
 Abstract: Network Simulator-2(NS-2) is one of the most popular simulation systems that is widely used in the network
community. C++ and the object-oriented Tool Command Language (TCL) are both used to write this simulator.
C++ works as a background for this simulator, whereas TCL is responsible for scheduling discrete events and
network configuration objects. The TCL language is used to write the code of the simulation scenario. NS-2 does not
present enough graphical interfaces that could help a researcher reduce the time spent on writing long TCL scripts.
Therefore, network researchers spend a great deal of time focusing on how to write the TCL simulation script, which
consequently makes the simulation process more difficult. This study presents a novel tool that enhances simulation
by using graphical interfaces. The graphical interface is used to create the network topology and convert it into a
TCL script. Thus, the process is visualized easily, efficiently, and quickly. This work describes the Network Topology
Tool(NTT),which is intended to help researchers who work under the network simulation environment of NS-2. In
such a scenario, researchers can create the network topology through an interactive graphical user interface and
also they can retrieve and edit it which considered a very important and unique service from the other previous
works. This tool will allow professional users to focus on the development of new algorithms or architectures rather
than spend time writing scripts for data processing.
.

Index Terms— Xgraph; NS-2 Simulation; Network performance.

I. INTRODUCTION
Simulation is a technique that is used to mimic

the behavior of a real system, including systems
in the telecommunications field or in computer
networks [1,2]. The behavior of the network
system is modeled using software such as
Network Simulator-2(NS-2), OMNeT++, and
GNS3[3].NS-2 is a very popular network
simulation tool [4].This discrete event simulator
is used for research on computer networks. NS-2
can be used in different kinds of networks to
simulate a variety of protocols, such as the
multicast, transmission control, and routing
protocols.

Researchers who use a network simulator have
the advantage of handling real data [5]. A
simulator makes an operation system function
faster and approximates a real system [6]. The
Tool Command Language (TCL) is used to create
the scenario of the topology.

Most researchers have no sufficient experience
with the use of TCL scripts. Therefore,
researchers spend much of their time writing
these scripts. Unfortunately, NS-2 does not
provide a graphical user interface (GUI) to help
researchers reduce the time that is spent on
writing TCL scripts. Consequently, researchers
need to learn the TCL language, which leads to
an additional waste of time. The present work
proposes a novel tool for enhancing NS-2
simulation through interactive graphical
interfaces that help the researcher generate a TCL
script. The overall functions of NS-2 are
summarized in Fig.(1).

Fig. 1 Overall functions of NS-2.

NTT: Network Topology Tool for Enhancing NS-2

Hayder Naser Khraibet AL-Behadili
Computer Science Department

Shatt Al-Arab University College
Basrah, Iraq

haider_872004 @yahoo.com

101

Iraqi Journal for Electrical and Electronic Engineering
Original Article

 Open Access

Received: 15 April 2015 Revised: 23 May 2015 Accepted: 1 Jun 2015
Vol. 11| Issue 1 | June 2015DOI: 10.37917/ijeee.11.1.10

II. DEVELOPMENT AND ARCHITECTURE
 The Network Topology Tool (NTT) was
developed using Java, with a Windows operating
system as its platform. NTT has an open source
software license, which enables researchers to
modify and update the source code, depending on
their needs.
 The intended mechanism of the simulation
must first be conceptualized before a TCL script
can be created. The researcher then writes the
TCL script as the source code that can be
executed using NS-2. NS-2 then generates a trace
file and a Nam file, depending on the problem
being addressed by the researcher. An overview
of this stage is provided as an example in Fig.(2).

Fig. 2 Overall functions of TCL through NS-2.

 By contrast, the NTT architecture works
differently. Its architecture can be divided into
three layers, from the user interface and to the
generating layer. An overview of the NTT layers
is shown in Fig.(3).

Fig. 3 NTT architecture.

A. GUI
 Most researchers use an interface to make
their work less difficult. A researcher selects a set
of options, including the network type as well as
the number of nodes, links, and colors. Finally,
the GUI sends the entire configuration into the
next layer.

B.ANALYZING LAYER
 The analyzing layer extracts the entire
configuration for the network then classifies the
extracted data. The classified data is saved in a
new file called the specification file. The
analyzing layer is used to convert the network
format of a GUI into details and other
information that are saved in a new file. This file
contains all the events that the user has
encountered in the given network topology. The
output of this stage is passed on to the next stage,
which is the generating layer.

C.GENERATING LAYER

 The generating layer presets the behavior of
the analyzing layer. This layer converts the
visualization components into clear text, which is
a code that presents the above mentioned
components. The generating layer extracts the
useful parameters that are found in the
specification file. This step can be considered the
compiler stage because it is fully responsible for
the conversion of graphical components into the
TCL code. The result code should be clear and
understood by NS-2. The flow diagram of the
generating layer is presented in Fig.(4).

Fig. 4 Generating layer.

102

Vol. 11| Issue 1 | June 2015 Hayder Naser Khraibet AL Behadili

 NTT tool has one more advantage; it has the
ability to retrieve the TCL file. The researchers
can retrieve and modify the file by using NTT
tool. The source code converts by the NTT tool to
visualization components as Icons. The
researchers able to modifying on the file and
regenerate it again. This step considered a very
important and distinguishes this work from the
other previous works. Now the researcher can
create his topology with less knowledge and less
suffering of using code. The flow diagram
presented this step of retrieve architecture in Fig.
(5).

Fig. 5 NTT retrieves architecture.

III. NTT USAGE AND RESULT

 In this section, we demonstrate the use of the
NTT tool. This example shows how to create a
scenario with four connected nodes in the
topology. We proposed the creation of four
nodes, namely, Node1, Node2, Node3, and
Node4. The connections between the four nodes
are “duplex-links,” with a bandwidth of 5 MB
and a delay of 2 ms. The queue is called a “Drop
Tail.”The user has to enter all the requirements to
create the proposed TCL code. The main
interfaces of the NTT tool are shown in Fig.(6)
and (7).

Fig. 6 NTT Configuration Interface.

With the NTT configuration interface, the user
has the ability to enter the desired topology
configuration, including the type of connection,
bandwidth, time delay, and the type of queue.
After applying the configuration, the NTT tool
will display the final interface that contains the
main topology, as proposed in the previous step.

 The final step is to produce the TCL code via
the generate button, which will convert all the
required information into a TCL script. The
generated TCL file can be used in NS-2 to run the
topology and the Nam file. Fig.(7) shows this
topology interface.

Fig. 7 NTT Topology Interface.

The generated code was run with NS-2 for

testing. The result was a100% match with that of
the code written via traditional programming. A
sample of the testing results is shown in Fig. (8).

Fig. 8 Nam Topology.

103

Vol. 11| Issue 1 | June 2015 Hayder Naser Khraibet AL Behadili

IV. CONCLUSION AND FUTURE WORK
The NS-2 simulator has been widely used in the

network community. The growing number of
researchers in computer networks has led to the
use of assistance programs to increase the
effectiveness of the system. NTT is a tool that
was developed to help researchers in this field.
NTT was developed based on three stages. The
analyzing layer converts visual specifications into
addressed events. The generating layer creates the
TCL code based on the events that were
generated in the previous step. The final TCL
code was run and its result matched that of the
code written with traditional programming.

With respect to future work, the NTT was
developed in Java for the Windows XP operating
system and was tested with the wire protocol.
Therefore, the next stage towards making the tool
more efficient would be to add wireless protocol
functionality. In addition, 3D plotting could be
utilized as a GUI to increase the use of NTT.

ACKNOWLEDGMENT

I would like to thanks all that made my research
paper possible. Especially for parents, wife,
colleagues, and friends through their help and
support.

REFERENCES
[1] L. Breslau, D. Estrin, K. Fall, S. Floyd,

J.Heidemann, A. Helmy, P. Huang, S.
McCanne, K. Varadhan, and Y. Xu,
"Advances in network simulation." vol. 33:
IEEE, 2000, pp. 59-67.

[2] J. Pan and R. Jain, " A Survey of Network

Simulation Tools: Current Status and Future
Developments," School of Computer Science-
University of Lugano, Citeseer, Technical
Report CSE574S, 2008.

[3] V. Shnayder, M. Hempstead, B.-r. Chen, G.

W. Allen, and M. Welsh, "Simulating the
power consumption of large-scale sensor
network applications," international
conference: ACM, 2004, pp. 188-200.

[4] T. Issariyakul and E. Hossain, "Introduction

to Network Simulator 2 (NS2)," in
Introduction to Network Simulator NS2, 2nd.
ed., Ed. Burlingto-USA: Springer, 2009, pp.32.

[5] S. Bajaj, L. Breslau, D. Estrin, K. Fall, S.

Floyd, P. Haldar, M. Handley, A. Helmy,
J.Heidemann, and P. Huang, "Improving
simulation for network research," Technical
Report 99-702b, University of Southern
California, 1999.

[6] Y. Cao, D. T. Gillespie, and L. R. Petzold,

"The slow-scale stochastic simulation
algorithm." vol. 122, 2005, p. 014116.

104

Vol. 11| Issue 1 | June 2015 Hayder Naser Khraibet AL Behadili

