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Abstract, an efficient feedback scheduling scheme based on the proposed Feed Forward Neural Network (FFNN) 

scheme is employed to improve the overall control performance while minimizing the overhead of feedback 

scheduling which exposed using the optimal solutions obtained offline by mathematical optimization methods. The 

previously described FFNN is employed to adapt online the sampling periods of concurrent control tasks with 

respect to changes in computing resource availability. The proposed intelligent scheduler will be examined with 

different optimization algorithms. An inverted pendulum cost function is used in these experiments. Then, 

simulation of three inverted pendulums as intelligent Real Time System (RTS) is described in details. 

Numerical simulation results demonstrates that the proposed scheme can reduce the computational 

overhead significantly while delivering almost the same overall control performance as compared to optimal 

feedback scheduling 

Index Terms—Feedback Scheduling, Real Time Control Task, Feed Forward Neural Network (FFNN), Inverted 

Pendulum, Optimization Algorithms, Optimal Sampling Period 

I. INTRODUCTION 

The feedback scheduler attempts to control 

the CPU utilization to less than or equal to 

UR=Ci/hi (where UR is CPU utilization 

reference, Ci is the processing time, hi is the 

sampling periods) by rescaling the sampling 

periods of the controllers. The feedback 

scheduler is implemented as a high-priority task 

that regularly collects execution-time 

measurements from the control tasks and 

estimates the CPU load. Based on the load 

estimate, new sampling periods are 

communicated to the control tasks.  

Generally, online scheduling using optimal 

feedback scheduling schemes is too 

computationally demanding in terms of cost and 

time. An efficient feedback scheduling scheme 

using Feed Forward Neural Networks will be 

proposed in this paper, It should be mentioned 

here the applied assumptions in this research 

where as follows: 

 Hard real time tasks scheduling.

 All hard tasks are periodic, with known

periods. 

 All release times are zero

 Jobs are ready to run at their release

times. 

 Deadlines are equal to periods.

 Jobs do not suspend themselves.

 Jobs are independent (i.e., they do not

communicate or share other resources 

than the CPU). 

 All systems context switching time and

so on are ignored in JSSP and CS. 

 Non preemption concept has been limited

the scheduling of the jobs 

Several attempts have been dome in this field 

and below are some of them: Scto et. al. (1996) 

[1] considered periodic tasks for scheduling of 

optimized performance of real time control 

system. Varying sampling period with defined 

rages of the lower and upper bounds to optimize 

the system control performance subjected to 

RMS constraints; Eker et. al. (2000) [2] used 

feedback scheduler to distribute computing 

resources over a set of real-time control loops in 

order to optimize the total control performance. 

Two issues had been treated; first, how the 

control performance depends on the sampling 

interval. Second, how a recursive resource 

allocation optimization routine can be designed; 

Cervin et. al. (2002) [3] used a scheduler 

architecture which combines feedback and 

feedforward action in order to optimize control 

performance while maintaining high resource 

utilization. The feedback performed via the 
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execution time measurements and feedforward 

via the workload changes to adjust the sampling 

periods of the control tasks so that the combined 

performance of the controllers is optimized. An 

inverted pendulum example is presented with 

using cost function describe the performance of 

each IP’s controller. The application for periodic 

tasks with Earliest Deadline First (EDF) 

scheduling under overload conditions makes it 

possible to, in certain situations, to interpret a 

plain EDF dispatcher as a feedback scheduler for 

control tasks; and Feng Xia et. al. (2007) [4] used 

feedback scheduling scheme based on FFNN. 

The optimal solutions had been obtained offline 

by mathematical optimization methods, a Back-

Propagation Neural Network (BPNN) had been 

designed to adapt online the sampling periods of 

concurrent control tasks with respect to changes 

in computing resource availability. Numerical 

simulation results show that the proposed 

scheme can reduce the computational overhead 

significantly while delivering almost the same 

overall control performance as compared to 

optimal feedback scheduling. 

II. FEEDBACK SCHEDULING CONTROL

SYSTEM 

The problem of feedback scheduling can be 

expressed as a constrained optimization problem, 

which is usually referred to as Optimal Feedback 

Scheduling [5]. 

Feedback Scheduling has been employed in 

real time systems to overcome the uncertainty in 

the availability of the resources. The feedback 

scheduler should control the workload of the 

processor by adjusting the sampling periods of 

the controllers. At the same time, it should 

optimize the overall control performance. This is 

stated as the following optimization problem [6]. 

In feedback scheduling, the scheduler get 

feedback information about the actual execution 

time of a task, and also feedforward information 

when the control tasks are about to switch mode. 

It tries to keep the CPU utilization at set-point by 

manipulating the sampling periods of each task 

[7]. 

Optimal feedback scheduling schemes are 

usually too computationally expensive to be used 

online, though they are in principle capable of 

maximizing the overall Quality of Control (QoC) 

of real-time control systems. With the goal of 

optimizing the overall QoC of multitasking 

embedded control systems, the problem of 

optimal feedback scheduling is explicitly 

formulated, and relevant mathematical solutions 

are discussed [8]. 

To overcome the disadvantage of overly 

large computational overheads associated with 

mathematical optimization routines, a fast 

feedback scheduling scheme exploiting FFNN is 

used in this chapter. It aims at reducing the 

feedback scheduling overhead while delivering 

almost optimal overall QoC. Besides, the use of 

neural networks potentially enhances the 

adaptability, robustness, and fault-tolerance of 

the feedback scheduler [8]. 

Since optimal feedback scheduling schemes 

are generally too computationally expensive to 

be used online, schemes with much less 

computational complexity are desirable. The 

typical scheme of Intelligent Feedback 

Scheduler is shown in Fig. 1. 

Fig. 1: Architecture of Neural Network Scheduling [9] 

Some reasons why the neural networks 

technology is introduced into the framework of 

feedback scheduling are described below [8]: 

(1) From the overhead perspective, 

feedforward neural networks with simple 

structures can yield smaller feedback scheduling 

overheads than mathematical optimization 

methods with less complex computations. In 

addition, information processing inside neural 

networks is highly parallel, which makes it 

possible to achieve higher processing speed by 

means of suitable hardware implementation. 

(2) With regard to the accuracy of solutions, 

mathematical optimization methods can generate 

accurate optimal solutions offline, which should 

be exploited in the design of online feedback 

schedulers. On the other hand, neural networks 

are powerful in learning and adapting, and enable 

of approximating arbitrarily complex nonlinear 

functions with arbitrary precision. Once well 

trained by the accurate optimal solutions at 

design time, neural networks will be able to 

deliver online almost optimal feedback 

scheduling performance.  

(3) The generalization capability of neural 

networks is also very good, in that neural 
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networks can easily handle things like untrained 

input data, noise, and incomplete data. This helps 

to improve the performance of the feedback 

scheduler with better fault tolerance. 

In this work, different optimization methods 

had been used to figure out the effectivity of the 

developed NN with different optimizations 

methods. Then, as an application, inverted 

pendulum control system case is presented with 

SQP as optimization method for the optimal 

feedback scheduling scheme. 

A. Neural Feedback Schedule Strategy 

The goal of the Neural Feedback Schedule 

“NFS” is to optimally allocate available CPU 

resources among control loops, and ultimately to 

optimize the overall quality of the control of the 

system, by exploiting feedback scheduling. In 

the feedback scheduling loop, the CPU 

utilization is chosen as the controlled variable. It 

is the responsibility of the feedback scheduler to 

adapt sampling periods (i.e. task periods) so that 

the CPU utilization is maintained at a desired 

level. For simplicity, assume that all task 

execution times and the CPU workload are 

known at runtime. 

B. Optimization Complexity 

There are many well-known methods for 

solving the constrained optimization problem 

formulated by the cost function and the 

condition. The necessary and sufficient condition 

for the optimal solutions is given by Kuhn-

Tucker condition [10]. 

Given that the cost function Ji(fi) is convex. 

When Ji(fi) is not convex, the Kuhn-Tucker 

condition becomes a necessary condition. Since 

Ji(fi) is convex for most control systems [2], the 

Kuhn-Tucker condition can be regarded as a 

general tool for obtaining the optimal sampling 

frequencies/periods. Sequential quadratic 

programming (SQP) has been recognized as one 

of the most efficient methods for solving 

constrained optimization problems [11]. 

The optimization role is to minimize the total 

control cost (J) by optimizing scheduling 

parameters of control tasks under the constraint 

of system schedulability. As feedback schedulers 

are usually executed at runtime, it is of 

paramount importance to take into account the 

computational overhead of the feedback 

scheduling algorithm to be employed. If the 

feedback scheduler consumes too much 

computing resources, the execution of control 

tasks definitely will be impacted in the presence 

of resource constraint. This may then cause 

significant degradation of the overall 

performance. Optimization solutions typically 

involve complex computations, which induce 

large feedback scheduling overheads. Therefore, 

they are not suitable for online use in most cases 

[4]. 

Solving the optimization problem exactly 

can be very time-consuming. Evaluating a cost 

function for a single sampling frequency 

involves a large amount of computations. If the 

resource allocation problem is to be solved by an 

on-line optimizer, the cost functions for the 

plants must be computed off-line and then 

approximated by simpler functions. A quadratic 

approximation was suggested in [2]. The solution 

to the approximated problem can in both cases be 

interpreted as a simple linear rescaling of the 

nominal sampling periods. 

The reasons that the computational 

complexity of the optimization algorithms to be 

considerably high; In the SQP method, for 

instance, one or two quadratic programming sub-

problems must be solved in each iteration and 

thus take a great deal of time to complete. When 

applied to feedback scheduling, this algorithm 

may introduce significant overheads. Practically 

most of existing optimal feedback scheduling 

algorithms suffer from the problem of too large 

computational overheads, which impair their 

application [4]. 

The minimization process is carried out 

using MATLAB 2012 function fmincon, which 

finds the constrained minimum of a nonlinear 

multivariable scalar function starting at an initial 

estimate. This is generally referred to as 

constrained nonlinear optimization or nonlinear 

programming. 

1) Cost Functions (J)

As a Quality-of-Service (QoS) measure, 

each controller is associated with a cost function 

J(h), which measures the performance of the 

controller as a function of the sampling period h 

[2]. And smaller sampling periods yield better 

control performance, because the performance of 

sampled-data control with smaller sampling 

periods approaches more closely to that of 
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continuous-time control. However, the decrease 

in sampling period will result in an increase in 

the requested CPU utilization of the relevant 

control task. In extreme cases the schedulability 

of the system may be violated, and hence the 

control performance will deteriorate due to 

deadline misses. In order to optimize the overall 

performance, the sampling periods should be 

adjusted under the constraint of system 

schedulability [12]. 

C. General NN Design methodology. 

To overcome the problem associated with 

the large computational overheads of optimal 

feedback scheduling algorithms, a Neural 

Feedback Scheduling (NFS) scheme has been 

proposed. The goal is to optimize the overall 

performance of multitasking control systems 

through feedback scheduling while minimizing 

the feedback scheduling overhead. A 

Feedforward Back-Propagation Neural Network 

(FFBPNN) with a simple structure is adopted to 

build the feedback scheduler. Training and 

testing data can be easily created offline by 

applying the Sequential Quadratic Programming 

(SQP). This scheme has advantages such as low 

feedback scheduling overhead, wide 

applicability, and intelligent computation. It is 

also capable of delivering almost optimal 

performance. 

In this work, the NN has been placed to do 

the optimization role (function) to overcome the 

weak points which has been mentioned before. 

The first step starts with determine the cost 

function of the system and the scheduling 

method to specify the scheduling condition in the 

optimization procedure according to the system 

type. Ranges of data should be specified to be 

optimized to get the required training data for the 

pre-specified training data. After train the NN, no 

need to go back to the optimization any more as 

the NN will be placed instead of it to proceed the 

required data will minimize the overhead and 

better performance. 

The design flow of the neural feedback scheduler 

is as follows: 

Firstly, formulate the problem in the form of 

constrained optimization equation. Determine 

the form of the cost functions based on control 

systems analysis, and initialize related 

parameters. 

Secondly, analyze the characteristics of the 

execution times of the control tasks to obtain the 

ranges of their values. Within the ranges of Ci as 

well as UR, select a number of data pairs, and for 

each pair, use the SQP method to solve the 

optimal feedback scheduling problem offline, 

producing sufficient sample data sets. 

Thirdly, determine the number of hidden 

neurons according to the number of control 

loops, and initialize the NN. 

Finally, train and test the neural network 

using pre-processed sample data sets. Once the 

BP network passes the test, it can thereafter be 

used online as the neural feedback scheduler. 

1) NN Design methodology.

The main role of the NFS is to approximate 

the optimal solutions, which are obtained using 

mathematical optimization methods. Based on 

this, training and testing data will not be a 

problem since it can be easily created offline by 

applying any of the following optimization 

algorithm: 

 Sequential Quadratic Programming

(SQP). 

 Active Set.

 Interior Point.

Then a suitable NN will be developed with 

each algorithm to overcome the optimization 

algorithms’ complexity and overhead. 

As shown in Fig. 1, there is only one hidden 

layer apart from the input and output layers in the 

BP network used as the neural feedback 

scheduler. Since feedforward neural networks 

with only one hidden layer are able to 

approximate arbitrary functions with arbitrary 

precision that are continuous on closed intervals, 

one hidden layer is sufficient for guaranteeing 

solution accuracy [4]. 

A three-layer feedforward back-propagation 

(BP) network has been used to build the feedback 

scheduler as shown in Fig. 2. 

Fig. 2: A Three-Layer Feedforward Back-Propagation 

(BP) Network 
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With given cost functions, the values of 

sampling frequencies (fi) will depend on the 

execution time (Ci) of each control task and the 

desired CPU utilization UR. The consequence of 

this work, (N+1) inputs, i.e.,( C1, …, CN, and UR), 

are set for the neural feedback scheduler inputs. 

Since the role of the feedback scheduler is to 

determine sampling periods of all loops, the 

sampling periods (h1, …, hN) or frequencies (f1, 

…, fN) are natural outputs of the neural feedback 

scheduler. 

Both inputs and outputs of the feedback 

scheduler are related to resource utilization based 

on real-time scheduling viewpoint. While 

sampling periods/frequencies are important 

design parameters of the control loops based on 

control perspective. For that reason, the neural 

feedback scheduler establishes a mapping from 

temporal parameters (for real-time scheduling) 

to controller parameters (for real-time control) 

[5]. 

2) Neural Feedback Scheduler Design

In order to determine the number of hidden 

neurons, i.e. the value of M, neural networks of 

different sizes are compared, gives the training 

errors of neural networks with M = 4, 6, 8, 10, 

16, and 20, respectively. Given that the 

performance is comparable, a smaller M value 

should be chosen in order to reduce the feedback 

scheduling overhead. From this insist, it is set 

that M = 6 because of the good performance of 

corresponding neural network and the fast 

reaching to the required results. 

III. SIMULATION AND RESULTS

In this work, the developed feedback 

scheduling scheme using FFNN will be 

presented in addition to presenting the effectivity 

of NN to solve different optimization complexity 

and act as optimization technique. Simulation 

carried out by using Matlab 2012. 

The runtime overhead of the neural feedback 

scheduler is examined in comparison with the 

optimal feedback scheduler. Both of the 

feedback schedulers are implemented in the 

same environment using Matlab 2012. The 

hardware platform is the same PC with an Intel® 

Core (TM) i5-3337U @ 1.8 GHz, RAM 8.00 GB. 

The operating system is Windows® 8.1.  

A. NNO for different Optimization Algorithms 

1) General Overview on Optimization Methods

Determine the “best” solutions to certain 

mathematically defined problems that are under 

constrained: 

 determine optimality criteria.

 determine the convergence of the

solution. 

The advent of computer had great impact on 

the development of optimization methods: 

a. Linear Programming: is the problem of

finding a vector x that minimizes a linear 

function 𝑓𝑇𝑥 subject to linear constraints:

𝑚𝑖𝑛
𝑥

𝑓𝑇𝑥 (1) 

Such that one or more of the following hold: A·x 

≤ b, Aeq·x = beq, l ≤ x ≤ u 

 Large Scale Linear Programming

 Active-Set Medium-Scale linprog

Algorithm 

 Medium-Scale linprog Simplex

Algorithm 

b. Quadratic programming: is the problem of

finding a vector x that minimizes a quadratic 

function, possibly subject to linear 

constraints 

𝑚𝑖𝑛
𝑥

1

2
𝑥𝑇𝐻𝑥 + 𝑐𝑇𝑥 (2) 

Such that A·x ≤ b, Aeq·x = beq, l ≤ x ≤ u 

 Interior-Point-Convex quadprog

Algorithm 

 Trust-Region-Reflective quadprog

Algorithm 

 Active-Set quadprog Algorithm

c. Nonlinear Optimization Algorithms:

constrained minimization is the problem of 

finding a vector x that is a local minimum to 

a scalar function f(x) subject to constraints on 

the allowable x 

𝑚𝑖𝑛
𝑥

𝑓(𝑥)      (3) 

such that one or more of the following holds: c(x) 

≤ 0, ceq(x) = 0, A·x ≤ b, Aeq·x = beq, l ≤ x ≤ u. 

 Trust Region Reflective Algorithm
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 Active Set Algorithm 

 SQP Algorithm 

 Interior Point Algorithm 
 

2) Complexity analysis. 

The application of neural feedback 

schedulers contains not only online 

computations but also offline computations, e.g., 

mathematical optimization, network training and 

test, etc., only the complexity of online 

computations is of concern. The feedback 

scheduling overhead is determine the 

computational operations at runtime. 

With a given time interval, the amount of 

computing resource consumed by the feedback 

scheduler depends directly on the CPU time 

needed for each run.  

Below methods has been chosen to compare 

results with adapted neural network. 

 Interior-point methods: in mathematical 

programming have been the largest and most 

dramatic area of research in optimization 

since the development of the simplex method 

[13]. 

Interior-point methods have permanently 

changed the landscape of mathematical 

programming theory, practice and computation 

(also referred to as barrier methods) which deals 

with a certain class of algorithms to solve linear 

and nonlinear convex optimization problems. 

 Active Set: Is a procedure for determining 

inequality constraints which will be “Active” 

at each iteration. An essential part of many 

iterative methods for linearly constrained 

[13]. 

 Sequential Quadratic Programming (SQP): is 

one of the most successful methods for the 

numerical solution of constrained nonlinear 

optimization problems. It relies on a 

profound theoretical foundation and provides 

powerful algorithmic tools for the solution of 

large-scale technologically relevant 

problems [14]. 

Tables 1, 2, and 3 have been created based 

on inverted pendulum cost function to optimize 

the sampling periods with RMS constraints. The 

execution time Ci ranges started from 0.001 to 

0.009 seconds. 

The goal of creating Tables 1, 2, and 3 is to 

compare the mentioned three optimization 

algorithms results with the developed FFNN in 

order to show the effectivity of NN in solving 

optimizations issues. 
 

Table 1: Interior Point Optimization Data Sample 

C1 C2 C3 U h1 h2 h3 Jmin 

0.001 0.001 0.001 0.7 0.005335 0.004274 0.003589 0.856772 

0.001 0.001 0.002 0.26 0.016732 0.013404 0.01592 3.129933 

0.001 0.001 0.004 0.28 0.018646 0.014938 0.02509 4.186178 

0.001 0.001 0.006 0.3 0.01963 0.015726 0.03235 4.971029 

0.001 0.001 0.008 0.32 0.020164 0.016153 0.038369 5.594411 

0.001 0.002 0.001 0.34 0.012505 0.014167 0.008413 2.286172 

0.001 0.002 0.003 0.36 0.014833 0.016805 0.017284 3.405738 

0.001 0.002 0.005 0.38 0.016023 0.018154 0.024105 4.195334 

0.001 0.002 0.007 0.4 0.016745 0.018971 0.029806 4.822609 

0.001 0.002 0.009 0.42 0.017201 0.019488 0.034717 5.343487 

0.001 0.003 0.002 0.44 0.011964 0.016601 0.011383 2.708084 

0.001 0.003 0.004 0.46 0.013336 0.018505 0.017945 3.518109 

0.001 0.003 0.006 0.48 0.014173 0.019666 0.023356 4.145868 

0.001 0.003 0.008 0.5 0.014732 0.020442 0.028034 4.666357 

0.001 0.004 0.001 0.52 0.009582 0.015353 0.006447 2.053177 

0.001 0.004 0.003 0.54 0.011243 0.018013 0.013101 2.934895 

0.001 0.004 0.005 0.56 0.012179 0.019513 0.018322 3.571633 

0.001 0.004 0.007 0.58 0.012809 0.020523 0.0228 4.091764 

0.001 0.004 0.009 0.6 0.013259 0.021245 0.026762 4.535926 

0.001 0.005 0.002 0.62 0.009505 0.017027 0.009044 2.408705 

0.001 0.005 0.004 0.64 0.010569 0.018932 0.014221 3.073915 

0.001 0.005 0.006 0.66 0.011261 0.020172 0.018557 3.598654 

0.001 0.005 0.008 0.68 0.011758 0.021062 0.022374 4.042283 

0.001 0.006 0.001 0.7 0.00792 0.015542 0.005328 1.888039 

0.001 0.006 0.002 0.26 0.023691 0.046489 0.022541 6.274874 

0.001 0.006 0.004 0.28 0.025108 0.049271 0.033785 7.590355 

0.001 0.006 0.006 0.3 0.025661 0.050356 0.042289 8.494793 

0.001 0.006 0.008 0.32 0.025818 0.050663 0.049129 9.171821 

0.001 0.007 0.001 0.34 0.017027 0.036088 0.011455 4.238305 

0.001 0.007 0.003 0.36 0.019103 0.04049 0.02226 5.648975 

0.001 0.007 0.005 0.38 0.020069 0.042537 0.030191 6.581145 

0.001 0.007 0.007 0.4 0.020588 0.043637 0.036647 7.290391 

0.001 0.007 0.009 0.42 0.020861 0.044217 0.042105 7.859498 

0.001 0.008 0.002 0.44 0.015074 0.034157 0.014342 4.299216 

0.001 0.008 0.004 0.46 0.016312 0.036961 0.021948 5.262839 

0.001 0.008 0.006 0.48 0.017024 0.038574 0.028055 5.981715 

0.001 0.008 0.008 0.5 0.017469 0.039584 0.033243 6.56136 
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Table 2 :Active Set Optimization Sample Data 

C1 C2 C3 U h1 h2 h3 Jmin 

0.001 0.001 0.001 0.7 0.005335193 0.004274056 0.003589432 0.856771075 

0.001 0.001 0.002 0.26 0.016730129 0.013403069 0.015921271 3.129921914 

0.001 0.001 0.004 0.28 0.01864702 0.014938149 0.02508946 4.186176493 

0.001 0.001 0.006 0.3 0.019631421 0.015726379 0.032349571 4.971027696 

0.001 0.001 0.008 0.32 0.020163258 0.016153717 0.03836938 5.594410211 

0.001 0.002 0.001 0.34 0.012507925 0.014166614 0.008412282 2.286170665 

0.001 0.002 0.003 0.36 0.014834498 0.01680423 0.017283901 3.405737467 

0.001 0.002 0.005 0.38 0.016023595 0.018153875 0.02410536 4.195333434 

0.001 0.002 0.007 0.4 0.016744687 0.018970928 0.029805613 4.822606909 

0.001 0.002 0.009 0.42 0.017202523 0.019489173 0.034715729 5.343477418 

0.001 0.003 0.002 0.44 0.011963733 0.016600641 0.011383125 2.708080312 

0.001 0.003 0.004 0.46 0.013336234 0.018505308 0.017945213 3.518108945 

0.001 0.003 0.006 0.48 0.014168518 0.019677233 0.023349874 4.145858904 

0.001 0.003 0.008 0.5 0.014732295 0.020442044 0.028034199 4.66635459 

0.001 0.004 0.001 0.52 0.009583103 0.015353068 0.006446807 2.053175691 

0.001 0.004 0.003 0.54 0.011244536 0.018012625 0.013100352 2.934894367 

0.001 0.004 0.005 0.56 0.012178283 0.019512143 0.018322643 3.571630847 

0.001 0.004 0.007 0.58 0.012809305 0.020522577 0.02279947 4.091762445 

0.001 0.004 0.009 0.6 0.0132602 0.021244393 0.026761696 4.535924044 

0.001 0.005 0.002 0.62 0.009505178 0.017027205 0.00904378 2.408704497 

0.001 0.005 0.004 0.64 0.010569199 0.018933375 0.014219607 3.073874337 

0.001 0.005 0.006 0.66 0.011259323 0.020174224 0.018556104 3.598653829 

0.001 0.005 0.008 0.68 0.011757904 0.021062329 0.022373856 4.042282229 

0.001 0.006 0.001 0.7 0.007919821 0.015541538 0.005328435 1.888036689 

0.001 0.006 0.002 0.26 0.023690459 0.046491382 0.022539587 6.274873122 

0.001 0.006 0.004 0.28 0.025108393 0.049270774 0.033784739 7.590352951 

0.001 0.006 0.006 0.3 0.025662114 0.050353861 0.042290637 8.49479014 

0.001 0.006 0.008 0.32 0.025816638 0.050663856 0.049128652 9.171815716 

0.001 0.007 0.001 0.34 0.017026107 0.03608891 0.011454587 4.238265352 

0.001 0.007 0.003 0.36 0.019103005 0.040489827 0.022260262 5.648972532 

0.001 0.007 0.005 0.38 0.020068964 0.042537352 0.03019131 6.581142508 

0.001 0.007 0.007 0.4 0.020587886 0.043637158 0.036646528 7.290388873 

0.001 0.007 0.009 0.42 0.020861183 0.044216134 0.0421051 7.859496341 

0.001 0.008 0.002 0.44 0.015074251 0.034156807 0.014342285 4.299215955 

0.001 0.008 0.004 0.46 0.016311515 0.036959712 0.021948817 5.262833494 

0.001 0.008 0.006 0.48 0.017024219 0.038574504 0.028054497 5.981710375 

0.001 0.008 0.008 0.5 0.017471684 0.03958263 0.033242513 6.56135729 

 

Table 3: SQP Optimization Data Sample 

C1 C2 C3 U h1 h2 h3 Jmin 

0.001 0.001 0.001 0.7 0.005335185 0.004274113 0.003589396 0.856771149 

0.001 0.001 0.002 0.26 0.016732035 0.013404303 0.015919574 3.129925393 

0.001 0.001 0.004 0.28 0.018646413 0.014938 0.02508985 4.18617755 

0.001 0.001 0.006 0.3 0.019629785 0.015725861 0.032350684 4.971028433 

0.001 0.001 0.008 0.32 0.020163581 0.01615343 0.038369438 5.594410346 

0.001 0.002 0.001 0.34 0.012504844 0.014167418 0.008413118 2.286171439 

0.001 0.002 0.003 0.36 0.014832687 0.016804753 0.017284354 3.405737562 

0.001 0.002 0.005 0.38 0.016023493 0.018153861 0.02410542 4.19533376 

0.001 0.002 0.007 0.4 0.01674467 0.018970925 0.029805622 4.82260691 

0.001 0.002 0.009 0.42 0.017201062 0.019487923 0.034717348 5.343484559 

0.001 0.003 0.002 0.44 0.011963847 0.016600741 0.011383037 2.708083671 

0.001 0.003 0.004 0.46 0.013336487 0.018505419 0.017945021 3.518108973 

0.001 0.003 0.006 0.48 0.014172697 0.019665724 0.023356108 4.145859751 

0.001 0.003 0.008 0.5 0.014732278 0.020442164 0.028034141 4.666356314 

0.001 0.004 0.001 0.52 0.009582415 0.015353358 0.006446919 2.05317615 

0.001 0.004 0.003 0.54 0.011242561 0.018013223 0.013100826 2.934894505 

0.001 0.004 0.005 0.56 0.01217886 0.019513326 0.018321569 3.571632891 

0.001 0.004 0.007 0.58 0.012808756 0.020522671 0.022799669 4.091764012 

0.001 0.004 0.009 0.6 0.013259381 0.02124468 0.026761878 4.535925362 

0.001 0.005 0.002 0.62 0.009505179 0.017027241 0.009043754 2.408704516 

0.001 0.005 0.004 0.64 0.010568644 0.018932086 0.014220777 3.073875298 

0.001 0.005 0.006 0.66 0.011260663 0.020171844 0.018557178 3.59865391 

0.001 0.005 0.008 0.68 0.011757758 0.021062333 0.02237392 4.042282261 

0.001 0.006 0.001 0.7 0.007919902 0.015541543 0.005328396 1.888036726 

0.001 0.006 0.002 0.26 0.023690881 0.046489437 0.022540776 6.274873876 

0.001 0.006 0.004 0.28 0.025108324 0.04927087 0.033784708 7.590353435 

0.001 0.006 0.006 0.3 0.025661484 0.050356306 0.042289205 8.494790857 

0.001 0.006 0.008 0.32 0.025817749 0.050663026 0.049128765 9.17181859 

0.001 0.007 0.001 0.34 0.017026116 0.036087547 0.011455545 4.238265422 

0.001 0.007 0.003 0.36 0.019102899 0.040489763 0.022260358 5.64897283 

0.001 0.007 0.005 0.38 0.020068935 0.042537355 0.030191322 6.58114257 

0.001 0.007 0.007 0.4 0.020587855 0.043637214 0.036646503 7.290388874 

0.001 0.007 0.009 0.42 0.020861156 0.044216499 0.042104855 7.859496366 

0.001 0.008 0.002 0.44 0.015074179 0.034156706 0.01434239 4.299216047 

0.001 0.008 0.004 0.46 0.016311869 0.036960352 0.02194826 5.262838669 

0.001 0.008 0.006 0.48 0.017023854 0.03857445 0.028054723 5.981712554 

0.001 0.008 0.008 0.5 0.017469381 0.03958398 0.033242605 6.561357533 

 

In order to determine the number of hidden 

neurons, i.e. the value of M, neural networks of 

different sizes (4,6,8,10,16, and 20) has been 

compared and the most applicable one was with 

M=20, as the performance indices equals to 

1.807910-6, 2.771110-7, and 7.30110-8 for 

Interior-Point, Active-Set, and SQP optimization 

algorithms’ respectively as shown in Fig. 4, 5, 

and 6. Given that the performance is comparable. 

From this perspective, it is set that M = 20 

because of the good performance of 

corresponding NN and the fast reaching to the 

required results. 
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Fig. 3: NNO Performance for Interior-Point Dataset 
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Fig. 4: NNO Performance for Active Set Dataset 
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3) NNO and Optimization Algorithm 

Comparison 

By choosing random values for C1,C2,C3, 

and U to evaluate the NNO performance 

comparing with 3 different optimization 

algorithms, let C1=0.001, C2=0.004, C3=0.009; 

and U=0.6, the optimization and NNO results are 

shown in Table 4, Table 5, and Table 6. 
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Fig. 5: NNO Performance for SQP Dataset 
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As shown in Table 4, the NNO enhanced the 

overhead by 82.5% in Interior Point optimization 

algorithm type with the same minimum cost 

function value J. 
 
 

Table 4: Comparison Between Interior Point and NNO 

Performance 

Method h1 (s) h2 (s) h3 (s) Min J 
U< 

0.7798 

Over- 

head 

(s) 

Interior-

Point 
0.013259 0.021245 0.026762 4.535926 0.6 0.6210 

NNO 0.0133 0.0212 0.0268 4.5359 0.6 0.108410 
 

As shown in Table 5, the NNO enhanced the 

overhead by 91.88% than Active Set 

optimization algorithm type with the same 

minimum cost function value J. 
 

Table 5: Comparison Between Active Set and NNO 

Performance 

Method h1 (s) h2 (s) h3 (s) Min J 
U< 

0.7798 

Over- 

head (s) 

Active 

Set 
0.0132602 0.021244393 0.026761696 4.535924044 0.6 1.3606 

NNO 0.0137 0.0212 0.0267 4.5359 0.6 0.110410 
 

As shown in Table 6, the NNO enhanced the 

overhead by 79.75% than SQP optimization 

algorithm type with the same minimum cost 

function value J. 
 

Table 6: Comparison Between SQP and NNO 

Performance 

Method h1 (s) h2 (s) h3 (s) Min J 
U< 

0.7798 

Over- 

head (s) 

SQP 0.013259381 0.02124468 0.026761878 4.535925362 0.6 0.6339 

NNO 0.0133 0.0214 0.0264 4.5359 0.6 0.128397 
 

B. Intelligent Feedback Scheduling for Inverted 

Pendulum Control System 

In this case, multitasking embedded 

processor that is responsible for controlling three 

inverted pendulums concurrently has been 

considered, as shown in Fig. 7. 

Fig 6: Real Time Operating System (RTOS) 

 

System where three independent control 

tasks running and controlled by a one processor 

(resource) with limited processing capability. 

This control problem has been depicted in Fig7. 

A linear digital controller is designed for each 

pendulum. The pendulum different lengths 

motivate different sampling intervals for the 

different controllers: h1, h2, h3 = 58.8, 71.4, and 

83.3 ms [15]. Besides these three control tasks, 

there is an additional periodic non-control task 

running on the same processor. The execution 

time of this task is variable, causing UR to vary 

over time. The execution times of control tasks 

and the requested CPU utilization of non-control 

tasks may change over time. The desired total 

CPU utilization of all tasks is set to U = 0.75 < 

4(21/4 - 1) = 0.76. The feedback scheduler adapts 

the sampling periods (hi) of the control tasks to 

workload variations so that the CPU utilization is 

maintained at a desired level UR=U-C4/h4 [5]. 

According to Liu and Layland [12], the system 

schedulability under the RMS algorithm is 

guaranteed by U. The execution time of the non-

control task is C4, and its period h4 = 10 ms. 

Therefore, UR=U-C4/h4, implying that UR will 

change with C4. All task execution times (Ci) 

and the CPU workload has been assumed 

available at run-time and by using NNO, 

sampling periods can be produced to fit control 

stability criteria and RMS constraints. The 

scheduling part is done by NNS which built based 

on RMS criteria. 

Let hi and Ci denote the sampling period and 

the execution time of control task i, respectively. 

Optimal feedback scheduling can be formulated 

as a constrained optimization problem [8]: 
𝑚𝑖𝑛⏟

ℎ1,…,ℎ𝑁

      𝐽 = ∑ 𝐽𝑖
𝑁
𝑖=1 (ℎ𝑖)     (4) 

Subjected to      ∑
𝐶𝑖

ℎ𝑖

𝑁
𝑖=1 ≤ 𝑈𝑅    (5) 

where Ji(hi) is the control cost function of 

loop i, as a function of the sampling period; UR 

is the maximum allowable utilization reference 

of all control tasks and is related to the 

underlying scheduling policy employed and the 

requested utilization of disturbing task. 

Each pendulum is controlled independently 

by PID Controller, whose objective is to 
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minimize the below cost function. The costs 

functions for the three pendulums as functions of 

the sampling period are computed according to 

cost function. 
𝐽𝑖(ℎ) = 𝛼𝑖 + 𝛾𝑖ℎ𝑖     (6) 

For simplicity the constant 𝛼 equal to zeroes 

for all values and the estimated slopes of the cost 

functions are =43, 67, 95, and the pendulum 

frequencies is estimated as hi = 1/58.8, 1/71.4, 

1/83.3 in ms, and for non-control task ℎ4will be 

10 ms [5]. 

After subscription in above Equation 5.4 and 

Equation 5.6, the cost function will be 

represented as: 
𝑚𝑖𝑛⏟

ℎ1,ℎ2,ℎ3

𝐽 = 43ℎ1 + 67ℎ2 + 95ℎ3    (7) 

Subjected to  
𝑐1

ℎ1
+

𝑐2

ℎ2
+

𝑐3

ℎ3
≤ 0.75 −

𝑐4

0.01
  (8) 

For the purpose of creating sample data, the 

ranges of 𝐶1, 𝐶2 , 𝐶3 are taken as [0.1, 0.9], [0.1, 

0.9], and [0.1, 0.9],respectively, with increments 

of 0.1. C4 takes on values ranging from 0.5 to 5 

with increments of 0.05. The unit of these 

parameters is ms. For all possible values of these 

parameters, applying SQP offline resulted totally 

33534 sets of sample data.  
 

 

 

The applied parameters for inverted 

pendulums are listed in  

Table 7. 
 

Inverted Pendulum Transfer Function is: 

∅ =

𝑚𝑙

𝑞
𝑠

𝑠3+
𝑏(𝐼+𝑚𝑙2)

𝑞
𝑠2−

(𝑀+𝑚)𝑚𝑔𝑙

𝑞
𝑠−

𝑏𝑚𝑔𝑙

𝑞

    (9) 

where 𝑞 = [(𝑀 + 𝑚)(𝐼 + 𝑚𝑙2) − (𝑚𝑙)2]  

 
Table 7: Inverted Pendulums Parameters 

For all Inverted Pendulums 

M mass of the cart 0.5 kg 

b coefficient of friction for cart 0.1 N/m/sec 

I mass moment of inertia of the pendulum 0.006 kg.m2 

Inverted Pendulum 1 

m mass of the pendulum 0.133 kg 

l length to pendulum center of mass 0.2 m 

Inverted Pendulum 2 

m mass of the pendulum 0.2 kg 

l length to pendulum center of mass 0.3 m 

Inverted Pendulum 3 

m mass of the pendulum 0.267 kg 

l length to pendulum center of mass 0.4 m 

 

 

 

Fig. 7: Inverted Pendulums Simulation Scheme 
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1) Simulation under SQP Optimization Results 

 

 

 

 

 

 

 

 

 

 

2) Simulation under Proposed NNO Results  
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Fig. 8: Inverted Pendulum 2 Response after applying 

Traditional SQP Algorithm 
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Fig. 11: Inverted Pendulum 1 Response after applying 

NNO 
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Fig. 12: Inverted Pendulum 1 Response after applying 

Traditional SQP Algorithm 
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Fig. 9: Inverted Pendulum 2 Response after applying 

NNO 
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Fig. 10: Inverted Pendulum 3 Response after 

applying Traditional SQP Algorithm 
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Fig. 13: Inverted Pendulum 3 Response after 

applying NNO 
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3) Scheduling Results by Proposed NNS  

 

From Control perspective the results 

comparison of SQP optimization and the 

proposed NNO show that all pendulums 

demonstrated same response and speed to stable 

state as shown in Figures 10 to 15. 

From scheduling perspective, Fig. 14 shows 

the scheduling results of the control tasks based 

on RMS algorithm which depended on the 

sampling periods. 

The comparison of different feedback 

schedulers in terms of time overhead can be 

clarified as; for the optimal feedback scheduler 

and the neural feedback scheduler, the CPU time 

they actually expend for 1000 consecutive runs 

is recorded, respectively. In each run, task 

execution time is randomly drawn from the sets 

given in Fig. 15. The average execution time of 

the optimal feedback scheduler based on the SQP 

method falls between (C1 = 1.7710-05 and 

0.0002024 )s, (C2 = 6.2710-06 and 2.7410-05 

)s, and (C3 = 6.2710-06 and 4.9610-05 ) in 

most cases, with an average of C1=2.43E-05, 

C2=8.7310-06, and C3=8.9910-06 sec. And 

the execution time of the neural feedback 

scheduler falls between (C1 =1.65E-05 and 

9.8110-05 )s, (C2 = 5.1310-06 and 7.0110-05 

)s, and (C3 = 4.5610-06 and 2.5710-05 )s in 

most cases, with an average of C1=1.9910-05, 

C2=6.4010-06, and C3=5.5110-06 sec. The 

ratio of the time overhead of NFS is only 18%, 

26%, and 39% that of SQP for C1, C2, and C3. 
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IV. DISCUSSION

As a fast and intelligent feedback scheduling 

scheme, neural feedback scheduling has been 

proposed in this chapter for real-time control 

tasks. It fully exploits the offline solutions for the 

optimal feedback scheduling problem, which are 

offered by mathematical optimization 

algorithms. With the proposed approach, almost 

optimal QoC can be achieved. Meanwhile, 

compared to optimal feedback scheduling, it can 

significantly reduce the runtime overhead, which 

is particularly beneficial to embedded control 

systems that operate in resource-constrained and 

dynamic environments. 

Simulation results argue that neural feedback 

scheduling can dramatically reduce the feedback 

scheduling overhead, while yielding overall QoC 

almost identical with optimal feedback 

scheduling. 

It is clear from the results that the neural 

feedback scheduler induces significantly less 

computational overhead than the optimal 

feedback scheduler. The proposed approach does 

not rely on any specific forms of the control cost 

functions, making it widely applicable. In 

addition, the use of neural networks potentially 

enhances the adaptability, robustness, and fault-

tolerance of the feedback schedule. 
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