
Novel Optimization Algorithm Inspired by Camel 

Traveling Behavior 

Abstract: This article presents a novel optimization algorithm inspired by camel traveling behavior that 

called Camel algorithm (CA). Camel is one of the extraordinary animals with many distinguish characters 

that allow it to withstand the severer desert environment. The Camel algorithm used to find the optimal 

solution for several different benchmark test functions. The results of CA and the results of GA and PSO 

algorithms are experimentally compared. The results indicate that the promising search ability of camel 

algorithm is useful, produce good results and outperform the others for different test functions. 

Index Terms- Evolutionary algorithms, Camel algorithm, Camel Traveling Behavior, Optimization algorithm. 

I.     INTRODUCTION 

     In recently years, the emergence of many 

algorithms that mimicked or inspired by the 

different behavior of individual living creatures 

has been presented. It's mainly motivated by the 

need to present an efficient approach to deal 

with widespread optimization problems. 

     A genetic algorithm is the most popular 

evolutionary algorithms, which are used 

successfully in various engineering aspects [1]. 

Nowadays, most algorithms were developed 

based on swarm intelligence, biology, physical 

and chemical systems. In general, all the 

aforementioned algorithms may be called 

nature-inspired algorithms.   The largest part of 

nature-inspired algorithms are known as a bio-

inspired, and a subpart of the bio-inspired are 

known as a swarm intelligence based. 

In literature, some of the algorithms based on 

swarm intelligence, like Particle swarm 

optimization (PSO) developed by Eberhart and 

Kennedy [2], inspired by the behavior of bird 

flocking and fish schooling. PSO has been 

developed to optimize a broad range of 

continuous functions successfully [3,4].  

 Ant colony optimization (ACO) [5] for routing 

in communication networks. Later, ACO 

algorithms have been developed and tested 

successfully in a different engineering fields. 

     Firefly algorithm, bat algorithm, and cuckoo 

search are also developed and tested in various 

engineering applications [6]. 

In the last years, several researchers deal with 

optimization algorithms inspired from animals 

behavior such as, Elephant search optimization 

that depends on habitual features of elephant 

herds [7].  Alireza Askarzadeh proposed a novel 

optimization search algorithm based on an 

intelligent behavior of crows [8]. 

The basic motivation to design the camel 

algorithm is inspired by the aim to present a 

simple structure algorithm that suitable to apply 

over a wide range of problem. This will lead to 

minimize the computation and processing 

consummation. In addition, the camel 

algorithm efficient performance was expected 

since it mimic one of the most successful 

behavior of survival and exploring in desert 

under extreme condition. 

    This paper presents a novel optimization 

algorithm inspired by the traveling behavior of 
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Camel in the desert in difficult environments. A 

Camel tends to move towards a region that 

contains food and water.  
The rest of the paper is organized as follows: 

Section 2 presents theoretical concepts of the 

proposed Camel algorithm. Description of the 

CA and the benchmark test functions are given 

in Section 3. Section 4 illustrates the 

experimental settings and the experimental 

analysis of the proposed algorithm in 

comparison with GA and PSO algorithms. 

Finally, section 5 concludes the main achieved 

results. 

II.  CAMEL TRAVALING BEHAIVIOR

     The CA is inspired by camel traveling 

movement and behavior. Under that 

consideration, several factors and operators are 

considered to outline CA algorithm procedure, 

including: 

1. The temperature effect.

2. The supply (water and food).

3. The camel endurance.

4. Camel visibility (and /or hearing) range.

5. Random walk.

6. Group effect (multi-solution).

7. Termination condition (dying or

moving back). 

8.  Land conditions (oasis, quick sand,

storms, etc.). 

9.  Limitations (max speed, age and

carrying weight). 

     Before discuss these factors and operators, 

and to avoid any confusion, in this work we will 

use 𝑇, 𝑆, and 𝐸 to refer to temperature, supply 

and endurance, respectively. The temperature 

effect is the primary random factor that will 

affect the journey of traveling camel and has an 

impact on camel’s endurance. Furthermore, it 

can be vary from one camel to another since 

each camel is moving (searching) within the 

different sector in the desert (search space). For 

any j camel, the instantaneous temperature 𝑇𝑛𝑜𝑤
𝑗

can be expressed as: 

𝑇𝑛𝑜𝑤
𝑗  

= (𝑇𝑀𝑎𝑥
 − 𝑇𝑀𝑖𝑛

 ) ∗ 𝑅𝑎𝑛𝑑(0,1) + 𝑇𝑀𝑖𝑛         (1)

where 𝑇𝑀𝑖𝑛 and 𝑇𝑀𝑎𝑥
  are the minimum and 

maximum temperature, respectively. These 

values can be selected as desired such that 

𝑇𝑀𝑖𝑛 < 𝑇𝑀𝑎𝑥
  (in this work, it has chosen that 

𝑇𝑀𝑖𝑛= 0 and 𝑇𝑀𝑎𝑥
 = 100). 

The supply (water and food) effect is a critical 

factor that reversely depends on journey 

duration. The remaining supply 𝑆𝑛𝑜𝑤
𝑗

  can

expressed as decreasing function for any j 

camel as: 

𝑆𝑛𝑜𝑤
𝑗

= 𝑆𝑃𝑎𝑠𝑡
𝑗

∗ (1 − 𝜔 ∗
𝑇𝑟𝑎𝑣𝑎𝑙𝑒𝑑 𝑠𝑡𝑒𝑝𝑠

𝑇𝑜𝑡𝑎𝑙 𝑗𝑜𝑢𝑟𝑛𝑒𝑦 𝑠𝑡𝑒𝑝𝑠
)     (2) 

where 𝜔 is a burden factor ∈ (0,1]. At first 

journey step, the 𝑆𝑃𝑎𝑠𝑡
𝑗

is equal to 𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙 
𝑗

 that

indicate initial full supply (suitable positive 

value). Each camel has its own initial supply at 

the begin of the journey, which can set to be 

different or equal (in this work, for simplicity, 

it’s chosen that 𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙
1 = 𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙 

2 = ⋯ = 1 to

indicate initial full supply for 1st camel, 2nd 

camel,…).  

After each journey step, the supply will 

recurrently updated: 

𝑆𝑃𝑎𝑠𝑡
𝑗

= 𝑆𝑛𝑜𝑤
𝑗

      (3) 

Both temperature and journey duration affect 

camel endurance. For any j camel, this effect 

can express as decreasing function as: 

𝐸𝑛𝑜𝑤
𝑗

= 𝐸𝑃𝑎𝑠𝑡
𝑗

∗ (1 −
𝑇𝑛𝑜𝑤

𝑗

𝑇𝑀𝑎𝑥
) ∗ (1 −

𝑇𝑟𝑎𝑣𝑎𝑙𝑒𝑑 𝑠𝑡𝑒𝑝𝑠

𝑇𝑜𝑡𝑎𝑙 𝑗𝑜𝑢𝑟𝑛𝑒𝑦 𝑠𝑡𝑒𝑝𝑠
) (4) 

At first journey step, the  𝐸𝑃𝑎𝑠𝑡
𝑗

 is equal to 

𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑗

 that indicate initial full endurance. (In 

this work, for simplicity, it’s chosen that 

𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 
𝑗

= 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 
𝑗

= ⋯ = 1 for 1st camel, 2nd

camel,…). 
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After each journey step, the endurance will 

recurrently update as: 

𝐸𝑃𝑎𝑠𝑡
𝑗

= 𝐸𝑛𝑜𝑤
𝑗

   (5) 

CA algorithm uses camel group effect to 

improve search. The fundamental updating 

equation of new solution for any j camel can 

express as: 

𝑥𝑛𝑒𝑤
𝑗

= 𝑥𝑜𝑙𝑑
𝑗

+ 𝛿𝑗 ∗ (1 −
𝐸𝑛𝑜𝑤

𝑗

𝐸
𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑗 ) ∗

𝑒
(1 −  

𝑆𝑛𝑜𝑤
𝑗

𝑆
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 
𝑗

)

∗ (𝑥𝑏𝑒𝑠𝑡
∗ − 𝑥𝑜𝑙𝑑

𝑗
)                     (6)

Where 𝑥𝑛𝑒𝑤
𝑗

 is the updated value (i.e. new

solution) of j Camel. 𝑥𝑏𝑒𝑠𝑡
∗  is the best value

obtained so far from any Camel. 𝛿𝑗 is a random

walk factor represents the direction of moving, 

𝛿𝑗  [-1,1]. At first journey step, the old

solution 𝑥𝑜𝑙𝑑
𝑗

  is the same 𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑗

 that generate 

randomly within the allowed range specified by 

the problem. 

To decide the acceptance of solution, there are 

several factors added for cases such as: 

1. When a new camel replaces the old one that

is dying due quicksand, storms, etc. with dying 

rate µd ∈ [0,1) (the low-quality solution 

disappear and replace by new one). This can be 

in form such as: 

𝑖𝑓 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑛𝑜𝑤
𝑗

< (µd ∗  𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑙𝑑
𝑗

)

Generate 𝑥𝑛𝑒𝑤
𝑗

 randomly (within the

problem allowed rang of solution) 

𝑒𝑛𝑑 𝑖𝑓 

Where 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑙𝑑
𝑗

 is the fitness of soluation

found by camel in last past journey step. If it is 

not required to replace camel, this can be 

simply done by set µd =0. 

2. Moving back or stop (neglect last updating

movement and restore old solution). This 

practically useful to keep the camel in it is 

search region or location (i.e. the camel step 

back to its previous location when to leave the 

allowed search area). 

𝑖𝑓 𝑥𝑛𝑒𝑤
𝑗

 is not within the allowed rang of

solution 

𝑥𝑛𝑒𝑤
𝑗

= 𝑥𝑜𝑙𝑑
𝑗

𝑒𝑛𝑑 𝑖𝑓 

When camel reaches the promising area with 

better solutions of its journey or search (oasis), 

the helpful factors can be increased (supply and 

endurance increase or back to initial state). 

Also, it is proper to assume that temperature 

does not change by oasis since it is random and 

external. The oasis effect can be directly linked 

to view range  of the camel to provide more 

lifelike mimicking of camel. Thus, for any j 

camel, the oasis effect can state as: 

 𝑖𝑓   [𝑅𝑎𝑛𝑑(0,1) >  (1 − 𝛼𝑗) 

 && (𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑛𝑜𝑤
𝑗

>  𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑙𝑑
𝑗

)]

 𝑆𝑝𝑎𝑠𝑡
𝑗

= 𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑗

 𝐸𝑝𝑎𝑠𝑡
𝑗

= 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑗

𝑒𝑛𝑑 𝑖𝑓 

where 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑛𝑜𝑤 
𝑗

 is the fitness of recent

soluation measurered by objective or fitness 

function.  

III. CAMEL ALGORITHM

     In contrast to the other existing algorithms, 

camel algorithm search for the best solution by 

set its parameters initially to proper values and 

apply its operators as explained before. The 

initial solutions is generated randomly within 

the range of 𝑥𝑖 specified by each benchmark 

test function. The camel algorithm pseudocode 

is shown in Fig. 1. 
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Fig.1 Camel Algorithm pseudocode 

A. Benchmark Test Functions 

To evaluate the competence and suitability of 

new optimization algorithm, it is essential to 

test an algorithm using several well-known 

benchmark test functions with various 

characters [6]. Also, such test functions were 

used to perform a comparison between many 

exists optimization algorithm to verify that one 

algorithm surpassed others on a given set of 

problems. 

In this work, several benchmark test functions 

considered to evaluate the performance of CA 

algorithm as follows: 

1. Sphere function

Sphere function or De Jong’s function is 

unimodal and convex well-known test function 

that given as [6]:  

𝑓(𝒙) =  ∑ 𝑥𝑖
2𝑛

𝑖=1   (7) 

Where n is the dimension (n=1, 2, 3….) and the 

evaluation is usually done for a range of - 5.12 

≤ 𝑥𝑖  ≤ 5.12. Sphere function is known to have 

global minimum in 0 at x = (0, 0... 0). The two-

dimension Sphere function is shown in Fig.2. 

Fig.2 Two-dimension Sphere function 

2. Exponential function

Exponential test function that was given as [6]: 

𝑓(𝑥) = −𝑒−0.5(∑ 𝑥𝑖
2𝑛

𝑖=1 )          (8) 

Where n is the dimension (n=1, 2, 3) and the 

evaluation is usually done for a range of -1 ≤ 𝑥𝑖 

≤ 1. Exponential function has a global 

minimum in  -1 at x = (0, 0... 0). The two-

dimension Exponential function is shown in 

Fig.3 with different ranges. 

 (a) 

(b) 

Fig.3 Two-dimension Exponential function 

% Camel Algorithm (CA) 

Express problem information and objective or fitness 

function. 

Express Camel Algorithm initial parameters values. 

Create an initial Camel Caravan (multi-solutions). 

Compute Camel Caravan individual fitness and find 

the current best one.  

While (Counter < Total journey steps) 

For i =1: Camel Caravan 

Compute 𝑇𝑛𝑜𝑤
𝑗

, 𝑆𝑛𝑜𝑤
𝑗

, 𝐸𝑛𝑜𝑤
𝑗

 in equations 1, 2

and 4 for each 𝑗 camel in Caravan. 

Update camels’ locations as expressed in 

equation (6). 

Decide the acceptance of new camels’ 

locations (depend on solution quality 

measured by fitness function and range 

limitation). 

If (oasis condition occur) 

Replenish Supply and Endurance  

End If 

Rank Camel Caravan individuals and find 

the current best one.  

End For i 

End While 

State the final results and the required plots. 
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3. Ackley function

Ackley function is well-known multimodal test 

function that given as [6]: 

𝑓(𝒙) = −20𝑒
−0.2(√

1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1  )

−

𝑒−0.2(
1

𝑛
∑ cos(2𝜋𝑥𝑖)𝑛

𝑖=1 ) + 20 + 𝑒1                        (9)

Where n is the dimension (n=1, 2, 3….) and the 

evaluation is usually done for a range of -

32.768 ≤ 𝑥𝑖 ≤ 32.768. Ackley function is known 

to have global minimum fmin = 0 at x = (0, 0... 

0). The two-dimension Ackley function is 

shown in Fig.4. 

Fig.4 Two-dimension Ackley function 

4. Rastrigin function

Rastrigin function is highly multimodal test 

function that is given as [6]: 

𝑓(𝒙) = 10𝑛 +   ∑ (𝑥𝑖
2 − 10cos(2𝜋𝑥𝑖))𝑛

𝑖=1               (10) 

Where n is the dimension (n=1, 2, 3….) and the 

evaluation range - 5.12 ≤ 𝑥𝑖 ≤ 5.12. Rastrigin 

function’s global minimum is fmin = 0 at x = (0, 

0... 0). The two-dimension Rastrigin function is 

shown in Fig.5. 

Fig.5 Two-dimension Rastrigin function 

5. Griewank function

Griewank function is highly multimodal test 

function that is given as [6]: 

𝑓(𝑥) =
1

4000
∑ 𝑥𝑖

2𝑛
𝑖=1 + ∏ cos (

𝑥𝑖

√𝑖
) + 1𝑛

𝑖=1   (11) 

Where n is the dimension (n=1, 2, 3….) and the 

evaluation is usually done for a range of - 600 

≤ 𝑥𝑖 ≤ 600. Griewank function is known to have 

global minimum fmin = 0 at x = (0, 0... 0). The 

two-dimension Griewank function is shown in 

Fig.6, with different ranges to demonstrate the 

local minimum points. 

Fig.6 Two-dimension Griewank function 

6. Schwefel function

    Schwefel test function considered as one of 

most difficult test problems for optimization 

algorithms. Schwefel test function is 

multimodal with very deep sinusoidal 

indentations. Schwefel test function global 

minimum is located in a distant away from the 

next local minima, which is likely lead to 

convergence in the wrong direction. Schwefel 

test function was given as [6]: 

𝑓(𝑥) = 418.9829𝑛 − ∑ 𝑥𝑖
𝑛
𝑖=1                           (12)

Where n is the dimension (n=1, 2, 3….) and the 

evaluation is usually done for a range of -500 ≤ 

𝑥𝑖 ≤ 500. Schwefel function is known to have 

global minimum fmin = 0 at x = (420.9687, 

420.9687... 420.9687). The two-dimension 

Schwefel function shown in Fig.7. 
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Fig.7 Two-dimension Schwefel function 

B. Settings of Algorithms 

The following values are used for Camel 

algorithm parameters: 

1. Total journey steps = 100 or 1000

2. Minimum temperature = 0

3. Maximum temperature = 100

4. Initial supply = 1

5. Initial endurance = 1

6. Visibility = 0.5

7. Camel Caravan = 50

8. Dying rate = 0

9. benchmark test functions dimension

selected = [2, 10, 20] 

The experimental setting for GA is as follows: 

1.  Total generation = 100 or 1000

2. Crossover rate = 0.8 (one point

crossover type) 

3. Mutation rate = 0.1 (one point mutation

type) 

4. Individuals = 50

5. Roulette Wheel Selection method and

elitism method 

6. Benchmark test functions dimension

selected = [2, 10, 20] 

The experimental setting for PSO is as follows: 

1. Total iterations = 100 or 1000

2. Inertia weight = 1

3. Inertia weight decreasing ration = 0.99

4. Local learning coefficient = 2

5. Global learning coefficient = 2

6. Maximum velocity = 10

7. Minimum velocity = -10

8. Number of particles=50

9. Benchmark test functions dimension

selected=[2, 10, 20] 

It can be seen from the setting parameters that 

there are some parameters like the total journey 

steps, the total generations, and the total 

iterations have principly similar meaning. Also 

the number of Camel caravan, the individuals, 

and the number of particles equal to 50 for all 

algorithms CA, GA, and PSO, respectively. We 

select three different dimensions: 2, 10 and 20 

for all results. The other parameters have a 

different meaning for all three algorithms. 

IV. EXPERIMENTAL RESULTS

      The benchmark test functions indicated 

above programmed in a Matlab’s m-files and 

used to evaluate the ability of the Camel 

algorithm to outperform the other algorithms. 

In the experiments, the number of iterations is 

chosen the same for all three algorithms to 

measure the performance and the speed of the 

convergence that obtains the best fitness of all 

benchmark test functions. Table I indicates the 

comparison results for the above algorithms 

with the best fitness, mean and standard 

deviation. It can be noticed that the CA reaches 

to the best fitness within the 100 iterations for 

all test functions except Schwefel function and 

gives better results than the other algorithms. 

The CA gives bad results for Schwefel function 

in 100 iterations, but the results have been 

improved for 1000 iterations. These difficulties 

were shown in all three algorithms, but the CA 

reaches to near global minimum for all test 

functions while GA and PSO are failed as seen 

in Table.I. 

     The speed of convergence to the global 

minimum is an important measure for 

evaluating the algorithms, Fig. 8 shows the 

Schwefel function results for CA. Fig.8-a 

indicates the changes in temperature, supply 

that represented by food and water, and 

endurance with total journey steps (iterations).  

 
   ،  ،                         

172

Mohammed Khalid IbrahimVol. 12| Issue 2 | December 2016



TABLE I 

 BEST FITNESS, MEAN and STANDERAD DEVIATION of SIX TEST FUNCTIONS 

GA PSO CA 

Fun Dim B.F. Mean±Stdv B.F. Mean±Stdv B.F. Mean±Stdv 

Sph. 

2 1.9043 
0.5147 

±1.1907 
2.1898e-12 

-5.4627e-08 

±1.4778e-06 
0 0±0 

10 3.4521e+03 
-1.8986 

±34.6458 
0.0518 

0.0057 

±0.0756 
0 0±0 

20 1.1845e+04 
2.9004 

±36.3079 
11.5221 

0.2649 

±0.7298 
0 0±0 

Exp. 

2 -0.9999 
0.0328 

±0.0559 
-1.0000 

-1.1288e-08 

±3.6780e-08 
-1 0±0 

10 -0.7634 
-0.0973 

±0.4413 
-0.4885 

-0.3000 

±0.6749 
-1 

-3.1077e-10 

±9.7721e-10 

20 -0.3956 
0.1356 

±0.4866 
-0.5793 

0.0478 

±0.2347 
-1 

3.6227e-10 

±1.6201e-09 

Ack. 

2 1.7841 
-0.1647 

±0.0779 
6.9359e-06 

-9.0105e-07 

±2.0951e-06 
8.8818e-16 0±0 

10 15.9419 
-0.4162 

±12.2627 
0.3422 

-0.0012 

±0.0544 
8.8818e-16 0±0 

20 18.8913 
1.4832 

±13.5131 
4.1008 

-0.2590 

±0.6588 
8.8818e-16 0±0 

Ras. 

2 0.1440 
0.0283 

±0.0583 
1.3075e-09 

-1.2570e-06 

±1.8521e-06 
0 0±0 

10 45.6585 
-0.4945 

±2.2429 
73.4155 

-0.0918 

±2.7353 
0 

-3.0611e-13 

±9.6801e-13 

20 168.2051 
-0.0553 

±1.9153 
264.8060 

-0.0530 

±3.7258 
0 0±0 

Gri. 

2 0.1061 
-9.7361 

±8.4242 
0.0099 

-3.1400 

±4.4407 
0 0±0 

10 36.6906 
-41.8454 

±195.520 
0.2287 

0.5029 

±9.7193 
0 

-5.4580e-11 

±1.7260e-10 

20 107.6069 
43.257 

±209.2067 
0.9852 

-0.2333 

±2.3385 
0 0±0 

Sch. 

2 5.5065 
64.0740 

±497.621 
2.5455e-05 

420.9688 

±3.9228e-06 
2.5455e-05 

420.9688 

±8.8482e-06 

10 1.8087e+03 
57.4763 

±327.642 
1.9941e+03 

111.0072 

±255.0457 
18.8830 

420.1279 

±3.9868 

20 (100 step) 4.7606e+03 
22.2621 

±283.554 
4.7698e+03 

-18.6564 

±219.2892 
2.030e+03 

259.3556 

±284.6770 

20 (1000 step) 4.0038e+03 
-3.3902 

±313.5934 
4.7584e+03 

-18.2390 

±218.9861 
0.0160 

420.9799 

±0.0801 
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Fig.8-b shows the convergence to best fitness 

during 100 iterations. It can be seen from Fig.8 

that, CA reaches near global 

optimum=2.5455e-05 in only 55 iterations. Fig. 

9 shows the best fitness convergence for 

Schwefel test function using GA. Fig.10 shows 

best fitness convergence for the same test 

function using PSO. From figures (8, 9 and 10), 

it can be seen that the PSO gives fast 

convergence compared with GA and CA. It 

seems that only this case that PSO algorithm 

has the best result compared with the other two. 

All other cases for all test functions, the CA 

algorithm has better ability to solve the 

optimization problems. 

Figures (11-19) show the fitness convergence 

for the Schwefel test function with dimensions: 

10 and 20 with 100 iterations and dimensions 

20 with 1000 iterations for CA, GA and PSO 

algorithms. It is clear that the CA reaches near 

the global optimum 0.0160 while the others 

failed.   

(a) 

(b) 

Fig. 8 Convergence of CA for Schwefel function with 

two dimensions with total journey steps (iterations),    

(a) the variation of temperature, supply and endurance 

(b) best fitness. 

Fig. 9 Best fitness convergence of GA for Schwefel 

function with two dimensions  

Fig. 10 Best fitness convergence of PSO for Schwefel 

function with two dimensions 

(a) 

(b) 

Fig. 11 Convergence of CA for Schwefel function with 

ten dimensions with total journey steps (iterations), (a) 

the variation of temperature, supply and endurance (b) 

best fitness. 
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Fig. 12 Best fitness convergence of GA for Schwefel 

function with ten dimensions  

Fig. 13 Best fitness convergence of PSO for Schwefel 

function with ten dimensions 

(a) 

(b) 

Fig. 14 Convergence of CA for Schwefel function with 

twenty dimensions with total journey steps =100, (a) the 

variation of temperature, supply, and endurance (b) best 

fitness. 

Fig. 15 Best fitness convergence of GA for Schwefel 

function with twenty dimensions and 100 generations 

Fig. 16 Best fitness convergence of PSO for Schwefel 

function with twenty dimensions and 100 iterations 

(a) 

(b) 

Fig. 17 Convergence of CA for Schwefel function with 

twenty dimensions with total journey steps =1000, (a) the 

variation of temperature, supply and endurance (b) best 

fitness. 
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Fig. 18 Best fitness convergence of GA for Schwefel 

function with twenty dimensions and 1000 generations 

 

 

Fig. 19 Best fitness convergence of PSO for Schwefel 

function with twenty dimensions and 1000 iterations 

 

 

V. CONCLUSIONS 

The results indicate that the novel proposed 

camel algorithm is a very promising algorithm. 

The camel algorithm simple structure along 

with its efficient search ability allow it to deal 

effectively with unimodal and multimodal test 

functions to find an optimal solution even with 

difficult ones. The oasis effect gives a 

conditional boost to search depending on the 

quality of solution obtained and visibility of 

camel, which offers balanced between escaping 

optimum local areas in one hand and search 

effort on the other side. Also, the results show 

that camel algorithm can obtain excellent 

results in the early stage of search journey for 

most of the test functions, which suggest that 

camel algorithm would be very suitable to work 

with real-time applications and time sensitive 

optimization problems. 

Even though the work results is confirm the 

ability and superior performance of the camel 

algorithm comparing to PSO and GA over 

different test benchmark problems and ranges, 

yet it is not indicate which type of problems that 

camel algorithm might struggle to solve or 

should not apply to. Taking into account the no 

free lunch (NFL) theorem perspective, this 

should be further investigate to explore the set 

of problems that most suitable for camel 

algorithm especially in real life applications. 

Besides, further investigations on camel 

algorithm parameters values might lead to 

further improvements in its performance and 

convergence speed.  
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