
 

Abstract: In this paper, a combined RBF neural network sliding mode control and PD adaptive tracking controller is 

proposed for controlling the directional heading course of a ship. Due to the high nonlinearity and uncertainty of the 

ship dynamics as well as the effect of wave disturbances a performance evaluation and ship controller design is stay 

difficult task. The Neural network used for adaptively learn the uncertain dynamics bounds of the ship and their 

output used as part of the control law moreover the PD term is used to reduce the effect of the approximation error 

inherited in the RBF networks. The stability of the system with the combined control law guaranteed through 

Lyapunov analysis. Numeric simulation results confirm the proposed controller provide good system stability and 

convergence.   

  
Index Terms— NEURAL NETWORK, ADAPTIVE CONTROL, SLIDING MODE CONTROL, MODEL REFERENCE 

PD CONTROLLER.   

 

I. INTRODUCTION 

An autopilot is a ship steering controller which is 

an important equipment for ship maneuvering, 

and automatically manipulates the rudder angle to 

reduce the error between the reference course or 

heading and actual course.  The autopilot 

performance directly effect safety and fuel want 

consumption.  Ship autopilot designed by 

conventional controller must be adjusted in 

accordance with the variation of ship dynamic 

and environmental disturbances where ship 

dynamic are greatly influences by ships speed, 

type ballast condition, so, the ship model has a 

high degree of nonlinearity and uncertainty, and 

this is beside the environmental effect namely the 

wind and currents [1, 2]. To address the major 

difficulties of the ship nonlinearity and 

uncertainty, several techniques have been 

developed, J. Van Ameronge [3] proposed 

adaptive model reference approach.  Lavudal and 

Fossen [4] suggested robust adaptive autopilot 

with waves filter and integral action. Other 

researches, a class of recursive algorithms such as 

backstepping and filtered backstepping have been 

applied [5]. In [2] an adaptive neural network 

control for ship steering system is proposed and 

backstepping techniques has been used.  A fuzzy 

variable structure controller is designed based on 

exponential reaching law presented in [6]. While 

a model reference based neural network is used in 

[7]. In [8] J. R. Layne and K. Passino had 

proposed a fuzzy reference model learning 

control for steering cargo ship system.   

In this Paper, a combined neural network and PD 

controller is proposed. The neural network is used 

to adaptively learning ship uncertainly bound, and 

the output is used as a parameter in the control 

law. To reduce the effect of the unknown 

dynamics of the ship; a PD term has been added 

to the control law. The PD term will compensate 

the model uncertainty outside the neural network 

state region, this provide global stability, 

moreover, the PD term handles the inherent 

network approximation error and this will 

improve the  tracking. The asymptotical stability 

of the system including both terms of the control 

law the sliding and the PD terms has been 

approved using Lyapunov theorem beside the 

derivation of the learning algorithm of the neural 

networks. 
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II.   THE SHIP MATHEMATICAL MODEL 

Ship maneuverability means the ability of ship to 

maintain or change its course or heading angle 

[9]. Ship plane motion is defined in the relative 

coordinates system which is fixed to the ship as 

shown in Fig. 1. 
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Fig. 1 Ship Coordinates System 

 

Considering the nonlinearity form in the ship 

dynamics, the mathematical model can be written 

in the following general form: 

 

𝜓̈(𝑡) + 𝑑3𝜓3̇ (𝑡) + 𝑑2𝜓2̇ (𝑡) + 𝑑1𝜓̇(𝑡) + 𝑑0 =
𝑘 𝛿(𝑡)                                                              (1) 

 

where 𝜓 denotes ship course or heading angle, 𝛿 

is the rudder angle. Eq. (1) can be written in a 

general state model as below: 

  

𝑥̇ = 𝐴𝒙 + 𝐵 𝛿(𝑡) + 𝐹                                     (2) 

 

where  

 

𝒙 = [𝜓(𝑡), 𝜓̇(𝑡),…𝜓(𝑛−1)(𝑡)]
𝑇
 

𝐴 =

[
 
 
 
 
 
0 1 0……0
      .             
           .         
                .      
                1

0 0……       0]
 
 
 
 
 

 

𝐵 = [0,… . , 𝐾(𝒙)]𝑇 

𝐹 = [0,… . , −𝑑(𝒙)]𝑇. 
 

where 𝒙, 𝐵 and 𝐹 ∈  ℜ𝑛and 𝐴 ∈  ℜ𝑛∗𝑛 while 𝜓(𝑖) 

is the 𝑖𝑡ℎ time derivative of 𝜓(𝑡) and  

𝑑(𝜓(𝑡), 𝜓̇(𝑡), …𝜓(𝑛−1)(𝑡)) and 

𝐾(𝜓(𝑡), 𝜓̇(𝑡), …𝜓(𝑛−1)(𝑡)) are the unknown 

nonlinear functions, with the following 

properties:  

𝑑(𝜓(𝑡), 𝜓̇(𝑡), …𝜓(𝑛−1)(𝑡))

<  𝑑𝑢(𝜓(𝑡), 𝜓̇(𝑡), …𝜓(𝑛−1)(𝑡)) 

                                                                           (3) 

 

Where 𝑑𝑢(𝜓(𝑡), 𝜓̇(𝑡), …𝜓(𝑛−1)(𝑡)) is a positive 

function. While the sign of the control gain 

𝐾(𝜓(𝑡), 𝜓̇(𝑡), …𝜓(𝑛−1)(𝑡)) is know (𝐾(. ) > 0) 

and it is lower bounded:  

𝐾(𝜓(𝑡), 𝜓̇(𝑡), …𝜓(𝑛−1)(𝑡))

>  𝐾𝑙(𝜓(𝑡), 𝜓̇(𝑡), …𝜓(𝑛−1)(𝑡)) 

                                                                           (4) 

 

III. SHIP STEERING CONTROL 

An appropriate desired reference model is 

proposed by Van Amerongen [3]: 

 

𝜓𝑚̈ + 𝑎𝑚𝜓𝑚̇ + 𝑏𝑚𝜓𝑚 = 𝑘𝑚 𝜓𝑟                       (5) 

 

Where 𝜓𝑚 represents the desired system 

performance of the ship heading. The dynamic of 

the desired reference model must be matched to 

the dynamics of the ship in spite of the demanded 

magnitude of the change of reference course 

angle.  

Eq. (5) can be expressed in the state model as: 

  

𝒙̇𝑚 = 𝐴𝑚𝒙𝑚 + 𝐵𝑚𝜓𝑟(𝑡)                                   (6) 

where  

𝒙𝑚 = [𝜓𝑚(𝑡), 𝜓𝑚̇(𝑡),…𝜓𝑚
(𝑛−1)

(𝑡)]
𝑇

 

 

with 𝒙𝑚 ∈  ℜ𝑛 is the reference model state and 

𝐴𝑚 ∈  ℜ𝑛∗𝑛 and 𝐵𝑚 ∈  ℜ𝑛 are the reference 

model matrices.  

The objective of the controller is to obtain a 

control law and updating law of the controller 

parameters, such that the whole system responds 

dynamically as the required reference model.  

It is supposed that the ship course tracking error 

is  

 

𝒆(𝑡) = 𝒙 − 𝒙𝑚                                                   (7) 
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Then the closed loop system equation in term of 

the error is given by:  

 

𝒆̇ = 𝐴𝒆 + (𝐴 − 𝐴𝑚)𝒙𝑚 + 𝐹 − 𝐵𝑚 𝜓𝑟 + 𝐵 𝛿(𝑡) 
                                                                           (8) 

Moreover a sliding mode switching variable 

defined below:  

𝑠 = C 𝒆                                                              (9) 

where C = [𝑐1, 𝑐2, …… 𝑐𝑛], with C ∈  ℜ𝑛 is a 

design parameters and selected to adjust the 

switching polynomial’s zeros in the left half 

plane. Usually, C 𝑒 is called the sliding mode 

control variable.  

Let us consider the ship dynamics upper and 

lower bounds 𝑑𝑢(𝒙) and 𝐾𝑙(𝒙) such that:  

 

Φ1 = 𝐾𝑙
−1(𝒙)                                                   (10)  

Φ2 = 𝑑𝑢(𝒙)                                                     (11) 

 

Then will be replaced by the RBF neural 

networks.  

 

Φ̂1(𝒙|Θ̂1) = Θ̂1
𝑇  𝜁1(𝒙)                                    (12) 

Φ̂2(𝒙|Θ̂2) = Θ̂2
𝑇  𝜁2(𝒙)                                    (13) 

 

With Θ̂1 ∈ ℜ𝑁1and Θ̂2 ∈ ℜ𝑁2 are the 

interconnection weights vectors, where 

𝑁1 𝑎𝑛𝑑 𝑁2 are number of the neurons in the 

output layer of the first and second neural 

networks respectively. 𝜁1(𝒙)  ∈ ℜ𝑁1 and 𝜁2(𝒙)  ∈
ℜ𝑁2 are the Gaussian type basis function defined 

by:  

𝜁𝑗(𝒙) = exp(
‖𝒙−𝐶𝑗‖

2

2𝜎𝑗
2 )      𝑗 = 1, 2                   (14) 

 

where 𝐶𝑗 is the mean vector and 𝜎𝑗 is the standard 

deviation vector of the Gaussian basis functions. 

The theoretical analysis of the Gaussian networks 

usually assumes that the basis function are evenly 

distributed on an n-dimensional lattice with the 

mean of a basis function located at every point on 

the lattice. In practical application there are many 

methods can be used to select the appropriate 

parameter of the basis function, such as the PSO, 

genetic algorithms and an unsupervised 

competitive clustering algorithm which used for 

on-line adjustment of the mean and deviation of 

the Gaussian network. 

Reference Model

Ship System  

  

NN Sliding Mode 
Controller

KpC

sgn(s)

-

+

-
-

e

s

e

δ(t)

 
Fig. 2 The Proposed NNSMC sliding mode and 

PD controller 

 

The proposed control law is consisting of two 

parts, the first part is depending on a variable gain 

sliding mode control algorithm using neural 

network and reference model, while second term 

uses the filtered error as a PD controller which 

efficiently can reduce the effect of the 

approximation error in the neural network as 

follow:  

𝛿(𝑡) = −𝐾𝑝 𝑠 − 
𝑠𝑔𝑛(𝑠)

𝑐𝑛
(Φ̂1(𝒙|Θ̂1))

2
[|𝐶𝐴𝒆|

+ |𝐶(𝐴 − 𝐴𝑚)𝒙𝑚| + |𝐶𝐵𝑚𝜓𝑟|]

− 𝑠𝑔𝑛 (𝑠) (Φ̂1(𝒙|Θ̂1) Φ̂2(𝒙|Θ̂2)) 

                                                                         (15) 
 

where 𝐾𝑝 is a design parameter. The whole 

system is shown in Fig. 2 

 

Theorem: Considering the error dynamics (8) for 

the ship steering system and the desired control 

input (15), the ship steady steering system 

asymptotically tracks with the desired signal so 

that the system error converge to zero [11. 12]. 

 

Proof: A Lyapunov function is defined as 

follows:  

𝐿(𝑠, Θ̃) =
1

2
𝑠2 +

1

2
Γ1

−1 Θ̃1
𝑇Θ̃1 +

1

2
Γ2

−1 Θ̃2
𝑇Θ̃2    (16) 

where 

Θ̃ = Θ∗ − Θ̂                                                      (17) 

 

and Θ∗ and Θ̂ is the optimal weights vector and 

the estimate weights vector respectively. While 

Γ1, Γ2 > 0 are the learning rate.  

 

𝐿(𝑠, Θ̃) can be upper bounded by  
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𝐿(𝑠, Θ̃) ≤  
1

2
𝑠2 +

1

2
Γ1

−1 ‖Θ̃1‖
2
+

1

2
Γ2

−1 ‖Θ̃2‖
2
 

(18) 

Differentiating (16) w.r.t. time yields:   

𝐿̇(𝑠, Θ̃) = 𝑠 𝑠̇ − Γ1
−1 Θ̃1

𝑇Θ̇̃1 − Γ2
−1 Θ̃2

𝑇Θ̇̃2 

               = 𝑠 𝑠̇ − Γ1
−1 Θ̃1

𝑇Θ̇̂1 − Γ2
−1 Θ̃2

𝑇Θ̇̂2 

               = 𝑠 [ 𝐶𝐴𝒆 + 𝐶(𝐴 − 𝐴𝑚)𝒙𝑚 + 𝐶𝐹

− 𝐶𝐵𝑚𝜓𝑟 + 𝐶𝐵 𝛿(𝑡)] − Γ1
−1 Θ̃1

𝑇Θ̇̂1

− Γ2
−1 Θ̃2

𝑇Θ̇̂2 

               = −𝑠 𝐶 𝐵 𝐾𝑝 𝑠 + 𝑠 𝐶𝐴𝒆 + 𝑠 𝐶(𝐴 −

𝐴𝑚)𝒙𝑚 + 𝑠 𝐶𝐹 − 𝑠 𝐶𝐵𝑚𝜓𝑟 −

𝑠 𝐶𝐵  
𝑠𝑔𝑛(𝑠)

𝑐𝑛
(Φ̂1(𝒙|Θ̂1))

2
[|𝐶𝐴𝒆| +

|𝐶(𝐴 − 𝐴𝑟)𝒙𝑚| + |𝐶𝐵𝑚𝜓𝑟|] −

𝑠 𝐶𝐵 𝑠𝑔𝑛 (𝑠) (Φ̂1(𝒙|Θ̂1) Φ̂2(𝒙|Θ̂2)) −

Γ1
−1 Θ̃1

𝑇Θ̇̂1 − Γ2
−1 Θ̃2

𝑇Θ̇̂2                                    (19) 

 

Assume that the learning laws defined as follow:  

Θ̇̂1 = Γ1 𝑠𝑔𝑛(𝑠) 𝑠 𝜁1(𝒙) [|𝐶𝐴𝒆| + |𝐶(𝐴 −
𝐴𝑚)𝒙𝑚| + |𝐶𝐵𝑚 𝜓𝑟|]                                      (20) 

Θ̇̂2 = Γ2 𝑠𝑔𝑛(𝑠) 𝑠 𝑐𝑛 𝜁2(𝒙)                              (21) 

 

Then (19) can be written as below:  

 

 𝐿̇(𝑠, Θ̃)  = −𝑠 𝐶𝐵 𝐾𝑝𝑠 −

𝑠𝑔𝑛(𝑠)  𝑠 𝐾(𝒙) [|𝐶𝐴𝒆| + |𝐶(𝐴 − 𝐴𝑚)𝒙𝑚| +

|𝐶𝐵𝑚𝜓𝑟|] × (Φ̂1(𝒙|Θ̂1))
2

+  𝑠𝑔𝑛(𝑠)  𝑠 [|𝐶𝐴𝒆| +

|𝐶(𝐴 − 𝐴𝑚)𝒙𝑚| + |𝐶𝐵𝑚𝜓𝑟|]Φ̂1(𝒙|Θ̂1)  −

𝑠𝑔𝑛(𝑠)  𝑠 𝑐𝑛 [ 𝐾(𝑋) Φ̂1(𝒙|Θ̂1) Φ̂2(𝒙|Θ̂2) −

Φ̂2(𝒙|Θ̂2)] + (𝑠 𝐶𝐴𝒆 + 𝑠 𝐶(𝐴 − 𝐴𝑚)𝒙𝑚 −

𝑠 𝐶𝐵𝑚𝜓𝑟)  − 𝑠𝑔𝑛(𝑠) 𝑠 [|𝐶𝐴𝒆| + |𝐶(𝐴 −
𝐴𝑚)𝒙𝑚| + |𝐶𝐵𝑚𝜓𝑟|] Φ̂1(𝒙|Θ1

∗) − [𝑠 𝑐𝑛 𝑑(𝒙) +

 𝑠𝑔𝑛(𝑠) 𝑠 𝑐𝑛 Φ̂2(𝒙|Θ2
∗)]                             (22) 

 

The first term in (22) is: 

  

−𝑠 𝐶𝐵 𝐾𝑝𝑠 

= −𝑠 𝑐𝑛 𝐾(𝒙) 𝐾𝑝𝑠 

While 𝑐𝑛, 𝐾(𝒙) and 𝐾𝑝 > 0 then 

 

−𝑠 𝑐𝑛 𝐾(𝒙)𝐾𝑝𝑠 ≤ 0                                       (23) 

 

For further analysis, it is assumed that for the two 

continuous functions Φ1(𝒙) and Φ2(𝒙) defined in 

(10) and (11) on a compact set, there exist two 

optimal weight vectors Θ1
∗  and Θ2

∗  such that:  

 

|𝜀1(𝒙)| = |Φ̂1(𝒙|Θ2
∗) − Φ1(𝒙)| < 𝛿1             (24) 

|𝜀2(𝒙)| = |Φ̂2(𝒙|Θ2
∗) − Φ2(𝒙)| < 𝛿2             (25) 

 

And the uncertainty bounds 𝐾𝑙(𝒙) and 𝑑𝑢(𝒙) 

meet the following inequalities on the compact 

set:  

 

0 < 𝐾𝑙(𝒙) <
1

 1−𝛿1 
                                           (26) 

𝑑𝑢(𝒙) − |𝑑(𝒙)| > 𝛿2                                       (27) 

So, (22) can be written as below: 

 

𝐿̇(𝑠, Θ̃)  = −𝑠 𝑐𝑛 𝐾(𝒙)𝐾𝑝𝑠 −

𝐾𝑙(𝒙) |𝑠| [(Θ̂1
𝑇(0) − Θ1

∗𝑇) 𝜁1(𝒙) +

 Γ1(∫ (|𝐶𝐴𝑒| + |𝐶(𝐴 − 𝐴𝑚)𝒙𝑚| +
𝑡

0

|𝐶𝐵𝑚𝜓𝑟|) |𝑠| 𝜁1(𝒙)) 𝑑𝑡 ) 𝜁1(𝒙) − 𝛿1][|𝐶𝐴𝒆| +
|𝐶(𝐴 − 𝐴𝑚)𝒙𝑚| + |𝐶𝐵𝑚𝜓𝑟|] Φ̂1(𝒙|Θ̂1) −

|𝑠|(− 𝐾(𝒙) Φ̂1(𝒙|Θ̂1) + 1) |𝑠| 𝑐𝑛 Φ̂2(𝒙|Θ̂2) −

|𝑠|(𝐾𝑙
−1(𝒙) − (1 + 𝛿1))[|𝐶𝐴𝒆| + |𝐶(𝐴 −

𝐴𝑚)𝒙𝑚| + |𝐶𝐵𝑚𝜓𝑟|] − |𝑠| 𝑐𝑛[𝜀2(𝒙) + 𝛿2]    (28) 

 

Its guarantee 𝐿̇(𝑠, Θ̃) < 0. The state errors of the 

system are ensured to converge to zero. This 

complete the proof. 

 

IV. SIMULATION Results 

This section presents the results of a numerical 

simulation of the proposed combined neural 

network sliding mode and PD control performed 

to evaluate for ship steering controller and verify 

the stability of the system and the learning law.  

The dynamics model of a warship traveling at 16 

knots, considered has the following parameters 

[7, 10, 13]: 

𝐾 =  0.0107 
𝑑0 = 0 
𝑑1 = 9.42 
𝑑2 = 0 
𝑑3 = 2.24 
The reference model is designed such that,  

𝑘𝑚 = 0.025 
𝑎𝑚 = 0.45 
𝑏𝑚 = 0.025 
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The controller error metric vector C = [10  1] and 

𝐾𝑝 = 55. The two RBF neural networks have 

fifteen neurons with the following parameters:  

Initial output weight vectors Θ̂1(0), Θ̂2(0) and 

standard deviation vector 𝜎 are all set to 0.5. 

Gaussian membership function mean values are 

given below:   

𝐶1 = 𝐶2 = [𝑖, 𝑗]𝑇  

where 𝑖 = 0, 1, 2 and 𝑗 =  −2,−1, 0, 1, 2 

The selected learning rate Γ1 = Γ2 = 0.1 

The initial course angle of the ship is taken as 

𝜓(0) = −5° while other initial values of the 

system and the reference model are set to zero.  

Fig. 3 (a) - (c) shows the simulation results for 

course angle tracking as a square wave input. The 

solid line represents the actual output; the dashed 

line represent the reference model output. Fig. 4 

(a) - (c) shows the simulation results for course 

tracking as sine wave input. The solid line 

represents the actual output; the dashed line 

represent the reference model output. It can be 

noted that the controller output is not smooth and 

exhibit a ringing or chattering phenomena and 

this is due to the existences of the sign function in 

the control law.  

 

Many methods are suggested to reduce the 

ringing, where a low-pass filtering of the control 

signal to reduce the chattering proposed in [14], 

while [15] introduced a sliding mode controller 

with uncertainty and disturbance estimator which 

is used to reduce the chattering. In this paper a 

method based on introducing a boundary layer 

around the switching surface is used, where a 

continuous control is applied within the boundary 

[16] [17], the control signal chattering can be 

removed by replacing the 𝑠𝑔𝑛(𝑠) term in the 

control law by 𝑠𝑎𝑡(𝑠, 𝜇) where  

 

𝑠𝑎𝑡(𝑠, 𝜇) =  {

𝑠(𝑡)

𝜇
     𝑖𝑓 |𝑠(𝑡)| < 𝜇

        𝑠𝑔𝑛 (𝑠(𝑡))     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   
          

(29)  

where 𝜇 is the boundary layer thickness which is 

a positive design number. 

Fig. 5 (a) – (c) and Fig. 6 (a) – (c) show the 

simulation results after introducing the boundary 

layer to reduce the chattering in the controller 

output, and a smooth control signal has been 

achieved.  

 

 

 

 

  
Fig. (3) (a) The ship heading angle. (b) The output tracking error. (c) The controller Output 
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Fig. (4) (a) The ship heading Angle. (b) The output tracking error. (c) The controller Output 

 

 

 
Fig. (5) (a) The ship heading Angle. (b) The output tracking error. (c) The controller Output 
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Fig. (6) (a) The ship heading Angle. (b) The output tracking error. (c) The controller Output 

 

 

V. Conclusion 

A combined RBF neural network sliding mode 

and PD adaptive tracking controller was proposed 

for controlling the directional heading course of a 

ship. The RBF neural networks can adaptively 

learn the ship uncertainty bounds, then their 

output used as a part of the control law, the 

second part is using a PD term which used to 

reduce the effect of the approximation error 

between the RBF and ship dynamics. Including 

Lyapunov stability theory in the design of RBF 

NN SMC and PD controller enables the use of the 

proposed control law to ensure stability and 

robust ship system. To reduce the ringing 

phenomena associated with the sliding mode 

control, a boundary layer technique has been used 

effectively. Simulation results show that proposed 

NN sliding mode and PD controller can solve the 

ship directional head course problem effectively.  
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