Revised: 23 May 2017

Accepted: 1 Jun 2017

Vol. 13 Issue 1 | June 2017

Iraqi Journal for Electrical and Electronic Engineering Original Article

Mathematical Driving Model of Three Phase, Two Level Inverter by (Method of Interconnected Subsystem)

> Mohammed .H. Ali Electrical power and machines Engineering Department College of engineering Diyala University Iraq – diyala-baquba Mobile : +96407717218264 Email: moh80mmed@gmail.com

Abstract In this paper describe to mathematical analysis for a three-phase, two level inverter designs. As we know the power electronic devices (inverter) to convert the DC power to AC power (controller on output voltage and frequency level). In Industrial applications, the inverters are used for adjustable speed (AC Drives). In this paper, the mathematical analyses for inverter design are done by using Software packages C++ Builder and visual C++ Language. For non-linear distortions described by the load power factor in power system networks. The P.F is reverse proportional with the harmonics distortion. Small P.F means much more of harmonic distortion, and lower power quality for consumers, to improve the P.F, and power quality in this paper the small capacitor installed as part of the rectified the load current has power (30 KW with P.F load 0.8), the fluctuations of the rectified voltage must not greater than +/- 10%. The power factor proportion of the load power, with Modulation coefficient p.u approximately unity. The calculation is achieved with different integrations steps with load power 30KW, 0.8 P.F. all results done Based on model and experimental data..

Keywords:- Mathematical analysis, Modeling, three phase - two level inverter, Interconnected Subsystem.

I. INTRODUCTION

This Paper describes a model of PWM inverter fed three-phase load. The model needs to be based up by decomposition of a system into sub circuits that are coupled by means of dependent voltage/current sources. Such an approach ensures high flexibility in construction of system models along with acceptable accuracy of computation based on model and experimental data, this model described is built up on decomposition of complex system into sub circuits interconnected via dependent voltage/current sources [1]-[2].To highlight this method of computer model construction we shall consider the simplest system with two-level converter and three phase loads (30, 100) KW show on in fig (1)..Computer models of the system with load power of 30 KW and semiconductor converters (SC) are widely used to facilitate development.

ld

1d

Uk

1di

u

 \mathbf{u}_2

Figure 1 Scheme of the system with two-level inverter and load [3].

113

13

This system is decomposed into SC sub circuit and three-phase load block. SC is fed by current from a DC source with resistor and inductance in a circuit of rectified voltage there is a capacitor C with current. Each leg of SC consists of a transistor along with its anti parallel diode. Transistors and diodes are supposed to be ideal gates. The static energy losses are taken into account by resistor [4]. States of semiconductor

elements are described by a discrete function kin, n=1, 2, 3: if an open transistor or diode connects n-the phase to a positive pole of the capacitor C then kin=1, and if it connects n-the phase to a negative pole then kin = 0. The transistors in an arm are complementary one to the other: if one transistor in an arm is fired, then the other is turned off. The arms of the bridge attached to the positive pole transfer input current of the inverter circuit, this source further.[5]-[6]

II. MATHEMATICAL ANALYSIS FOR THREE PHASE TWO LEVEL INVERTER [7].

The dividing mathematical analysis system into sub circuit, interconnected-dependent voltage, and current sources. As a result represented sub circuit shown in Fig 2.

Figure 2 Dividing sub scheme of the system with two-level inverter and load.

Equivalent EMF Phase Inverter:

 $\boldsymbol{e}_n = \boldsymbol{k}_{in} \boldsymbol{u}_{rc} \tag{1}$

Further transformation schemes shown in Fig.3.

Figure 3 Transformation schemes system with two-level inverter and load.

Removal from the EMF phases of the zero sequence components.

$$e_0 = (e_1 + e_2 + e_3) / 3$$
 (2)

$$u_n = e_n - e_0$$
, $n = 1, 2, 3$

Voltage of capacitor C:

$$u_c = \frac{1}{c} \int i_c dt$$

(3) Output phase voltage of ideal converter without zero-sequence component:

$$e_n = k_{in} - \frac{k_{i1} + k_{i2} + k_{i3}}{3} u_{rc}, u_n = e_n$$
(4)

DC voltage source current id is determined from an equation:

Derivative current supply:-

$$\frac{d_{in}}{dt} = \frac{u_n - r_n \dot{i}_n}{l_H} \tag{5}$$

Currents of bridge arms:

$$i_{in} = k_{in}$$
 i_n $i_{in+3} = (k_{in} - 1)i_n$, $n = 1,2,3$ (6)

Transistor currents itn and diodes currents idn:

If
$$i_{tn} > 0$$
, $m_0 i_{tn} = i_{in}$, $i_{dn} = 0$
 $i_{tn} = 0$, $i_{dn} = -i_{in}$
when $n = 1, 2, \dots, 6$

Inverter input current:

$$\dot{i}_{dn} = \dot{i}_{i1} + \dot{i}_{i2} + \dot{i}_{i3} \tag{7}$$

DC voltage source current id is determined from an equation:

$$\frac{d_{ik}}{dt} = \frac{u_k - u_{rc} - r_d i_k}{l_d}$$
(8)

Where i_z current of the protection circuit:

$$i_z = k_z \frac{u_{rc}}{r_z} \tag{9}$$

The arms of bridge currents:

$$i_z = k_{in}i_n, \quad i_{in+3} = (1 - k_{in})i_n$$
 (10)

Current of capacitor:

$$i_c = i_d - i_z - i_{di} \tag{11}$$

III. MODELING OF CONTROL SYSTEM INVERTER

In modeling, circuit Fig.1. saw tooth voltage is described by the equation (12).

$$T_{on} = T_{on} + f_{on} \Delta t \tag{12}$$

$$\begin{array}{ll} if \quad \tau_{on} > \frac{1}{2} \,, \qquad \tau_{on} = \tau_{on} - 1 \\ u_{on} = 4 \mid \tau_{on} \mid -1 \end{array}$$

Where f_{on} frequency of the reference voltage Hz, τ_{on} intermediate variable

, Δt The second calculation.

Voltage control is determined by the following formulas:

(13) $t = t + \Delta t_{v}$

$$u_{y1} = u_{y\max} \sin(\omega_H t) \tag{14}$$

$$u_{y1} = u_{y\max} \sin(\omega_H t - \frac{2\pi}{3})$$
 (15)

$$u_{y1} = u_{y\max} \sin(\omega_H t - \frac{4\pi}{3})$$
 (16)

Where t, time in second ω_H , angular frequency voltage reference load by rad/sec, Uy max the amplitude of maximum voltage control.

IV. DEFINITION THE CURRENT LOAD CURRENT BY INSTANTANEOUS VALUES IN PHASES

In one of the possible construction of a control, system used PI controller acting load current. The actual operating current of three-phase load is determined in the process of calculating the instantaneous variables:

$$A = \frac{i_1^2 + i_2^2 + i_3^2}{3} \tag{17}$$

$$B = B + (A - B)\frac{\Delta t_y}{T_i}$$
(18)

$$I_{\Phi} = \sqrt{B} \tag{19}$$

A and B intermediate variables, T_i constant time aperiodic filter. PI control at the load current: 20) Δi

$$I = I_{Z} - I, U_{ym} = U_{yi} + \Delta I K_{I0}$$
 (2)

If

$$U_{y\min}\langle U_{yi}\langle U_{yi}\chi \rangle$$
 then

 $U_{vi} = U_{vi} + \Delta I \cdot K_{I0}$

If

$$U_{ym} \rangle y_{max}$$
, then $U_{ym} = y_{max}$

If

$$U_{ym} \langle y_{min}, \text{ then } U_{ym} = y_{mix}$$

Where

 ΔI –Deviation of the actual current from reference sub phase.

 Δt – Step work system control.

Uym- Voltage control amplitude.

Uyi– Integral component of voltage control.

Uymin- Minimum value control voltage.

Uymax- Maximum value control voltage.

KIi- Coefficient integration for the deviation current.

KIo- Coefficient of current deviation.

IΖ -The arms of bridge currents.

Simulation result saw tooth voltage described Instantaneous value of voltage control VSI When sinusoidal PWM represented in equations (21,22, 23 and 24).

$$\tau = \tau + \omega^* \Delta t \tag{21}$$

$$u_{y1m} = U_{ym} \sin(\tau) \tag{22}$$

$$u_{y_{2m}} = U_{y_m} \sin(\tau - \frac{2\pi}{3})$$
 (23)

$$u_{y3m} = U_{ym} \sin(\tau - \frac{4\pi}{3})$$
 (24)

Where t, time in second, reference value frequency angular by rad/sec, Uy max, The amplitude maximum voltage Pu.

Sinusoidal PWM with zero sequence represented in equations (25,26 and 27).

$$u_{v1m} = U_{vm} \sin(\tau) + 0.13 * U_{vm} \sin(3\tau)$$
(25)

$$u_{y2m} = U_{ym} \sin(\tau - \frac{2\pi}{3}) + 0..13 * U_{ym} \sin(3\tau) \quad (26)$$

$$u_{y3m} = U_{ym} \sin(\tau - \frac{4\pi}{3}) + 0.13 * u_{ym} \sin(3\tau)$$
(27)

V. RESULTS OF SIMULATION

The Modeling system by interconnected sub circuit to calculate transient and steady state models of VSI. For reference load power of 100 KW and power factor 0.5 to 0.8 to hold series calculation.

Voltage phase calculation

$$v_{\phi} = \frac{\sqrt{2}}{3} U_m = 0.38 * 1000 = 380v$$
 (28)

Load current calculation

$$I_{\phi} = \frac{P_L}{3U * \cos\phi} = \frac{30000}{380 * 0.5 * 3} = 175.438A \tag{29}$$

where P.F.0.5

$$Z = \frac{U_{\phi}}{I\phi} = \frac{380}{175.438} = 2.1660\Omega \tag{30}$$

$$R = Z\cos\phi = 2.166 * 0.5 = 1.080\Omega \tag{31}$$

$$X = Z\sin\phi = 0.0189\Omega\tag{32}$$

$$L = \frac{X}{\omega} = \frac{0.0189}{314.15} = 0.06 \, lmH \tag{33}$$

VI. MODULATION SYSTEM CONTROL AND CALCULATION TRANSIENT REGION

Input data for the program represented a table (1). The development complex of mathematical

models of electrical drives with semiconductor converter and load by using C++ builder programmer. The calculations (for given load power 100KW and power factor load 0.5 to 0.8).

Emf power supply	Ei	1000 V.	
The inductance of power	Li	0.0005 H	
supply			
Active resistance of the	Ri	0.01 Ω	
power supply			
Capacity of the capacitor	С	0.002 F	
Resistance of the capacitor	Rc	0.01 Ω	
battery			
The resistance of protective	Rz	1000 Ω	
resistor			
Inductive load	Ln	0.022 H	
Resistance load	Rn	9.24 Ω	
The amplitude of emf load	Enm	0 V	
The angular frequency emf	omega	314.15 rad/s	
load			
input data for control system			
Frequency of the reference	fop	2000 Hz	
value			
Frequency rated of load	f1	50 Hz	
voltage			
Maximum voltage control	Uymx	1.8 Pu	
Maximum voltage across the	Ucmx	1500 Vc	
capacitor			
The specified operating load	Inz	32.89 A	
current			
The coefficient of the integral	Kii	0.25 Pu	
of the current load			
The coefficient of the load			
The coefficient of the load	Kio	0.025 Pu	

Table (2) represented where P.F. to change (0.5 to 0.8) Calculation result for I, R and L by used formula (28,29,30,31,32 and 33).

Table (2) result for I, R and	L(coso 0.5 to 0.8)
-------------------------------	--------------------

cos φ	0.5	0.6	0.7	0.8
Ι _Φ	175.438	146.1988	125.31	109.6491
R	1.08	1.559	2.1227	3.2772
L	0.00597	0.0066	0.0068	0.0066

VII. ALGORITHM CALCULATIONS PROGRAMS

Figure 4 shows the flowchart programming for calculation and solution equation by using C++ and visual C++ [8]-[9].

The results are shown in Fig.(5,6 and 7) and the table (3) when P.F.=0.5

Table (3) Harmonic analysis ($\cos 0 = 0.5$)

Source	e current:	29.918	
The re	ectified voltage:	999.700	
C	urrent in the first sw	vitch	
The current	value of the curve:	37.169	
The maxim	um value of the cur	ve: 75.266	
The minimu	Im value of the curv	re: -75.273	
V	oltage Inverter 1 pl	nase	
The current	value of the curve:	445.914	
Harmonic	Act. Of	Phase (grad)	
freq.(Hz)	harmonic Value		
50	379.981	-94.4640	
Harm	Harmonics coefficient: 0.5233		
	Current 1 phase loa	ad	
The current	value of the curve:	52.556	
Harmonic	Act. Of	Phase (grad)	
freq.(Hz)	harmonic Value		
50	52.550	-154.5692	
Harmonics coefficient: 0.01486			
Voltage control			
Acting value of the curve: 0.797			
Harmonic	Act. Of	Phase (grad)	
freq.(Hz) harmonic Value			
50	0.796	-94.4071	
Harmonics coefficient: 0.04566			

Figure 5 Schemes of characteristic current (I_c , I_{di} , I_{k0} and I_{k1})

Figure 6 Characteristic current and voltage of SC $(I_{k2}, I_{k3}, I_{k4}, I_{k5} \text{ and } U_{n1})$

The results shows in Fig.(8, 9and 10) and the table (4) when P.F.= 0.6.

Table (4) Harmonic analysis ($\cos \emptyset = 0.6$)

Source current: 29.899		
The r	ectified voltage:	999.702
С	urrent in the first sw	vitch
The current	value of the curve:	30.971
The maxim	um value of the cur	ve: 62.698
The minimu	Im value of the curv	re: -62.643
V	oltage Inverter 1 pl	nase
The current	value of the curve:	444.636
Harmonic	Act. Of	Phase (grad)
freq.(Hz)	harmonic Value	
50	378.981	-94.4701
Harmonics coefficient: 0.5248		
Current 1 phase load		
The current	value of the curve:	43.781
Harmonic	Act. Of	Phase (grad)
freq.(Hz)	harmonic Value	
50	43.775	-147.5263
Harmonics coefficient: 0.01604		
1 control voltage		
Acting value of the curve: 0.787		
Harmonic	Act. Of	Phase (grad)
freq.(Hz)	harmonic Value	
50	0.787	-94.4039
Harmonics coefficient: 0.04563		

Figure 8 Schemes and characteristic current $(I_c, I_{di}, I_{k0} \text{ and } I_{k1})$

Figure 9 Characteristic current and voltage of SC $(I_{k2}, I_{k3}, I_{k4}, I_{k5} \text{ and } U_{n1})$

Figure 10 Characteristic of voltage PWM reference at $f_1 = 2000$ Hz (carrier frequency)

The results are shown in Fig.(11,12 and 13) and the table (5) when P.F.= 0.7

Table (5) Harmonic analysis ($\cos 0 = 0.7$)

Source	ce current:	29.864	
The r	ectified voltage:	999.703	
C	urrent in the first sw	vitch	
The curren	t value of the curve	: 26.579	
The maxin	num value of the cur	rve: 53.810	
The minimu	im value of the curv	ve: -53.873	
V	oltage Inverter 1 pl	nase	
The current	value of the curve:	445.192	
Harmonic	Act. Of	Phase (grad)	
freq.(Hz)	harmonic Value	_	
50	379.244	-94.3962	
Harmonics coefficient: 0.5273			
	Current 1 phase load		
The current	value of the curve:	37.561	
Harmonic	Act. Of	Phase (grad)	
freq.(Hz)	harmonic Value	-	
50	37.561	-140.0594	
Harmonics coefficient: 0.01792			
1 control voltage			
Acting value of the curve: 0.791			
Harmonic	Act. Of	Phase (grad)	
freq.(Hz)	harmonic Value		
50	0.790	-94.3779	
Harmonics coefficient: 0.04567			

Figure 11 Schemes and characteristic current (I_c , I_{di} , I_{k0} and I_{k1})

Figure 12 Characteristic current and voltage of SC $(I_{k2}, I_{k3}, I_{k4}, I_{k5} \text{ and } U_{n1})$.

Figure 13 Characteristic of voltage PWM .

Reference at $f_1 = 2000$ Hz (carrier frequency The results shows in Fig.(14, 15 and 16) and the table (6) when P.F.= 0.8 Table (6) Harmonic analysis (cosØ = 0.8)

The r	a stified welts say	
	ectified voltage:	999.701
C	urrent in the first sw	vitch
The current	value of the curve:	23.243
The maxim	um value of the curv	ve: 47.457
The minimu	im value of the curv	e: -47.056
V	oltage Inverter 1 ph	ase
The current	value of the curve:	444.757
Harmonic	Act. Of	Phase (grad)
freq.(Hz)	harmonic Value	
50	378.632	-94.4475
Harm	onics coefficient:	0.5246
	Current 1 phase loa	ıd
The current	value of the curve:	32.843
Harmonic	Act. Of	Phase (grad)
freq.(Hz)	harmonic Value	
50	32.836	-131.2152
Harmonics coefficient: 0.02118		
1 control voltage		
Acting value of the curve: 0.789		
Harmonic	Act. Of	Phase (grad)
freq.(Hz)	harmonic Value	
50	0.788	-94.3920
Harmonics coefficient: 0.04575		

Figure 14 Schemes and characteristic current (I_c , I_{di} , I_{k0} and I_{k1}

Figure 15 Characteristic current and voltage of SC $(I_{k2}, I_{k3}, I_{k4}, I_{k5} \text{ and } U_{n1})$

Figure16 Characteristic of voltage PWM reference at $f_1 = 2000$ Hz (carrier frequency).

VIII. MODULATION AND CALCULATION $3\emptyset - 2$ level INVERTOR.

Installation the small value of capacitance in part of the rectified current at a given load power of 30 KW with P.F. 0.8. Table (7) represented parameter of the load:

Table (7) given load power of 30 KW with P.F. 0.8.

Po, KW	cosØ	,Volt <mark>U</mark> ø
30	0.8	0.38 * U _π

We calculated parameters by the following equas.

$$V\phi = \frac{\sqrt{2}}{3}U_m = 0.38 * 1000 = 380V$$

$$P_{\phi} = 3 * U_{\phi} * I_{\phi} * \cos\phi$$

$$I_{\phi} = \frac{P_L}{3U_{\phi} * \cos\phi} = \frac{30000}{380 * 0.8 * 3} = 32.89 \text{ A}$$

$$|Z_n| = \sqrt{R_n^2 + X_n^2}$$

$$Z_N = \sqrt{R_N + jWL_N} = \frac{U_{\phi}}{I_{\phi}} = 9.24$$

$$\cos\phi = \frac{R_N}{\sqrt{R_N + jWL_N}}$$

$$R_N = \sqrt{\frac{(Z_N)^2}{1.36}} = 9.24 \Omega$$

$$L_N = \frac{15.212}{523.33} = 0.0022 \text{ mH.}$$

When input data for the program represented in Table (8). The development of complex mathematical models of electrical drives with semiconductor converter and load by using C++ builder programmer. The series of calculations (for given load power 30KW and power factor load 0.8, exchange capacitor.

Table (8)	Definitive	input	data
-----------	------------	-------	------

Emf power supply	Ei	1000 V.
The inductance of power	Li	0.0005 H
supply		
Active resistance of the	Ri	0.01 Ω
power supply		
Capacity of the capacitor	С	0.002 F
Resistance of the capacitor	Rc	0.01 Ω
battery		
The resistance of protective	Rz	1000 Ω
resistor		
Inductive load	Ln	0.022 H
Resistance load	Rn	9.24 Ω
The amplitude of emf load	Enm	0 V
The angular frequency emf	omega	314.15 rad/s
load		
input data for co	ontrol syst	em
Frequency of the reference	fop	2000 Hz
value		
Frequency rated of load	f1	50 Hz
voltage, Hz		
Maximum voltage control	Uymx	1.8 Pu
Maximum voltage across the	Ucmx	1500 Vc
capacitor		
The specified operating load	Inz	32.89 A
current		
The coefficient of the integral	Kii	0.25 Pu
of the current load		
The coefficient of the load	Kio	0.025 Pu
current		

The results are shown in Fig.(17, 18 and 19) and the table (9) when $C=2 \mu I$.

Table (9) Harmonic analysis.

current supply		30.327
The vo	ltage of the capacito	or battery
The average	value of the curve:	999.817
Maximum v	alue of the curve:	1006.159
Maximum v	alue of the curve:	992.737
current capacitor bank 17.56		
Un1 load voltage		
Harmonic	Act. Of	Phase (grad)
freq.(Hz)	harmonic Value	
50	444.587	-94.4950
In1 load current		
The current value of the curve: 32.813		
Harmonic	Act. Of	Phase (grad)
freq.(Hz) harmonic Value		-
50	32.813	-131.2492

Power Supply: $P_s = 30.327*999.824 =$

31268,49W

Load Power: $P_L = 3*378.356*32.804*0.8 =$

29787.816 W

Load Power Ref.: $P_{ref} = 30000 \text{ W}$

$$\emptyset_u - \emptyset_i = -94.4950 - (-131.2492) = 36,7542$$

 $\cos\left(\emptyset_u - \emptyset_i\right) = 0.801$

Figure 17 Capacitor current and load voltage

Figure 19 The rectified voltage when C=0.025 μf . Further calculation: we used another values for capacitor changing from 2 μf to 0.035 μf .

The capacity of the capacitor bank C,µ <i>f</i>	Voltage of the capacitor bank (maximum value) U_{rc} ,V	Ripple of the rectified voltage M %	Current of capacitor bank (rms value of the curve) <i>I_{rc}</i> , A
2	1001.210	0,2	15.717
1	1002.110	0,4	15.763
0.1	1022.744	4,4	16.825
0.05	1057.155	11,4	18.528
0.025	1092.040	18,4	20.567
0.035	1157.938	23,14	25.257

IX. CONCLUSION

In this paper, the Mathematical Driving Model of Three Phase, Two Level Inverter designs is done. The degree of linear load is described. Power factor is the proportion of power at the first harmonic of the current of the total power consumed by the load. For each nonlinear distortion have P.F and are introduced. In this paper The fluctuations of the rectified voltage does not greater than +/- 10% with installation of capacitor bank C > 0.030 Micro F. It is shown that an approach of taking into account influence of current distribution in the rotor on starting characteristics used in building up the model proved applicable for evaluation of HF energy losses caused by PWM SC. This Mathematical model of electric drives done with synchronous machines has been developed. It can use in the real time mode with the help of personal computers. The system is intended for debugging transistor drive microprocessor-based control units and based on use of mathematical models.

REFERENCES

[1] M. Pronin, "Simulation and analysis of the system with multiphase induction generator and multi-stage active rectifier", Electrotechnika, Russia, p. 55-61, no. 5, 2006.

[2] M .Pronin. A. Vorontsov, "Dependence of current pulsations of multi-phase electrical machine on reduction of winding pitch and scheme of semiconductor converter". EPE-PEMC, Portoroz, Slovenia, 2006.

[3] C. Cester, A.Kedous -Lebouc, and B. Cornut, "Iron loss under practical working conditions of a PWM powered induction motor". Magnetics, IEEE Transactions, Vol. 33, Issue 5, Part 2, pp. 3766-3768, 1997.

[4] A. J.Moses, F. Anayi ,"Effect of PWM
Voltage Excitation in Iron Loss of Inverter Fed
Motors", IEEE Transactions on Magnetics, vol. 40
(2), no 2, pp. 762-765, 2004.

[5] A.Ruderman, R. Welch," Electrical Machine PWM Loss Evaluation Basics", EEMODS 2005,
5 – 8 Heidelberg / Germany, September 2005..

[6] N.Serov, P.Kalachikov, M. Pronin, and A.Vorontsov," Electro-transmission of dump trucks BelA Z with capacity up to 136 t // An. Mining equipment and electro mechanics", Russia, no5, p. 22-25., 2005.

[7] М. В. Пронин, "Электроприводы и системы с электрическими машинами и полупроводниковыми преобразователями (моделирование, расчет, применение)." ЕА Крутякова СПб, Силовыемашины Электросила, Russia, p 252,2004.

[8] Г. Корн, Т. Корн," Справочник по математике для научных работников и инженеров". М., «Наука», р 832 с, 1978.

[9] Пронин, Михаил Васильевич, and А. Г. Воронцов." Силовые полностью управляемые полупроводниковые преобразователи (моделирование и расчет). СПб, ОАО Электросила", Russia ,2003.