle 

central cameras (3f0607, 3f0603, 3f065e, 

3f0605). In order to better understand the 

variation in the CCR between the two groups of 

cameras, different factors affecting the 

performance of matching are analyzed in the 

following experiments. 

 

 

 
 

Fig. 2 Performance of matching synthetic 

silhouettes with real silhouettes. 

 

Experiment A: Effect of Using Real Silhouettes 

in the Gallery  

This experiment aims to illustrate the contribution 

of the GEI in the final gait recognition 

performance. The discriminatory power of the 

GEI as gait features is studied for different 

cameras in the tunnel by isolating the effect of 

other factors such as the accuracy of synthetic 

silhouettes. This is done by using the real 

silhouettes from the test camera in both gallery 

and probe. The GEI is computed from each 

sequence as described in section III and the 

recognition results are summarized in Fig. 3. The 

results using real silhouettes only are better than 

using synthetic silhouettes in the gallery for all 

cameras. 

The improvement in the CCR is about 3% for the 

far-ends cameras and is about 38% for the middle 

cameras. It is believed that the reason for this 

improvement is because of using the same type of 

silhouettes (i.e. real silhouettes) in both gallery 

and probe. However, the CCR of the middle 

cameras is still lower than that of the far-ends 

cameras. Fig. 4 shows an example for several 

silhouettes in one gait cycle from two different 

cameras in the tunnel with their GEIs where there 

is an obvious transition in the orientation, local 

viewing angle and appearance of silhouettes from 

the middle camera as compared to the far-end 
25
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camera. As a result, the relevant body parts 

cannot efficiently be matched when computing 

the average image in the GEI. This means that the 

GEI cannot capture rapidly changing shapes.  The 

results reveal that the kind of gait features is an 

effective factor on matching performance. 

 

 
Fig. 3 Performance of using real silhouettes in the 

gallery and probe. 

 

 
(a) Far-end camera (3f0593) 

 

 
(b) Middle camera (3f0605) 

Fig. 4 Several silhouettes (left) with their GEIs 

(right) from two different cameras. 

 

Experiment B: Effect of Camera 

Configurations    

Another factor that affects the matching 

performance is the accuracy of the 3D human 

models. As the accuracy of the 3D models is 

higher, the accuracy of the resulting synthetic 

silhouettes will be higher and the difference 

between the synthetic silhouettes and the real 

silhouettes from the camera will be minimized. In 

this experiment, three different camera 

configurations are used to reconstruct 3D models 

for the gallery. The first configuration (A) 

includes the 8 top cameras, the second 

configuration (B) includes the 8 far-ends cameras 

and the last configuration (C) consists of the 4 

middle cameras and the 4 bottom cameras. 

The 3D models are reconstructed according to 

each one of these configurations, and then 

projected onto the viewing angle of the probe 

camera to produce a synthetic silhouette. 

To evaluate the matching performance, two 

different probe cameras are selected: the middle 

camera (3f0605) and the far-end camera (3f0593). 

The GEIs of the synthetic silhouettes are 

calculated and compared against the GEIs of the 

real silhouettes for comparison and the results are 

summarized in Table 1. As can be seen from the 

results, when the probe camera is used in the 3D 

reconstruction, the performance of matching 

improves especially for the middle camera 

(3f0605) in the configuration (A) and (C) as 

compared to the results in Fig. 2. However, in 

real world scenarios the target (probe) camera 

may not always be available in the main (gallery) 

dataset.  

On the other hand, the matching performance 

deteriorates significantly when the 4 middle 

cameras are excluded from the 3D reconstruction 

in configuration (B) where the CCR for the 

middle camera (3f0605) decreases to only 9.3%. 

A highly distorted 3D model is obtained when 

discarding the 4 middle (side-view) cameras in 

configuration (B) while no noticeable distortion 

can be achieved when excluding the far-ends 

cameras in configuration (A) and (C) as shown in 

Fig. 5, which highlights the importance of 

including the side-view cameras for a better 

quality of 3D reconstruction process. As a result, 

there is a high discrepancy between the GEI of 

the synthetic silhouettes produced from 

configuration (B) and the GEI of the real 

silhouettes from the middle camera (3f0605) 

while no big discrepancy when the synthetic 

silhouettes produced from configuration (C) in 

Fig. 6.  

These results reveal that the camera configuration 

used in 3D reconstruction process has a great 

impact on matching performance and that the 

effective camera configuration should involve 

side-view cameras. 
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Table 1 CCR(%) using different camera 

configurations (A) 8 top cameras, (B) without 

middle cameras and (C) 4 middle and 4 far-

bottom cameras. 
 

Camera 

ID 

Configuration 

(A) 

Configuration 

(A) 

Configuration 

(A) 

3f0593 99.6 97.3 97.7 

3f0605 81.4 9.3 76.4 

 

                
(a) Configuration (A)        (b) Configuration (B) 

 
(c) Configuration (C) 

Fig. 5 3D human model reconstruction using 

different camera configurations. 

 
 

 
 

(a) Configuration (B) 

 

 
 

(b) Configuration (C) 
 

Fig. 6 Example of the GEI for synthetic 

silhouettes on the left generated from (a) 

configuration B and (b) configuration C, and the 

GEI computed from the real silhouettes on the 

right for the middle camera (3f0605). 

 

Experiment C: Effect of GEI Resolutions  

In this experiment, the impact of reducing the 

resolution of the GEI is evaluated. As the 

resolution of the GEI decreases, the number of 

features available for recognition decreases. The 

GEIs of the synthetic and real silhouettes used in 

the experiment are resized from 6464 to 3232, 

1616 and 88 respectively. The results are 

illustrated in Fig. 7. In general, there is a slight 

degradation in performance when the GEI 

resolution decreases to half (3232) and then to 

three-quarter (1616). The degradation becomes 

sharper when the resolution decreases to the 

lowest level (88) since the number of features 

decreases. The degradation in performance is 

higher for the far-ends cameras than that for the 

middle cameras. This could be because the far-

ends cameras are farther to the walking subjects 

than the middle cameras. However, the CCR of 

the former cameras is still higher than the latter. 

Reducing the resolution of the GEI image is 

equivalent to increasing the distance between the 

camera and the walking subject. These results 

illustrate that people's gait can still be used as an 

efficient biometric cue at low resolutions. 

Moreover, the recognition of people by their gait 

can be done using a fewer number of features.   

 

 
Fig. 7 CCR(%) versus GEI resolutions. 
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Experiment D: Effect of Upper and Lower 

Parts  

This experiment aims to show which part in the 

GEI representation contributes more in gait 

recognition performance and is it possible to 

identify a subject using only part of his/her body 

when there is an obstacle preventing the camera 

from recording the whole shape. To do this 

analysis, the synthetic silhouettes are used in the 

gallery and the real silhouettes are used in the 

probe. Then, each GEI in both gallery and probe 

is divided horizontally into two equal parts: upper 

part (covers head and arm movement) and lower 

part (covers hip and leg movement). Each part is 

used alone for recognition and the results are 

illustrated in Fig. 8. As can be seen for the far-

ends cameras, the lower body part which relates 

to the movement of the legs (human gait) has 

higher discriminatory power as compared to the 

upper part. The difference in the CCR is more 

than 10% between the two parts. 

However, the effective body part for the middle 

cameras depends on the camera's viewing angle. 

The results indicate that it is possible to identify a 

subject efficiently using only his/her lower body 

part when the GEI is used as gait features. 

 

 
Fig. 8 CCR(%) of the upper and lower body parts. 

 

Experiment G: Effect of Other Gait 

Representations 

In this experiment, we evaluate the performance 

of other gait representations such as Gait Entropy 

Image (GEnI) [10] and Motion Silhouette Image 

(MSI) [11]. For comparison purpose, The GEI, 

GEnI and MSI are computed from the synthetic 

silhouettes in the gallery and real silhouettes in 

the probe for each camera in the tunnel and 

resized to 6464 pixels.  

The CCRs are illustrated in Fig. 9. As can be 

seen, the performance of the GEI and GEnI are 

better than that of the MSI especially for the far-

ends cameras. However, there is still difference in 

performance between the two types of cameras in 

the tunnel where the middle cameras still show 

lower performance than far-ends cameras 

In summary, the gait representations that encode 

motion information over one gait cycle in a single 

image cannot efficiently deal with rapidly 

changing shapes. More sophisticated matching 

procedures that depend on a frame-by-frame 

comparison may better deal with this type of gait 

data.   

 
Fig. 9 Performance of different gait 

representations. 

 

V. CONCLUSIONS 

This paper analyzes the effect of using cameras 

with different settings on view-independent gait 

recognition. This is done by matching 3D models 

of walking people with 2D gait silhouettes from 

single cameras using GEI as gait features. The 

results showed that matching 3D human models 

can be done at high recognition performance with 

silhouettes from a narrow-angle and front/rear-

view (affine) cameras and at lower recognition 

performance with silhouettes from a wide-angle 

and side-view (projective) cameras. Moreover, 

there are two important factors that affect the 

performance of matching. The first factor is the 

discriminatory power of the gait features. The 

second factor is the camera configuration used to 
28
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build 3D human models. Further analyses show 

that the matching can be done at low resolutions 

and using only the lower body part when the GEI 

is used as gait features. Different matching 

algorithms and other types of features are 

required to confirm the results obtained in this 

work.   
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