
 

Abstract: Unmanned aerial vehicles (UAV), have enormous important application in many fields.  Quanser three 

degree of freedom (3-DOF) helicopter is a benchmark laboratory model for testing and validating the validity of 

various flight control algorithms. The elevation control of a 3-DOF helicopter is a complex task due to system 

nonlinearity, uncertainty and strong coupling dynamical model. In this paper, an RBF neural network model 

reference adaptive controller has been used, employing the grate approximation capability of the neural network to 

match the unknown and nonlinearity in order to build a strong MRAC adaptive control algorithm. The control law 

and stable neural network updating law are determined using Lyapunov theory.  

 

  
Index Terms— Neural Network, Model Reference Adaptive Control, Bench-top Helicopter, Model Uncertainties.  

 

I. INTRODUCTION 

UAV control system has greatly improved in the 

recent years, with the modern technological 

advance in the computer applications and control 

theory. There are many difficulties in developing 

a high performance controller for an unmanned 

aerial vehicles; due to parametric uncertainty, 

nonlinearity, under actuation and strong coupling. 

To overcome these challenges a numerous control 

algorithm have been suggested to control the 

attitude of the UAV, in [1] the yaw control of the 

UAV has studied using the robust H2 control 

algorithm. A pitch motion control using neural 

network-based adaptive feedback proposed in [2]. 

A sliding mode controller is proposed to improve 

the tracking performance and error elimination in 

[3, 4], however sliding mode controller exhibits a 

chattering phenomenon due to the existence of 

switching logic in the control law. A hybrid 

control combining the integral action and the 

backstepping nonlinear algorithm proposed by W. 

Gao and Z. Fang in [5] and L. Junfang and et al in 

[6]. However the main drawbacks for these 

methods is that the parameter estimation is 

growing and depending on the initial conditions 

of the UAV [7].  

In addition a model-based fuzzy control nested 

saturation control was applied in [8]. A single 

input interval type-2 fuzzy PID controller and an 

analytical approach to construct the footprint of 

the uncertainty of the IT2 fuzzy set is applied in 

[9].  Neural network offer an advantage over 

other form of control algorithms, where the 

nonlinear mapping ability of the neural network is 

employed for forward and inverse plant 

modeling. In this paper, a neural network-based 

model reference adaptive controller has been 

applied to control the elevation angle of a 3-DOF 

helicopter. The error between the plant output and 

the reference model is used to adjust the 

controller parameters. To compensate the plant 

nonlinearity the RBF neural network is exploited 

in the control law. The learning law is obtained 

using Lyapunov theory. Moreover the whole 

system stability has been proved. 

Hover Control for Helicopter Using Neural 

Network-Based Model Reference Adaptive 

Controller 
 Abdul-Basset A. Al-Hussein 

 

Electrical Engineering Department 
 

Basrah University 
 

Basrah, Iraq. 
 

email: abdulbasset.alhusein@gmail.com
  

67

Iraqi Journal for Electrical and Electronic Engineering
Original Article

 Open Access

Received: 8 April 2017               Revised: 13 May 2017                       Accepted: 22 May 2017 

DOI: 10.37917/ijeee.13.1.9                                                                                    Vol. 13| Issue 1 | June 2017



This paper is organized as follows. In section II 

the helicopter system is described and the   

dynamic model is established.  The neural 

network model reference controller is designed in 

section III.  The simulation results are shown in 

section IV and conclusions are given in section 

V.     

II.   HELICOPTER SYSTEM DYNAMICS 

A three degree of freedom (3-DOF) bench-top 

helicopter from Quanser Inc. is shown as a 

physical model and free body diagram in Fig. 1 

and Fig. 2 respectively. Two DC motors with 

propellers mounted on a rectangular structure can 

generate a force proportional to the applied 

voltages. The motors are aligned parallel and the 

thrust generated is normal to the structure. The 

total generated aerodynamic force F makes the 

helicopter body to rotate around an angle 

measured by an absolute encoder. The helicopter 

structure can rotate about a suspension point at 

end of a long beam. The beam is gimballed on a 

2-DOF equipped joint and can freely yaw and 

pitch [10]. The second end of the arm connected 

to a counterweight mass 𝑀𝑤 so that the total 

effective mass of the helicopter 𝑀 is lighter to be 

lifted off the ground by the aerodynamic force of 

the motors. If the front motor supplied by a 

positive voltage the body will swivel in the 

positive pitch direction, while a negative pitch 

will occur if the second motor is supplied.  If 

either motor supplied by a positive voltage this 

causes an elevation of the body. A trust vectors 

generated due to body pitch; results in a travel of 

the body [10]. The dynamics of the elevation 

angle 𝜀 is determined using Lagrange’s equations 

[11] such that:  

 

𝜀̈ +
𝑏𝜀

𝐽𝜀
 𝜀̇ +

𝑀𝑔

𝐽𝜀
[(ℎ + 𝑑) sin 𝜀 + cos 𝜀] +

𝑀𝑤𝑔

𝐽𝜀
(𝑙2 + 𝑙2 cos 𝛼) cos 𝜀 +

𝑀𝑤 𝑔

𝐽𝜀
(𝑙3 sin 𝜀 −

ℎ) sin 𝜀 =   𝑙1 𝐹(𝑡)                                             (1)  

 

Which can be written in the following form 

 

𝜀̈ + 𝑓(𝜀, 𝜀̇) = 𝑙1 𝐹(𝑡)                                         (2) 

 

where 𝑓(𝜀, 𝜀̇) is unknown nonlinear part of the 

helicopter dynamics.  

 
Fig. 1 Physical Model of Quanser 3-DOF 

Helicopter 

 

 
 

Fig. 2 Free Body Diagram of Quanser 3-DOF 

Helicopter 

 

The parameters of the helicopter are described as 

follows:  

 

𝑀 : Total mass of both motors.  
𝑀𝑤 : Mass of the counter weight.  
𝑏𝜀 : Dynamic coefficient.   
𝐽𝜀 : Inertial moment of the whole system 

around the elevation angle.  
𝑙1 : Distance between travel axis to the 

helicopter body. 
𝑙2 : Distance between travel axis to the 

counter weight arm. 
ℎ, 𝑑, 𝑙3 : Are length in [m] as shown in Fig. 2 

𝐹 : Total force 
𝜃 : Pitch motion angle.  
𝜀 : Roll motion angle.  
𝜓 : Yaw motion angle.  
𝛼 : Fixed construction angle.  

 

In this paper, a neural network model reference 

adaptive controller (NN MRAC) will be designed 
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so that the elevation angle behavior follow the 

predefined reference model as below:  

  

𝜀�̈� + 𝑎𝑚𝜀�̇� + 𝑏𝑚𝜀𝑚 = 𝑘𝑚𝜀𝑑                            (3) 

 

where 𝑎𝑚, 𝑏𝑚 and 𝑘𝑚 are pre-specified design 

parameters and   𝜀𝑚  specifies the desired system 

performance for the UAV elevation angle, and 𝜀𝑑 

is the desired angle.   

 

III.  NEURAL NETWORK-BASED MRAC DESIGN 

The goal of the designed algorithm is to obtain a 

control law and the learning law of the controller 

paramters, in such away the UAV plant responds 

dynamically  as the specified reference model so 

that:  

 

lim
𝑡→∞

|𝜀(𝑡) − 𝜀𝑚(𝑡)| ≤  𝜖                                     (4) 

 

where (𝜖 < 0) is a specified constant.  

The presented nonlinear controller is a 

generalization [12] of the well known liner model 

reference adaptive controller system [13, 14].  

Consider the system model given by (1), and the 

reference model given by (3) then, the proposed 

controller shown in Fig. 3, has the following 

form:  

 

𝐹(𝑡) =
1

𝑙1
[−𝑏𝑚𝜀(𝑡) − 𝑎𝑚𝜀̇(𝑡) + 𝑘𝑚𝜀𝑚(𝑡) +

                     𝑓(𝒙, Θ(𝑡))]                                      (5) 

 

where 𝑓(𝒙, Θ(𝑡)) is the RBF neural network 

output that will approximate the unknown 

function 𝑓(𝜀, 𝜀̇) and defined by   

 

𝑓(𝒙, Θ(𝑡)) = ∑ 𝜃𝑖 exp(
‖𝒙−𝑐𝑖‖

2 𝜎𝑖
2 )𝑁

𝑖=1                       (6) 

 

where 𝒙 is the neural network inputs vector and 𝑁 

is the number of neurons in the hidden layer.  

And Θ(𝑡) is the estimate weights vector. The 

activation functions chosen for the neural 

network are the Gaussian radial basis functions 

with the following paramters 𝑐𝑖 and 𝜎𝑖 are the 

mean and standard deviation respectively. The 

RBF neural network structure used in this paper 

is shown in Fig. 4.  

Reference Model

Helicopter

  

NN MRAC 
Controller

-

+

 
Fig. 3 The Proposed NN MRAC 

 

... ...

Inputs Vector Radial Basis 
Functions

Output
 

 

Fig. 4 The RBF NN Structure 

 

The error between the helicopter elevation angle 

the reference model output used to train the RBF 

neural network as below:  

 

𝑒(𝑡) = 𝜀(𝑡) − 𝜀𝑚(𝑡)                                          (7) 

 

When the RBF neural network exactly match the 

unkown part of the system, the closed loop error 

dynamic equation can be written as follows:  

 

�̈�(𝑡) + 𝑎𝑚�̇�(𝑡) + 𝑏𝑚𝑒(𝑡) = 0                           (8) 

 

It is clear that (7) is asymptotically stable for all 

𝑎𝑚 > 0 and 𝑏𝑚 > 0. If we define   

 

𝑓(𝒙, Θ) = 𝑓(𝒙, Θ(𝑡)) − 𝑓(𝒙)                            (9) 

 

Then, for driving the helicopter to response 

dynamically as the specified reference model , the 

weights values of the RBF NN will be adjusted 

using an appropriate updating law. If Θ ∈ 𝑅𝑁 is 

the current weight estimate vector and Θ∗ is the 

optimal weights vector then,  
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Θ̃(t) = Θ(𝑡) − Θ∗                                            (10) 

 

where Θ̃(t) is the weights deviation or weights  

estimation error vector. As the error between the 

unknown function 𝑓(𝒙) and the RBF neural 

network output 𝑓(𝒙, Θ(𝑡)) is not accessible, an 

alternative approch using the error between the 

plant output and the reference model is used to 

generate the learning law for the proposed 

controller. To prove the stability and derive the 

NN weights updating law, Lyaponouv theory 

based on the background material in [12, 15] is 

employed as follow:  

Assume that the RBF neural network output is 

given in matrix form as below:  

 

𝑓(𝒙, Θ(𝑡)) =  Θ𝑇(𝑡) Φ(𝒙, 𝑡)                           (11) 

 

where  Φ(𝒙, 𝑡) ∈ 𝑅𝑁 is the radial basis functions 

output vector. Assume that Ψ and 𝐾 are  diagonal 

positive definite matrices, and the defined 

Lyaponov function has the following form:  

 

𝑉 (𝑒, Θ̃(t)) =
1

2
𝑏𝑚𝑒2(𝑡) +

1

2
�̇�2(𝑡) +

                          
1

2
Θ̃𝑇(t)Ψ−1Θ̃(t)                        (12) 

 

Then the time derivative of 𝑉 (𝑒, Θ̃(t)) is  

 

�̇� (𝑒, Θ̃(t)) = 𝑏𝑚𝑒 �̇� + 𝑒 �̇� + Θ̃𝑇Ψ−1Θ̇̃(t) 

                     =  −𝑎𝑚�̇�2 + 𝑓(𝐱, Θ) �̇� + Θ̃𝑇Ψ−1Θ̇̃(t)                 
 

(13)                                         

Assume that the learning law is given by:  

 

Θ̇(t) = −Ψ Φ(𝒙, 𝑡) �̇�(𝑡) − 𝐾  Θ(t)                 (14) 

 

Then (13) can be written in the following form:  

 

�̇� (𝑒, Θ̃(t)) = − [𝑎𝑚 −
1

2𝜂2
] �̇�2

− [𝜇1 −
𝜇2

2𝜁2
] ‖Θ̃(t)‖

2

+
1

2
( 𝜂2|𝑓(𝒙, Θ∗)|

2
+ 𝜇2𝜁2‖Θ∗‖2 

(15) 

where 

𝜇1 = min
i

{𝐾𝑖/ Ψi }   

𝜇2 = |Ψ−1𝐾| 
𝜂 and 𝜁 ∈ 𝑅 

 

It is usually possible to select 𝜂2 > 1/2𝑎𝑚 and 

𝜁2 > 𝜇2/2𝜇1; this implies that (8) has strong 

practical stability.  

  

IV. SIMULATION RESULTS 

This section presents the results of a numerical 

simulation of the proposed neural network based 

model reference adaptive controller performed to 

evaluate the hover controlling of a bench-top 

helicopter and verify the stability of the system 

and the learning law.  

The helicopter system parameters has the 

following values listed in Table. 1 

Parameter Value Unit 

𝑀 1.426 [Kg] 

𝑀𝑤 1.870 [Kg] 

𝐽𝜀 1.200 [Nms2] 

𝑙1 0.200 [m] 

𝑙2 0.060 [m] 

𝑙3 0.185 [m] 

 𝑑 0.070 [m] 

ℎ 0.020 [m] 

𝑔 9.810 [m/s2] 

Table.1 Helicopter System Parameters 

The reference model is designed such as 𝑎𝑚 = 9, 

𝑏𝑚 = 16 and 𝑘𝑚 = 1.  

The RBF neural network has 12 neurons for each 

input with the following parameters:  
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Initial output weights vector Θ̂(0) are set to 0.5 

and standard deviation vector 𝜎 are set to 2. 

Gaussian membership function mean values 

which are evenly distributed, are given below for 

the two inputs:   

𝐶 = [𝑖, 𝑖]𝑇 where 𝑖 = −2.5, −2, −1.5, −1, 0.5,
−0.25, 0.25, 0.5, 1, 1.5, 2, 2.5.  

Ψ = 19.2 𝑰  and 𝐾 = 0.05 𝑰 where 𝑰 is an 

identity  diagonal matrix with proper dimensions.  

All the initial values of the system and the 

reference model are set to zero. Fig. 5 (a) - (c) 

shows the simulation results for elevation angle 

tracking as a square wave input. The solid line 

represent the actual output; the dashed line 

represent the reference model output. Fig. 6 (a) - 

(c) shows the simulation results for elevation 

tracking as sine wave input. The solid line 

represent the actual output; the dashed line 

represent the reference model output.    

  

 
Fig. 5 (a) The Helicopter elevation angle. (b) The output tracking error. (c) Controller output.  

 

 

Fig. 6 (a) The Helicopter elevation angle. (b) The output tracking error. (c) Controller output.  
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V.  CONCLUSION 

A neural network-based model reference adaptive  

controller (NN MRAC) was proposed for 

controlling the elevation angle of a bench-top 

helicopter from Quanser Inc. The RBF neural 

network has been adaptively learned the 

helicopter uncertainty and nonlinear dynamics, 

then its output used as a part in the control law to 

compensate the system nonlinearity. Including 

Lyapunov stability theory in designing the RBF 

NN and selecting the optimal weights, enables the 

use of the proposed control law and ensures 

stability and robustness of the hovering system. 

Simulation results show that the proposed NN 

MRAC can efficiently solve the helicopter 

elevation angle problem. 
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