
Intelligent Feedback Scheduling of Control Tasks
Fatin I. Telchy

Computer Engineering Branch

Control and System Engineering Dep., University of Technology

Baghdad, Iraq

fatin.telchy@yahoo.com

Abstract, an efficient feedback scheduling scheme based on the proposed Feed Forward Neural Network (FFNN)

scheme is employed to improve the overall control performance while minimizing the overhead of feedback

scheduling which exposed using the optimal solutions obtained offline by mathematical optimization methods. The

previously described FFNN is employed to adapt online the sampling periods of concurrent control tasks with

respect to changes in computing resource availability. The proposed intelligent scheduler will be examined with

different optimization algorithms. An inverted pendulum cost function is used in these experiments. Then,

simulation of three inverted pendulums as intelligent Real Time System (RTS) is described in details.

Numerical simulation results demonstrates that the proposed scheme can reduce the computational

overhead significantly while delivering almost the same overall control performance as compared to optimal

feedback scheduling

Index Terms—Feedback Scheduling, Real Time Control Task, Feed Forward Neural Network (FFNN), Inverted

Pendulum, Optimization Algorithms, Optimal Sampling Period

I. INTRODUCTION

The feedback scheduler attempts to control

the CPU utilization to less than or equal to

UR=Ci/hi (where UR is CPU utilization

reference, Ci is the processing time, hi is the

sampling periods) by rescaling the sampling

periods of the controllers. The feedback

scheduler is implemented as a high-priority task

that regularly collects execution-time

measurements from the control tasks and

estimates the CPU load. Based on the load

estimate, new sampling periods are

communicated to the control tasks.

Generally, online scheduling using optimal

feedback scheduling schemes is too

computationally demanding in terms of cost and

time. An efficient feedback scheduling scheme

using Feed Forward Neural Networks will be

proposed in this paper, It should be mentioned

here the applied assumptions in this research

where as follows:

 Hard real time tasks scheduling.

 All hard tasks are periodic, with known

periods.

 All release times are zero

 Jobs are ready to run at their release

times.

 Deadlines are equal to periods.

 Jobs do not suspend themselves.

 Jobs are independent (i.e., they do not

communicate or share other resources

than the CPU).

 All systems context switching time and

so on are ignored in JSSP and CS.

 Non preemption concept has been limited

the scheduling of the jobs

Several attempts have been dome in this field

and below are some of them: Scto et. al. (1996)

[1] considered periodic tasks for scheduling of

optimized performance of real time control

system. Varying sampling period with defined

rages of the lower and upper bounds to optimize

the system control performance subjected to

RMS constraints; Eker et. al. (2000) [2] used

feedback scheduler to distribute computing

resources over a set of real-time control loops in

order to optimize the total control performance.

Two issues had been treated; first, how the

control performance depends on the sampling

interval. Second, how a recursive resource

allocation optimization routine can be designed;

Cervin et. al. (2002) [3] used a scheduler

architecture which combines feedback and

feedforward action in order to optimize control

performance while maintaining high resource

utilization. The feedback performed via the

64

Iraqi Journal for Electrical and Electronic Engineering
Original Article

 Open Access

Received: 22 July 2014 Revised: 20 August 2014 Accepted: 10 September 2014
Vol. 10| Issue 2 | December 2014DOI: 10.37917/ijeee.10.2.2

execution time measurements and feedforward

via the workload changes to adjust the sampling

periods of the control tasks so that the combined

performance of the controllers is optimized. An

inverted pendulum example is presented with

using cost function describe the performance of

each IP’s controller. The application for periodic

tasks with Earliest Deadline First (EDF)

scheduling under overload conditions makes it

possible to, in certain situations, to interpret a

plain EDF dispatcher as a feedback scheduler for

control tasks; and Feng Xia et. al. (2007) [4] used

feedback scheduling scheme based on FFNN.

The optimal solutions had been obtained offline

by mathematical optimization methods, a Back-

Propagation Neural Network (BPNN) had been

designed to adapt online the sampling periods of

concurrent control tasks with respect to changes

in computing resource availability. Numerical

simulation results show that the proposed

scheme can reduce the computational overhead

significantly while delivering almost the same

overall control performance as compared to

optimal feedback scheduling.

II. FEEDBACK SCHEDULING CONTROL

SYSTEM

The problem of feedback scheduling can be

expressed as a constrained optimization problem,

which is usually referred to as Optimal Feedback

Scheduling [5].

Feedback Scheduling has been employed in

real time systems to overcome the uncertainty in

the availability of the resources. The feedback

scheduler should control the workload of the

processor by adjusting the sampling periods of

the controllers. At the same time, it should

optimize the overall control performance. This is

stated as the following optimization problem [6].

In feedback scheduling, the scheduler get

feedback information about the actual execution

time of a task, and also feedforward information

when the control tasks are about to switch mode.

It tries to keep the CPU utilization at set-point by

manipulating the sampling periods of each task

[7].

Optimal feedback scheduling schemes are

usually too computationally expensive to be used

online, though they are in principle capable of

maximizing the overall Quality of Control (QoC)

of real-time control systems. With the goal of

optimizing the overall QoC of multitasking

embedded control systems, the problem of

optimal feedback scheduling is explicitly

formulated, and relevant mathematical solutions

are discussed [8].

To overcome the disadvantage of overly

large computational overheads associated with

mathematical optimization routines, a fast

feedback scheduling scheme exploiting FFNN is

used in this chapter. It aims at reducing the

feedback scheduling overhead while delivering

almost optimal overall QoC. Besides, the use of

neural networks potentially enhances the

adaptability, robustness, and fault-tolerance of

the feedback scheduler [8].

Since optimal feedback scheduling schemes

are generally too computationally expensive to

be used online, schemes with much less

computational complexity are desirable. The

typical scheme of Intelligent Feedback

Scheduler is shown in Fig. 1.

Fig. 1: Architecture of Neural Network Scheduling [9]

Some reasons why the neural networks

technology is introduced into the framework of

feedback scheduling are described below [8]:

(1) From the overhead perspective,

feedforward neural networks with simple

structures can yield smaller feedback scheduling

overheads than mathematical optimization

methods with less complex computations. In

addition, information processing inside neural

networks is highly parallel, which makes it

possible to achieve higher processing speed by

means of suitable hardware implementation.

(2) With regard to the accuracy of solutions,

mathematical optimization methods can generate

accurate optimal solutions offline, which should

be exploited in the design of online feedback

schedulers. On the other hand, neural networks

are powerful in learning and adapting, and enable

of approximating arbitrarily complex nonlinear

functions with arbitrary precision. Once well

trained by the accurate optimal solutions at

design time, neural networks will be able to

deliver online almost optimal feedback

scheduling performance.

(3) The generalization capability of neural

networks is also very good, in that neural

65

 Fatin I. Telchy�� �����������������	�
�
�������
�������� �������� ���������
������

networks can easily handle things like untrained

input data, noise, and incomplete data. This helps

to improve the performance of the feedback

scheduler with better fault tolerance.

In this work, different optimization methods

had been used to figure out the effectivity of the

developed NN with different optimizations

methods. Then, as an application, inverted

pendulum control system case is presented with

SQP as optimization method for the optimal

feedback scheduling scheme.

A. Neural Feedback Schedule Strategy

The goal of the Neural Feedback Schedule

“NFS” is to optimally allocate available CPU

resources among control loops, and ultimately to

optimize the overall quality of the control of the

system, by exploiting feedback scheduling. In

the feedback scheduling loop, the CPU

utilization is chosen as the controlled variable. It

is the responsibility of the feedback scheduler to

adapt sampling periods (i.e. task periods) so that

the CPU utilization is maintained at a desired

level. For simplicity, assume that all task

execution times and the CPU workload are

known at runtime.

B. Optimization Complexity

There are many well-known methods for

solving the constrained optimization problem

formulated by the cost function and the

condition. The necessary and sufficient condition

for the optimal solutions is given by Kuhn-

Tucker condition [10].

Given that the cost function Ji(fi) is convex.

When Ji(fi) is not convex, the Kuhn-Tucker

condition becomes a necessary condition. Since

Ji(fi) is convex for most control systems [2], the

Kuhn-Tucker condition can be regarded as a

general tool for obtaining the optimal sampling

frequencies/periods. Sequential quadratic

programming (SQP) has been recognized as one

of the most efficient methods for solving

constrained optimization problems [11].

The optimization role is to minimize the total

control cost (J) by optimizing scheduling

parameters of control tasks under the constraint

of system schedulability. As feedback schedulers

are usually executed at runtime, it is of

paramount importance to take into account the

computational overhead of the feedback

scheduling algorithm to be employed. If the

feedback scheduler consumes too much

computing resources, the execution of control

tasks definitely will be impacted in the presence

of resource constraint. This may then cause

significant degradation of the overall

performance. Optimization solutions typically

involve complex computations, which induce

large feedback scheduling overheads. Therefore,

they are not suitable for online use in most cases

[4].

Solving the optimization problem exactly

can be very time-consuming. Evaluating a cost

function for a single sampling frequency

involves a large amount of computations. If the

resource allocation problem is to be solved by an

on-line optimizer, the cost functions for the

plants must be computed off-line and then

approximated by simpler functions. A quadratic

approximation was suggested in [2]. The solution

to the approximated problem can in both cases be

interpreted as a simple linear rescaling of the

nominal sampling periods.

The reasons that the computational

complexity of the optimization algorithms to be

considerably high; In the SQP method, for

instance, one or two quadratic programming sub-

problems must be solved in each iteration and

thus take a great deal of time to complete. When

applied to feedback scheduling, this algorithm

may introduce significant overheads. Practically

most of existing optimal feedback scheduling

algorithms suffer from the problem of too large

computational overheads, which impair their

application [4].

The minimization process is carried out

using MATLAB 2012 function fmincon, which

finds the constrained minimum of a nonlinear

multivariable scalar function starting at an initial

estimate. This is generally referred to as

constrained nonlinear optimization or nonlinear

programming.

1) Cost Functions (J)

As a Quality-of-Service (QoS) measure,

each controller is associated with a cost function

J(h), which measures the performance of the

controller as a function of the sampling period h

[2]. And smaller sampling periods yield better

control performance, because the performance of

sampled-data control with smaller sampling

periods approaches more closely to that of

66

 Fatin I. Telchy�� �����������������	�
�
�������
�������� �������� ���������
������

continuous-time control. However, the decrease

in sampling period will result in an increase in

the requested CPU utilization of the relevant

control task. In extreme cases the schedulability

of the system may be violated, and hence the

control performance will deteriorate due to

deadline misses. In order to optimize the overall

performance, the sampling periods should be

adjusted under the constraint of system

schedulability [12].

C. General NN Design methodology.

To overcome the problem associated with

the large computational overheads of optimal

feedback scheduling algorithms, a Neural

Feedback Scheduling (NFS) scheme has been

proposed. The goal is to optimize the overall

performance of multitasking control systems

through feedback scheduling while minimizing

the feedback scheduling overhead. A

Feedforward Back-Propagation Neural Network

(FFBPNN) with a simple structure is adopted to

build the feedback scheduler. Training and

testing data can be easily created offline by

applying the Sequential Quadratic Programming

(SQP). This scheme has advantages such as low

feedback scheduling overhead, wide

applicability, and intelligent computation. It is

also capable of delivering almost optimal

performance.

In this work, the NN has been placed to do

the optimization role (function) to overcome the

weak points which has been mentioned before.

The first step starts with determine the cost

function of the system and the scheduling

method to specify the scheduling condition in the

optimization procedure according to the system

type. Ranges of data should be specified to be

optimized to get the required training data for the

pre-specified training data. After train the NN, no

need to go back to the optimization any more as

the NN will be placed instead of it to proceed the

required data will minimize the overhead and

better performance.

The design flow of the neural feedback scheduler

is as follows:

Firstly, formulate the problem in the form of

constrained optimization equation. Determine

the form of the cost functions based on control

systems analysis, and initialize related

parameters.

Secondly, analyze the characteristics of the

execution times of the control tasks to obtain the

ranges of their values. Within the ranges of Ci as

well as UR, select a number of data pairs, and for

each pair, use the SQP method to solve the

optimal feedback scheduling problem offline,

producing sufficient sample data sets.

Thirdly, determine the number of hidden

neurons according to the number of control

loops, and initialize the NN.

Finally, train and test the neural network

using pre-processed sample data sets. Once the

BP network passes the test, it can thereafter be

used online as the neural feedback scheduler.

1) NN Design methodology.

The main role of the NFS is to approximate

the optimal solutions, which are obtained using

mathematical optimization methods. Based on

this, training and testing data will not be a

problem since it can be easily created offline by

applying any of the following optimization

algorithm:

 Sequential Quadratic Programming

(SQP).

 Active Set.

 Interior Point.

Then a suitable NN will be developed with

each algorithm to overcome the optimization

algorithms’ complexity and overhead.

As shown in Fig. 1, there is only one hidden

layer apart from the input and output layers in the

BP network used as the neural feedback

scheduler. Since feedforward neural networks

with only one hidden layer are able to

approximate arbitrary functions with arbitrary

precision that are continuous on closed intervals,

one hidden layer is sufficient for guaranteeing

solution accuracy [4].

A three-layer feedforward back-propagation

(BP) network has been used to build the feedback

scheduler as shown in Fig. 2.

Fig. 2: A Three-Layer Feedforward Back-Propagation

(BP) Network

67

 Fatin I. TelchyVol. 10| Issue 2 | December 2014

With given cost functions, the values of

sampling frequencies (fi) will depend on the

execution time (Ci) of each control task and the

desired CPU utilization UR. The consequence of

this work, (N+1) inputs, i.e.,(C1, …, CN, and UR),

are set for the neural feedback scheduler inputs.

Since the role of the feedback scheduler is to

determine sampling periods of all loops, the

sampling periods (h1, …, hN) or frequencies (f1,

…, fN) are natural outputs of the neural feedback

scheduler.

Both inputs and outputs of the feedback

scheduler are related to resource utilization based

on real-time scheduling viewpoint. While

sampling periods/frequencies are important

design parameters of the control loops based on

control perspective. For that reason, the neural

feedback scheduler establishes a mapping from

temporal parameters (for real-time scheduling)

to controller parameters (for real-time control)

[5].

2) Neural Feedback Scheduler Design

In order to determine the number of hidden

neurons, i.e. the value of M, neural networks of

different sizes are compared, gives the training

errors of neural networks with M = 4, 6, 8, 10,

16, and 20, respectively. Given that the

performance is comparable, a smaller M value

should be chosen in order to reduce the feedback

scheduling overhead. From this insist, it is set

that M = 6 because of the good performance of

corresponding neural network and the fast

reaching to the required results.

III. SIMULATION AND RESULTS

In this work, the developed feedback

scheduling scheme using FFNN will be

presented in addition to presenting the effectivity

of NN to solve different optimization complexity

and act as optimization technique. Simulation

carried out by using Matlab 2012.

The runtime overhead of the neural feedback

scheduler is examined in comparison with the

optimal feedback scheduler. Both of the

feedback schedulers are implemented in the

same environment using Matlab 2012. The

hardware platform is the same PC with an Intel®

Core (TM) i5-3337U @ 1.8 GHz, RAM 8.00 GB.

The operating system is Windows® 8.1.

A. NNO for different Optimization Algorithms

1) General Overview on Optimization Methods

Determine the “best” solutions to certain

mathematically defined problems that are under

constrained:

 determine optimality criteria.

 determine the convergence of the

solution.

The advent of computer had great impact on

the development of optimization methods:

a. Linear Programming: is the problem of

finding a vector x that minimizes a linear

function 𝑓𝑇𝑥 subject to linear constraints:

𝑚𝑖𝑛
𝑥

𝑓𝑇𝑥 (1)

Such that one or more of the following hold: A·x

≤ b, Aeq·x = beq, l ≤ x ≤ u

 Large Scale Linear Programming

 Active-Set Medium-Scale linprog

Algorithm

 Medium-Scale linprog Simplex

Algorithm

b. Quadratic programming: is the problem of

finding a vector x that minimizes a quadratic

function, possibly subject to linear

constraints

𝑚𝑖𝑛
𝑥

1

2
𝑥𝑇𝐻𝑥 + 𝑐𝑇𝑥 (2)

Such that A·x ≤ b, Aeq·x = beq, l ≤ x ≤ u

 Interior-Point-Convex quadprog

Algorithm

 Trust-Region-Reflective quadprog

Algorithm

 Active-Set quadprog Algorithm

c. Nonlinear Optimization Algorithms:

constrained minimization is the problem of

finding a vector x that is a local minimum to

a scalar function f(x) subject to constraints on

the allowable x

𝑚𝑖𝑛
𝑥

𝑓(𝑥) (3)

such that one or more of the following holds: c(x)

≤ 0, ceq(x) = 0, A·x ≤ b, Aeq·x = beq, l ≤ x ≤ u.

 Trust Region Reflective Algorithm

68

Fatin I. TelchyVol. 10| Issue 2 | December 2014

 Active Set Algorithm

 SQP Algorithm

 Interior Point Algorithm

2) Complexity analysis.

The application of neural feedback

schedulers contains not only online

computations but also offline computations, e.g.,

mathematical optimization, network training and

test, etc., only the complexity of online

computations is of concern. The feedback

scheduling overhead is determine the

computational operations at runtime.

With a given time interval, the amount of

computing resource consumed by the feedback

scheduler depends directly on the CPU time

needed for each run.

Below methods has been chosen to compare

results with adapted neural network.

 Interior-point methods: in mathematical

programming have been the largest and most

dramatic area of research in optimization

since the development of the simplex method

[13].

Interior-point methods have permanently

changed the landscape of mathematical

programming theory, practice and computation

(also referred to as barrier methods) which deals

with a certain class of algorithms to solve linear

and nonlinear convex optimization problems.

 Active Set: Is a procedure for determining

inequality constraints which will be “Active”

at each iteration. An essential part of many

iterative methods for linearly constrained

[13].

 Sequential Quadratic Programming (SQP): is

one of the most successful methods for the

numerical solution of constrained nonlinear

optimization problems. It relies on a

profound theoretical foundation and provides

powerful algorithmic tools for the solution of

large-scale technologically relevant

problems [14].

Tables 1, 2, and 3 have been created based

on inverted pendulum cost function to optimize

the sampling periods with RMS constraints. The

execution time Ci ranges started from 0.001 to

0.009 seconds.

The goal of creating Tables 1, 2, and 3 is to

compare the mentioned three optimization

algorithms results with the developed FFNN in

order to show the effectivity of NN in solving

optimizations issues.

Table 1: Interior Point Optimization Data Sample

C1 C2 C3 U h1 h2 h3 Jmin

0.001 0.001 0.001 0.7 0.005335 0.004274 0.003589 0.856772

0.001 0.001 0.002 0.26 0.016732 0.013404 0.01592 3.129933

0.001 0.001 0.004 0.28 0.018646 0.014938 0.02509 4.186178

0.001 0.001 0.006 0.3 0.01963 0.015726 0.03235 4.971029

0.001 0.001 0.008 0.32 0.020164 0.016153 0.038369 5.594411

0.001 0.002 0.001 0.34 0.012505 0.014167 0.008413 2.286172

0.001 0.002 0.003 0.36 0.014833 0.016805 0.017284 3.405738

0.001 0.002 0.005 0.38 0.016023 0.018154 0.024105 4.195334

0.001 0.002 0.007 0.4 0.016745 0.018971 0.029806 4.822609

0.001 0.002 0.009 0.42 0.017201 0.019488 0.034717 5.343487

0.001 0.003 0.002 0.44 0.011964 0.016601 0.011383 2.708084

0.001 0.003 0.004 0.46 0.013336 0.018505 0.017945 3.518109

0.001 0.003 0.006 0.48 0.014173 0.019666 0.023356 4.145868

0.001 0.003 0.008 0.5 0.014732 0.020442 0.028034 4.666357

0.001 0.004 0.001 0.52 0.009582 0.015353 0.006447 2.053177

0.001 0.004 0.003 0.54 0.011243 0.018013 0.013101 2.934895

0.001 0.004 0.005 0.56 0.012179 0.019513 0.018322 3.571633

0.001 0.004 0.007 0.58 0.012809 0.020523 0.0228 4.091764

0.001 0.004 0.009 0.6 0.013259 0.021245 0.026762 4.535926

0.001 0.005 0.002 0.62 0.009505 0.017027 0.009044 2.408705

0.001 0.005 0.004 0.64 0.010569 0.018932 0.014221 3.073915

0.001 0.005 0.006 0.66 0.011261 0.020172 0.018557 3.598654

0.001 0.005 0.008 0.68 0.011758 0.021062 0.022374 4.042283

0.001 0.006 0.001 0.7 0.00792 0.015542 0.005328 1.888039

0.001 0.006 0.002 0.26 0.023691 0.046489 0.022541 6.274874

0.001 0.006 0.004 0.28 0.025108 0.049271 0.033785 7.590355

0.001 0.006 0.006 0.3 0.025661 0.050356 0.042289 8.494793

0.001 0.006 0.008 0.32 0.025818 0.050663 0.049129 9.171821

0.001 0.007 0.001 0.34 0.017027 0.036088 0.011455 4.238305

0.001 0.007 0.003 0.36 0.019103 0.04049 0.02226 5.648975

0.001 0.007 0.005 0.38 0.020069 0.042537 0.030191 6.581145

0.001 0.007 0.007 0.4 0.020588 0.043637 0.036647 7.290391

0.001 0.007 0.009 0.42 0.020861 0.044217 0.042105 7.859498

0.001 0.008 0.002 0.44 0.015074 0.034157 0.014342 4.299216

0.001 0.008 0.004 0.46 0.016312 0.036961 0.021948 5.262839

0.001 0.008 0.006 0.48 0.017024 0.038574 0.028055 5.981715

0.001 0.008 0.008 0.5 0.017469 0.039584 0.033243 6.56136

69

Fatin I. TelchyVol. 10| Issue 2 | December 2014

Table 2 :Active Set Optimization Sample Data

C1 C2 C3 U h1 h2 h3 Jmin

0.001 0.001 0.001 0.7 0.005335193 0.004274056 0.003589432 0.856771075

0.001 0.001 0.002 0.26 0.016730129 0.013403069 0.015921271 3.129921914

0.001 0.001 0.004 0.28 0.01864702 0.014938149 0.02508946 4.186176493

0.001 0.001 0.006 0.3 0.019631421 0.015726379 0.032349571 4.971027696

0.001 0.001 0.008 0.32 0.020163258 0.016153717 0.03836938 5.594410211

0.001 0.002 0.001 0.34 0.012507925 0.014166614 0.008412282 2.286170665

0.001 0.002 0.003 0.36 0.014834498 0.01680423 0.017283901 3.405737467

0.001 0.002 0.005 0.38 0.016023595 0.018153875 0.02410536 4.195333434

0.001 0.002 0.007 0.4 0.016744687 0.018970928 0.029805613 4.822606909

0.001 0.002 0.009 0.42 0.017202523 0.019489173 0.034715729 5.343477418

0.001 0.003 0.002 0.44 0.011963733 0.016600641 0.011383125 2.708080312

0.001 0.003 0.004 0.46 0.013336234 0.018505308 0.017945213 3.518108945

0.001 0.003 0.006 0.48 0.014168518 0.019677233 0.023349874 4.145858904

0.001 0.003 0.008 0.5 0.014732295 0.020442044 0.028034199 4.66635459

0.001 0.004 0.001 0.52 0.009583103 0.015353068 0.006446807 2.053175691

0.001 0.004 0.003 0.54 0.011244536 0.018012625 0.013100352 2.934894367

0.001 0.004 0.005 0.56 0.012178283 0.019512143 0.018322643 3.571630847

0.001 0.004 0.007 0.58 0.012809305 0.020522577 0.02279947 4.091762445

0.001 0.004 0.009 0.6 0.0132602 0.021244393 0.026761696 4.535924044

0.001 0.005 0.002 0.62 0.009505178 0.017027205 0.00904378 2.408704497

0.001 0.005 0.004 0.64 0.010569199 0.018933375 0.014219607 3.073874337

0.001 0.005 0.006 0.66 0.011259323 0.020174224 0.018556104 3.598653829

0.001 0.005 0.008 0.68 0.011757904 0.021062329 0.022373856 4.042282229

0.001 0.006 0.001 0.7 0.007919821 0.015541538 0.005328435 1.888036689

0.001 0.006 0.002 0.26 0.023690459 0.046491382 0.022539587 6.274873122

0.001 0.006 0.004 0.28 0.025108393 0.049270774 0.033784739 7.590352951

0.001 0.006 0.006 0.3 0.025662114 0.050353861 0.042290637 8.49479014

0.001 0.006 0.008 0.32 0.025816638 0.050663856 0.049128652 9.171815716

0.001 0.007 0.001 0.34 0.017026107 0.03608891 0.011454587 4.238265352

0.001 0.007 0.003 0.36 0.019103005 0.040489827 0.022260262 5.648972532

0.001 0.007 0.005 0.38 0.020068964 0.042537352 0.03019131 6.581142508

0.001 0.007 0.007 0.4 0.020587886 0.043637158 0.036646528 7.290388873

0.001 0.007 0.009 0.42 0.020861183 0.044216134 0.0421051 7.859496341

0.001 0.008 0.002 0.44 0.015074251 0.034156807 0.014342285 4.299215955

0.001 0.008 0.004 0.46 0.016311515 0.036959712 0.021948817 5.262833494

0.001 0.008 0.006 0.48 0.017024219 0.038574504 0.028054497 5.981710375

0.001 0.008 0.008 0.5 0.017471684 0.03958263 0.033242513 6.56135729

Table 3: SQP Optimization Data Sample

C1 C2 C3 U h1 h2 h3 Jmin

0.001 0.001 0.001 0.7 0.005335185 0.004274113 0.003589396 0.856771149

0.001 0.001 0.002 0.26 0.016732035 0.013404303 0.015919574 3.129925393

0.001 0.001 0.004 0.28 0.018646413 0.014938 0.02508985 4.18617755

0.001 0.001 0.006 0.3 0.019629785 0.015725861 0.032350684 4.971028433

0.001 0.001 0.008 0.32 0.020163581 0.01615343 0.038369438 5.594410346

0.001 0.002 0.001 0.34 0.012504844 0.014167418 0.008413118 2.286171439

0.001 0.002 0.003 0.36 0.014832687 0.016804753 0.017284354 3.405737562

0.001 0.002 0.005 0.38 0.016023493 0.018153861 0.02410542 4.19533376

0.001 0.002 0.007 0.4 0.01674467 0.018970925 0.029805622 4.82260691

0.001 0.002 0.009 0.42 0.017201062 0.019487923 0.034717348 5.343484559

0.001 0.003 0.002 0.44 0.011963847 0.016600741 0.011383037 2.708083671

0.001 0.003 0.004 0.46 0.013336487 0.018505419 0.017945021 3.518108973

0.001 0.003 0.006 0.48 0.014172697 0.019665724 0.023356108 4.145859751

0.001 0.003 0.008 0.5 0.014732278 0.020442164 0.028034141 4.666356314

0.001 0.004 0.001 0.52 0.009582415 0.015353358 0.006446919 2.05317615

0.001 0.004 0.003 0.54 0.011242561 0.018013223 0.013100826 2.934894505

0.001 0.004 0.005 0.56 0.01217886 0.019513326 0.018321569 3.571632891

0.001 0.004 0.007 0.58 0.012808756 0.020522671 0.022799669 4.091764012

0.001 0.004 0.009 0.6 0.013259381 0.02124468 0.026761878 4.535925362

0.001 0.005 0.002 0.62 0.009505179 0.017027241 0.009043754 2.408704516

0.001 0.005 0.004 0.64 0.010568644 0.018932086 0.014220777 3.073875298

0.001 0.005 0.006 0.66 0.011260663 0.020171844 0.018557178 3.59865391

0.001 0.005 0.008 0.68 0.011757758 0.021062333 0.02237392 4.042282261

0.001 0.006 0.001 0.7 0.007919902 0.015541543 0.005328396 1.888036726

0.001 0.006 0.002 0.26 0.023690881 0.046489437 0.022540776 6.274873876

0.001 0.006 0.004 0.28 0.025108324 0.04927087 0.033784708 7.590353435

0.001 0.006 0.006 0.3 0.025661484 0.050356306 0.042289205 8.494790857

0.001 0.006 0.008 0.32 0.025817749 0.050663026 0.049128765 9.17181859

0.001 0.007 0.001 0.34 0.017026116 0.036087547 0.011455545 4.238265422

0.001 0.007 0.003 0.36 0.019102899 0.040489763 0.022260358 5.64897283

0.001 0.007 0.005 0.38 0.020068935 0.042537355 0.030191322 6.58114257

0.001 0.007 0.007 0.4 0.020587855 0.043637214 0.036646503 7.290388874

0.001 0.007 0.009 0.42 0.020861156 0.044216499 0.042104855 7.859496366

0.001 0.008 0.002 0.44 0.015074179 0.034156706 0.01434239 4.299216047

0.001 0.008 0.004 0.46 0.016311869 0.036960352 0.02194826 5.262838669

0.001 0.008 0.006 0.48 0.017023854 0.03857445 0.028054723 5.981712554

0.001 0.008 0.008 0.5 0.017469381 0.03958398 0.033242605 6.561357533

In order to determine the number of hidden

neurons, i.e. the value of M, neural networks of

different sizes (4,6,8,10,16, and 20) has been

compared and the most applicable one was with

M=20, as the performance indices equals to

1.807910-6, 2.771110-7, and 7.30110-8 for

Interior-Point, Active-Set, and SQP optimization

algorithms’ respectively as shown in Fig. 4, 5,

and 6. Given that the performance is comparable.

From this perspective, it is set that M = 20

because of the good performance of

corresponding NN and the fast reaching to the

required results.

70

 Iraq J. Electrical and Electronic Engineeringالمجلة العراقية للهندسة الكهربائية والالكترونية
، العدد 10مجلد 2 ، 2014 Vol.10 No.2 , 2014

0 2 4 6 8 10 12

10
-6

10
-5

10
-4

10
-3

10
-2

Best Validation Performance is 7.7785e-06 at epoch 13 at M=4

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

 (
m

s
e

)

13 Epochs

Train

Validation

Test

Best

0 2 4 6 8 10 12 14 16 18 20

10
-6

10
-5

10
-4

10
-3

10
-2

Best Validation Performance is 1.1273e-06 at epoch 21 at M=6

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

 (
m

s
e

)

21 Epochs

Train

Validation

Test

Best

0 2 4 6 8 10 12

10
-6

10
-5

10
-4

10
-3

10
-2

Best Validation Performance is 3.4434e-06 at epoch 12 at M=8

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

 (
m

s
e

)

12 Epochs

Train

Validation

Test

Best

0 1 2 3 4 5 6 7 8 9 10 11
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

Best Validation Performance is 1.0677e-06 at epoch 11 at M=10

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

 (
m

s
e

)

11 Epochs

Train

Validation

Test

Best

0 2 4 6 8 10 12
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

Best Validation Performance is 2.0808e-07 at epoch 13 at M=16

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

 (
m

s
e

)

13 Epochs

Train

Validation

Test

Best

0 1 2 3 4 5 6
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

Best Validation Performance is 1.8079e-06 at epoch 6 at M=20

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

 (
m

s
e

)

6 Epochs

Train

Validation

Test

Best

Fig. 3: NNO Performance for Interior-Point Dataset

(a) (b)

(c) (d)

(f) (e)

71

 Iraq J. Electrical and Electronic Engineeringالمجلة العراقية للهندسة الكهربائية والالكترونية
، العدد 10مجلد 2 ، 2014 Vol.10 No.2 , 2014

0 2 4 6 8 10 12

10
-6

10
-5

10
-4

10
-3

10
-2

Best Validation Performance is 7.7785e-06 at epoch 13 at M=4

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

 (
m

s
e

)

13 Epochs

Train

Validation

Test

Best

0 1 2 3 4 5 6 7

10
-6

10
-5

10
-4

10
-3

10
-2

Best Validation Performance is 3.5664e-06 at epoch 7 at M=6

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

 (
m

s
e

)

7 Epochs

Train

Validation

Test

Best

0 1 2 3 4 5 6 7 8 9

10
-6

10
-5

10
-4

10
-3

10
-2

Best Validation Performance is 1.5212e-06 at epoch 9 at M=8

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

 (
m

s
e

)

9 Epochs

Train

Validation

Test

Best

0 1 2 3 4 5 6 7
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

Best Validation Performance is 1.6114e-06 at epoch 7 at M=10
M

e
a

n
 S

q
u

a
re

d
 E

rr
o

r
 (

m
s

e
)

7 Epochs

Train

Validation

Test

Best

0 1 2 3 4 5 6 7 8 9 10
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

Best Validation Performance is 2.5189e-07 at epoch 10 at M=16

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

 (
m

s
e

)

10 Epochs

Train

Validation

Test

Best

0 1 2 3 4 5 6 7 8 9 10 11
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

Best Validation Performance is 2.7711e-07 at epoch 11 at M=20

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

 (
m

s
e

)

11 Epochs

Train

Validation

Test

Best

Fig. 4: NNO Performance for Active Set Dataset

(a) (b)

(c) (d)

(f) (e)

72

 Iraq J. Electrical and Electronic Engineeringالمجلة العراقية للهندسة الكهربائية والالكترونية
، العدد 10مجلد 2 ، 2014 Vol.10 No.2 , 2014

3) NNO and Optimization Algorithm

Comparison

By choosing random values for C1,C2,C3,

and U to evaluate the NNO performance

comparing with 3 different optimization

algorithms, let C1=0.001, C2=0.004, C3=0.009;

and U=0.6, the optimization and NNO results are

shown in Table 4, Table 5, and Table 6.

0 2 4 6 8 10 12

10
-6

10
-5

10
-4

10
-3

10
-2

Best Validation Performance is 7.7785e-06 at epoch 13 at M=4

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

 (
m

s
e

)

13 Epochs

Train

Validation

Test

Best

0 2 4 6 8 10 12 14 16 18 20

10
-6

10
-5

10
-4

10
-3

10
-2

Best Validation Performance is 1.1265e-06 at epoch 21 at M=6

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

 (
m

s
e

)

21 Epochs

Train

Validation

Test

Best

0 1 2 3 4 5 6 7 8 9 10

10
-6

10
-5

10
-4

10
-3

10
-2

Best Validation Performance is 1.7907e-06 at epoch 10 at M=8

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

 (
m

s
e

)

10 Epochs

Train

Validation

Test

Best

0 1 2 3 4 5 6 7

10
-6

10
-5

10
-4

10
-3

10
-2

Best Validation Performance is 9.739e-06 at epoch 7 at M=10

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

 (
m

s
e

)

7 Epochs

Train

Validation

Test

Best

0 1 2 3 4 5 6 7 8 9 10 11
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

Best Validation Performance is 3.5299e-07 at epoch 11 at M=16

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

 (
m

s
e

)

11 Epochs

Train

Validation

Test

Best

0 1 2 3 4 5 6 7 8 9 10 11
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Best Validation Performance is 7.301e-08 at epoch 11 at M=20

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

 (
m

s
e

)

11 Epochs

Train

Validation

Test

Best

Fig. 5: NNO Performance for SQP Dataset

(a) (b)

(c) (d)

(f) (e)

73

 Iraq J. Electrical and Electronic Engineeringالمجلة العراقية للهندسة الكهربائية والالكترونية
، العدد 10مجلد 2 ، 2014 Vol.10 No.2 , 2014

As shown in Table 4, the NNO enhanced the

overhead by 82.5% in Interior Point optimization

algorithm type with the same minimum cost

function value J.

Table 4: Comparison Between Interior Point and NNO

Performance

Method h1 (s) h2 (s) h3 (s) Min J
U<

0.7798

Over-

head

(s)

Interior-

Point
0.013259 0.021245 0.026762 4.535926 0.6 0.6210

NNO 0.0133 0.0212 0.0268 4.5359 0.6 0.108410

As shown in Table 5, the NNO enhanced the

overhead by 91.88% than Active Set

optimization algorithm type with the same

minimum cost function value J.

Table 5: Comparison Between Active Set and NNO

Performance

Method h1 (s) h2 (s) h3 (s) Min J
U<

0.7798

Over-

head (s)

Active

Set
0.0132602 0.021244393 0.026761696 4.535924044 0.6 1.3606

NNO 0.0137 0.0212 0.0267 4.5359 0.6 0.110410

As shown in Table 6, the NNO enhanced the

overhead by 79.75% than SQP optimization

algorithm type with the same minimum cost

function value J.

Table 6: Comparison Between SQP and NNO

Performance

Method h1 (s) h2 (s) h3 (s) Min J
U<

0.7798

Over-

head (s)

SQP 0.013259381 0.02124468 0.026761878 4.535925362 0.6 0.6339

NNO 0.0133 0.0214 0.0264 4.5359 0.6 0.128397

B. Intelligent Feedback Scheduling for Inverted

Pendulum Control System

In this case, multitasking embedded

processor that is responsible for controlling three

inverted pendulums concurrently has been

considered, as shown in Fig. 7.

Fig 6: Real Time Operating System (RTOS)

System where three independent control

tasks running and controlled by a one processor

(resource) with limited processing capability.

This control problem has been depicted in Fig7.

A linear digital controller is designed for each

pendulum. The pendulum different lengths

motivate different sampling intervals for the

different controllers: h1, h2, h3 = 58.8, 71.4, and

83.3 ms [15]. Besides these three control tasks,

there is an additional periodic non-control task

running on the same processor. The execution

time of this task is variable, causing UR to vary

over time. The execution times of control tasks

and the requested CPU utilization of non-control

tasks may change over time. The desired total

CPU utilization of all tasks is set to U = 0.75 <

4(21/4 - 1) = 0.76. The feedback scheduler adapts

the sampling periods (hi) of the control tasks to

workload variations so that the CPU utilization is

maintained at a desired level UR=U-C4/h4 [5].

According to Liu and Layland [12], the system

schedulability under the RMS algorithm is

guaranteed by U. The execution time of the non-

control task is C4, and its period h4 = 10 ms.

Therefore, UR=U-C4/h4, implying that UR will

change with C4. All task execution times (Ci)

and the CPU workload has been assumed

available at run-time and by using NNO,

sampling periods can be produced to fit control

stability criteria and RMS constraints. The

scheduling part is done by NNS which built based

on RMS criteria.

Let hi and Ci denote the sampling period and

the execution time of control task i, respectively.

Optimal feedback scheduling can be formulated

as a constrained optimization problem [8]:
𝑚𝑖𝑛⏟

ℎ1,…,ℎ𝑁

 𝐽 = ∑ 𝐽𝑖
𝑁
𝑖=1 (ℎ𝑖) (4)

Subjected to ∑
𝐶𝑖

ℎ𝑖

𝑁
𝑖=1 ≤ 𝑈𝑅 (5)

where Ji(hi) is the control cost function of

loop i, as a function of the sampling period; UR

is the maximum allowable utilization reference

of all control tasks and is related to the

underlying scheduling policy employed and the

requested utilization of disturbing task.

Each pendulum is controlled independently

by PID Controller, whose objective is to

74

 Iraq J. Electrical and Electronic Engineeringالمجلة العراقية للهندسة الكهربائية والالكترونية
، العدد 10مجلد 2 ، 2014 Vol.10 No.2 , 2014

minimize the below cost function. The costs

functions for the three pendulums as functions of

the sampling period are computed according to

cost function.
𝐽𝑖(ℎ) = 𝛼𝑖 + 𝛾𝑖ℎ𝑖 (6)

For simplicity the constant 𝛼 equal to zeroes

for all values and the estimated slopes of the cost

functions are =43, 67, 95, and the pendulum

frequencies is estimated as hi = 1/58.8, 1/71.4,

1/83.3 in ms, and for non-control task ℎ4will be

10 ms [5].

After subscription in above Equation 5.4 and

Equation 5.6, the cost function will be

represented as:
𝑚𝑖𝑛⏟

ℎ1,ℎ2,ℎ3

𝐽 = 43ℎ1 + 67ℎ2 + 95ℎ3 (7)

Subjected to
𝑐1

ℎ1
+

𝑐2

ℎ2
+

𝑐3

ℎ3
≤ 0.75 −

𝑐4

0.01
 (8)

For the purpose of creating sample data, the

ranges of 𝐶1, 𝐶2 , 𝐶3 are taken as [0.1, 0.9], [0.1,

0.9], and [0.1, 0.9],respectively, with increments

of 0.1. C4 takes on values ranging from 0.5 to 5

with increments of 0.05. The unit of these

parameters is ms. For all possible values of these

parameters, applying SQP offline resulted totally

33534 sets of sample data.

The applied parameters for inverted

pendulums are listed in

Table 7.

Inverted Pendulum Transfer Function is:

∅ =

𝑚𝑙

𝑞
𝑠

𝑠3+
𝑏(𝐼+𝑚𝑙2)

𝑞
𝑠2−

(𝑀+𝑚)𝑚𝑔𝑙

𝑞
𝑠−

𝑏𝑚𝑔𝑙

𝑞

 (9)

where 𝑞 = [(𝑀 + 𝑚)(𝐼 + 𝑚𝑙2) − (𝑚𝑙)2]

Table 7: Inverted Pendulums Parameters

For all Inverted Pendulums

M mass of the cart 0.5 kg

b coefficient of friction for cart 0.1 N/m/sec

I mass moment of inertia of the pendulum 0.006 kg.m2

Inverted Pendulum 1

m mass of the pendulum 0.133 kg

l length to pendulum center of mass 0.2 m

Inverted Pendulum 2

m mass of the pendulum 0.2 kg

l length to pendulum center of mass 0.3 m

Inverted Pendulum 3

m mass of the pendulum 0.267 kg

l length to pendulum center of mass 0.4 m

Fig. 7: Inverted Pendulums Simulation Scheme

75

 Iraq J. Electrical and Electronic Engineeringالمجلة العراقية للهندسة الكهربائية والالكترونية
، العدد 10مجلد 2 ، 2014 Vol.10 No.2 , 2014

1) Simulation under SQP Optimization Results

2) Simulation under Proposed NNO Results

0 5 10 15 20 25 30
-6

-4

-2

0

2

4

6

8

10

12

14
x 10

-4

Fig. 8: Inverted Pendulum 2 Response after applying

Traditional SQP Algorithm

0 5 10 15 20 25 30
-1

-0.5

0

0.5

1

1.5
x 10

-3

Fig. 11: Inverted Pendulum 1 Response after applying

NNO

0 5 10 15 20 25 30
-6

-4

-2

0

2

4

6

8

10

12

14
x 10

-4

Fig. 12: Inverted Pendulum 1 Response after applying

Traditional SQP Algorithm

0 5 10 15 20 25 30
-1

-0.5

0

0.5

1

1.5
x 10

-3

Fig. 9: Inverted Pendulum 2 Response after applying

NNO

0 5 10 15 20 25 30
-6

-4

-2

0

2

4

6

8

10

12

14
x 10

-4

Fig. 10: Inverted Pendulum 3 Response after

applying Traditional SQP Algorithm

0 5 10 15 20 25 30
-1

-0.5

0

0.5

1

1.5
x 10

-3

Fig. 13: Inverted Pendulum 3 Response after

applying NNO

76

 Iraq J. Electrical and Electronic Engineeringالمجلة العراقية للهندسة الكهربائية والالكترونية
، العدد 10مجلد 2 ، 2014 Vol.10 No.2 , 2014

3) Scheduling Results by Proposed NNS

From Control perspective the results

comparison of SQP optimization and the

proposed NNO show that all pendulums

demonstrated same response and speed to stable

state as shown in Figures 10 to 15.

From scheduling perspective, Fig. 14 shows

the scheduling results of the control tasks based

on RMS algorithm which depended on the

sampling periods.

The comparison of different feedback

schedulers in terms of time overhead can be

clarified as; for the optimal feedback scheduler

and the neural feedback scheduler, the CPU time

they actually expend for 1000 consecutive runs

is recorded, respectively. In each run, task

execution time is randomly drawn from the sets

given in Fig. 15. The average execution time of

the optimal feedback scheduler based on the SQP

method falls between (C1 = 1.7710-05 and

0.0002024)s, (C2 = 6.2710-06 and 2.7410-05

)s, and (C3 = 6.2710-06 and 4.9610-05) in

most cases, with an average of C1=2.43E-05,

C2=8.7310-06, and C3=8.9910-06 sec. And

the execution time of the neural feedback

scheduler falls between (C1 =1.65E-05 and

9.8110-05)s, (C2 = 5.1310-06 and 7.0110-05

)s, and (C3 = 4.5610-06 and 2.5710-05)s in

most cases, with an average of C1=1.9910-05,

C2=6.4010-06, and C3=5.5110-06 sec. The

ratio of the time overhead of NFS is only 18%,

26%, and 39% that of SQP for C1, C2, and C3.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
-5

0.0965

0.097

0.0975

0.098

0.0985

0.099

0.0995

0.1

0.1005

0.101

IP1

IP2

IP3

Fig. 14: RMS Scheduling of Inverted Pendulums

77

IV. DISCUSSION

As a fast and intelligent feedback scheduling

scheme, neural feedback scheduling has been

proposed in this chapter for real-time control

tasks. It fully exploits the offline solutions for the

optimal feedback scheduling problem, which are

offered by mathematical optimization

algorithms. With the proposed approach, almost

optimal QoC can be achieved. Meanwhile,

compared to optimal feedback scheduling, it can

significantly reduce the runtime overhead, which

is particularly beneficial to embedded control

systems that operate in resource-constrained and

dynamic environments.

Simulation results argue that neural feedback

scheduling can dramatically reduce the feedback

scheduling overhead, while yielding overall QoC

almost identical with optimal feedback

scheduling.

It is clear from the results that the neural

feedback scheduler induces significantly less

computational overhead than the optimal

feedback scheduler. The proposed approach does

not rely on any specific forms of the control cost

functions, making it widely applicable. In

addition, the use of neural networks potentially

enhances the adaptability, robustness, and fault-

tolerance of the feedback schedule.

V. REFERENCES

[1] Danbing Seto, J. P. Lehoczky, Lui Sha, and Kang

Shin, "On Task Schedulability in Real-Time

Control Systems," in In Proceedings of the 17th

IEEE Real-Time Systems Symposium, Los

Alamitos, CA, 1996, pp. 13 - 21.

[2] Johan Eker, Per Hagander, and Karl-Erik Årzén,

"A Feedback Scheduler For Real-Time

Controller Tasks," Control Engineering

Practice, vol. 8, no. 12, pp. 1369-1378, 2000.

[3] Anton Cervin, Johan Eker, Bo Bernhardsson, and

Karl-Erik Årzén, "Feedback-Feedforward

Scheduling of Control Tasks," Real-Time

Systems, vol. 23, no. 1-2, pp. 25-53, July 2002.

[4] Feng Xia, Yu-Chu Tian, Youxian Sun, and

Jinxiang Dong, "Neural Feedback Scheduling

Of Real-Time Control Tasks," International

Journal of Innovative Computing, Information

and Control, ICIC, vol. 4, no. 11, pp. 2965–

2975, December 2007.

 Iraq J. Electrical and Electronic Engineeringالمجلة العراقية للهندسة الكهربائية والالكترونية
، العدد 10مجلد 2 ، 2014 Vol.10 No.2 , 2014

0.00E+00

2.00E-05

4.00E-05

6.00E-05

8.00E-05

1.00E-04

1.20E-04

0 200 400 600 800 1000

NNO

Execution Time for IP1

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

0 500 1000

SQP

Execution Time for IP1

0.00E+00

1.00E-05

2.00E-05

3.00E-05

4.00E-05

5.00E-05

6.00E-05

7.00E-05

8.00E-05

0 200 400 600 800 1000

NNO

Execution Time for IP2

0.00E+00

5.00E-06

1.00E-05

1.50E-05

2.00E-05

2.50E-05

3.00E-05

0 200 400 600 800 1000

SQP

Execution Time for IP2

0.00E+00

5.00E-06

1.00E-05

1.50E-05

2.00E-05

2.50E-05

3.00E-05

0 200 400 600 800 1000

NNO

Execution Time for IP3

0.00E+00

1.00E-05

2.00E-05

3.00E-05

4.00E-05

5.00E-05

6.00E-05

0 200 400 600 800 1000

SQP

Execution Time for IP3

Fig. 15: Execution Time for Inverted Pendulums

78

 Iraq J. Electrical and Electronic Engineeringالمجلة العراقية للهندسة الكهربائية والالكترونية
، العدد 10مجلد 2 ، 2014 Vol.10 No.2 , 2014

[9] Feng Xia and Youxian Sun, "Control-Scheduling

Codesign: A Perspective on Integrating Control

and Computing," Published i Dynamics of

Continuous, Discreate and Impulsive Systems -

Series B, vol. 13, no. S1, pp. 1352-1358, 2006.

[10] Boyd, S. and L. Vandenberghe, Convex

Optimization. United Kingdom: Cambridge

University Press, 2004.

[11] Zhu, Z.B., "A simple feasible SQP algorithm for

inequality constrained optimization," Applied

Mathematics and Computation, vol. 182, pp.

987-998, 2006.

[12] C.L. Liu and J.W. Layland, "Scheduling algorithm

for multiprogramming in a hard-real-time

environment," J.ACM, vol. 20(1), pp. 46-61,

January 1973.

[13] Sven Leyffer, "The Return of the Active Set

Method," ARGONNE NATIONAL

LABORATORY, Argonne, 2005.

[14] Dr. Ronald H.W. Hoppe, Optimization Theory.

http://www.math.uh.edu/~rohop/fall_06/. 2006.

[15] Anton Cervin, Integrated Control and Real-Time

Scheduling. Lund, Sweden: Bloms i Lund

Tryckeri AB, 2003.

79

[5] Feng Xia, Yu-Chu Tian, Youxian Sun, and

Jinxiang Dong, "Neural Network Scheduling of

Real Time Control Tasks," International

Journal of Innovative, vol. 4, no. 11, pp. 2965 -

2975, November 2008.

[6] Danbing Seto, Lehoczky J.P. , Lui Sha, and Shin

K.G., "On Task Schedulability in Real-Time

Control Systems.," in Real-Time Systems

Symposium, 17th IEEE, Los Alamitos, CA ,

1996, pp. 13 - 21.

[7] Wei Zhang, Stability Analysis of Networked

Control Systems, Augest 2001.

[8] Feng Xia and Youxian Sun, Control and

Scheduling Codesign Flexible Resource

Management in Real-Time Control Systems.:

Co-published by Zhejiang University Press,

Han^hou and Springer -Verlag GmbH Berlin

Heidelberg, 2008.

Fatin I. TelchyVol. 10| Issue 2 | December 2014

