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ABSTRACT
Lo recent years, symbolic analysis his became a well-established technique in circuit analysis
and design. The symbolic expression of network characteristics offers convenience for
frequency response analysis, sensitivity computation, and fault diagnosis. - The aim of the
paper is lo present a method for symbolic analysis that depends an the use of the wavelet
transform (W) as a tool 1o zecelerate the solution of the problem as compared with the
numerical interpolation method that is based on the usc of the fast Fourier transfornn (¢ T).
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1. INTRODUCTION:

It is obvious that the methods ol symbolic
analysis can be divided wmainly mto owo
categorizs. These are the topological and
numerical methods |1} Each one of these
methods has s own advantages and
disadvantages. For instance, in topological
methods  the number of  elements
represented as syinbol 1s lavge but the
circwits that can be handled 15 small. white
in  numerical methods, fairly  large
networks can be handled but the number of
symbolic vanables should not exceed 10
the direct appligation of numencal
interpelanon method can be used to solve
problems of systemn matrix size of 30 and
about U elements only represented as
vanables beside the complex frequencay™s”
231

Many algorithms bhave been developed
and from these determinate and flow
syaph methods appear to be favoured in
terms of flexshility and efficiency [31. All
approaches suffer  from  vestrictions
jnherent 1o the problem. the escalanon of
computer hine and memory requirements
with increase in circoit size. The serious
limitation of such methods. in practice. 1%
the rapidly increasing amount of
computations required as the number of
symbals to be handled increase [3]. This
will, in fact. mcrease the time vequired to
solve the limcar system equation of the
crreul.

The numerical interpotation method for
abtaining the symbolic analysis suffers
frors serious limitation  (n practice, which
is the rapidly increasing amount of
computations required as the number of
svmbols to be handled increases. This, in
tact, reflects the amount of timea required to
perform the analysis. For this reason, if is
useful to find an approach w minimize the
computalions  required by the numerical
interpolation  as minimum as possible, The
nsual numerical interpolation methoed is
based on the use ofthe FFT, One way 10

(2)

reduce the computations required by the
numerical inlerpalation is to  search for a
wransform that will perform the required
tagk, besides minimizing the compulations,
and hence, reduces the required lime 1o
perform the analysis as compared to the
FFT. As an example, the Hartly
Transform (HT) could be used 10 replace
the FFT for the symboiic analysis and a
compatison could be made between the T
and the FFT to see which is better from the
point ef view of reducing the required
computation, and hence the time of doing
the analysis. One other promising
transform that may replace the FFT is the
Waveler  Transform (WT) [4,5]. A new
approach W minimize the compnations
and the time required is the mewrs!
mefwerk  approach to the interpotation
problem that allows to pet the solution in a
real time [§],

The method proposed in this paper tries to
reduce the time required by the numerical
interpolation method to solve  the system
equation by using the wavelet transform.

ILNUMERICAL INTERPOLATION
METHOD FOR SYMBOLIC
ANALYSIS

Numerical interpolation methods are based
on  the theory and implementation of
numerical  methods  for  penerating
svmbolic  funections of networks, They
seem to have a lower computational cost
than other well-known symbolic analysis
algoritnms such as a parameter extraction
method.

The following discussion will introduce the
idea of using interpolation in Anding

network  transfer  functions  using  the
Discrate  Fourier  Transform  {(DFT)

(3.7.8.9].
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2.1 POLYNOMIAL INTERPOLATION

First, We find N+1 points by evaluating
the function:

P.ix)=defA{x}} (1}
at Xp. X1,.... Xn where N is the maximum
power of x. Now, thers are N+ distinct
points (x;, y=F, (x)). =0, 1. ... N. Both x,
and y; may be real or complex numbers,
We wish to find the coefficieniz of the
polynomial:

A3
P.fxj- Zaw_r" (2)
m- 0

such (hat the polynomial passes through
the eiven points,

Inserting x; into the polynomial (2), We
obtain the set of equations:

: &
T, @, X, +4a&,x, +otrdLX, =Y,
i=ad, - N

(3)

with unknowns @y, 41, 22.....84. Finee there
are N+l unknown coefficients and the
same nuwmber of equations, Weo can write
the matrix equation:

X x" (2] [ ]
X, .l’:,‘ I;N a, ¥
X -T,-.,-z X.ﬂr‘hr_;_q”J L
(<)
s
[x][4]=¥] (5)

The solution of (3) provides the unknown
coefficients.

As we have the choice of selecting the
points x;, the question arises ax to what the
choice should be in order 1o obtain the hest
possible result. It can be shown thal the
interpolation with real x; is, in general,
numericatly upstable [7].

22 THE USE OF THE DISCRETE
FOURIER TRANSFORM I~
INTERPOLATION

We will derive this interpolation by
incroducing first a special symbel for the
matrix X in (5%

X = fx"} (6}

where the index 1 and the exponent nrun
from o N. If We choose the set of points
x; to be uniformly spaced on the unit circle
m the complex plang, then these points are

JAhT
N+l

] Lk =1,2,..,N.
(7}

x, =1, x, =exp|

introcuge the subsiitution;

W= expf- j2x

,"'\-'+.i'}r )

Then:

And:

X=Iw"t (10)
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Tt can b shown that [3]:

. I iy I
X =~ =
N+.f'; / N+

x°

{11

Where X' denotes the lranspose conjugale
matrix and [ runs from O o N.

The solution of {5) with the points defined
by {7} ts:

I .
A=X"'Y=—"jw™)¥

12
.e'\"'+.f ( }
01
a = "' i w.uk
" NH*__;‘"‘ (1H

n="f12,.,MN.

The original pelynomial in (2}, cvaluated
al xy; , can be writien as

(14}

Equation {13) and {14) represent the
solution of onc anather, They are called the
Discrete Fourier Transform (OFT) pair.

To improve the speed of the methad, one
can use a fast algorithm in intcrpolation.
Algorithms that reduce the computational
cost of DFI are, in general called the Fast
Fourict  Fransform (FFT). The DFT has
been studied extensively, 1t can be
programmed in a wvery efficienmt way,
particularly when N+i=2", m being a
pasitive integer. The number of eperatjons
required in this case is m (N+[) [3,3].

3, THE USF. OF THE WAVELET
TRANSFORM (W)

section, ihe use of the Discrete
Transform (DWT)  will be

In this
Wavelet

(4)

iHustrated. Before this, the DWT must be
briefly explained.

31 THE WAVELET TRANSFORM

Like (he FFT, the Discrere Wavelet
Transformn (DWT) is a fust linear operation
that operates on a datd vector whose length
is an integer power of two, (ransforming it
imo a oumerically different vector of the
same lenpth. Also, like the FFT, the WT is
invertible and in fact orthogonal, that is,
the inverse transform when viewed as a big
matrix, 15 simply the transpose of the
transform, Both FTT and TYWT, therefore.
can he viewed as 4 rotation in space. from
the inpwl space {or time) domain, where
the basis functions are the unit vestors o,
or Dirae delta functions in the continuum
limit, to a different domain, For the FFY,
this new domain has basis Tunctions that
are the famitiar sincs and cosines. Inthe
wavelet  dotmain, the basis functons are
somewhal more complicated and have the
fanciful names “mother functions” and
“wavelets™ [10].

Of course, there are an infinitely of
possible bases for tunction space, almost
all of them uninteresting, What makes the
waveler basis  interesting ig that, unlike
sines  and  cosipes, individual wavelel
functions are quite Jocalized in space;
simultancousty, hke sines  and cosines.
individual  wavelet functions are guite
tocalized in frequency or (more precisely)
characteristic scale. The particular kind of
dual localization achieved by wavelets
renders large classes of  functions and
aperators sparse, ot sparse to some high
accuracy, when tansformed imo the
wavelgt domain.  Anglogously  with the
Fourier domain, where a class of
compulations, like convolutions, become
vomputationally Last, there is a large class
of compuations (thoss that can  take the
advantage  of sparsity) that become
computationally fast m the wavelet domain
[4,7,101.
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IInlike sines and cosibes, which define a
unique Fourier transform, there is no one
single unique set of wavelets; in fact, there
are infinitely many possible sets. Roughly,
the different  sets  of  wavelets make
different wade-offs between  how
cormpactly they are localized in space and
how smoath they are.

3.2 DAUBECHITES WAVELET FILTER
COEFFFCIENTS

A particulay set of wavelets is specified by
a particolar sct of numbers called wavetst
filier coefficients. Here, we will largely
restrict  ourselves to wavelet filters in a
class discovered by Daubechies. This class
includes metbers ranging from high'y
localized to highly smooth. The simplest
(and most localized) member, often called
DALB4, has only lour coefficients, o, ¢,
€2, and ¢ [4,7,10].

Congider  the  following trunsformation
matrx acting on a column vector of data 1o

its nght;
R T TR .
! va poer v ;
| i
' L TR TR ¥ |
[T A H
|
# - '
! ;
H L] < re 1
i
i LENE I Tr
1
L] el oo
T oo vl £

Here, blank entries signily zeroes, Note the
siructure of this marix. The frst row
generates  one component of the data
convoluted with the filter coctficionts ¢,
¢y, Ca, and ci. Likewise, the third, fifth, and
other odd tows. 1f the even rows followed
this patern offset by one, then matrix
would be a circulant, that is, an ordinary
convo.ulion  that could be done by FFT
metheds, (Note how the last two rows
wrap  around ke convolutions with
periodic boundary conditions.) [nstead of
comvolufion  with ¢y, ¢, c», and oy,

Wl o

however, the even rows perform a differen
convolution, with coefficients ¢i,-00, €/,
and —¢p. The action of the matrix, overal],
i thus to perform  two  related
cunvelutions, then o decimate each of
them by hatf {throw away half the values),
and hnerleave the remaining halves.

It is useful w think of the filter ¢y, &, €3,
and ¢; 43 being a smoothing filter called H,
somiething like a mowing average of four
points, Then, because of the minus sign,
the filter ca, -€3, €, and —¢p, call it G, is not
a smoothing filker. In fact, the o's are
chosen so as to make G yield, insofar as
possible, a zero response to a sufficiently
smeoth  dag wvector. This is done by
requiring the sequence o3, -¢2, ¢, and -¢4 1o
have a certain  number of wvanishing
moments. When this  is the case for p
maments (slarting with the zernth), a sct ot
wavelets  is said 1o satisfy  am
“approximation condition of order p™. This
resuft in the output of H, decimated by
half, accurately representing the data’s
“smooth” information. The output of G.
also decimated is referred to as the data’s
“detail”™ inlormation {18,

For such o chamcierization to be usefidl, it
must be possible to reconstruct the original
data vector of length N from its N2
smooth  or s-components and s X2 detail
or d-componenis. Thal is effected by
requiting the matrix (153 o be orthogonal,
so that its imverse 15 just the transposed
matrix;

[V TR T B
L] Ye °r €1

L L ¢ Ll
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Mow, 2ince

ww'l-wwi«r (In
where | is the identity matrix, onc sees
itnmediately that mateix (16} is the inverse
of matrix (13 if and only if the tollowing
1w cqualions hold:

I I 1 I 1
cll +f| +CZ +Cl - {ls)
iy top, =0

It additionally, we require the
approximation condition of order p=2. then
two additional relations are required:

H F) H H
o, +e +eop +ey =1 (£9)
ety ey =10

Eguations {18) and (19) are 4 equalions for
tht 4 unknowns ¢y, c:, ¢z and ¢z, first
recopgnized and sclved by Daubecheies.
The wnigue solution (up to a lefiripht
reversal) is:

cu=“+1"llr5/ - c|={3+“\'{§] —
442 42
L3-S (-3

“7 A."IZ “ a2

(20

In fact, DAUB4 is only the most compact
of a sequence of waveiet sels: |f we have
six coefTicicnts instead of four, there would
be three orthogonality requirements in
equation {18) (with offscts of zero, twe and
four), and we could require the vanishing
of p=3 moments in equation (19). In this
case. DALBG, the solution coctficients can
also expressed in closed form:

(6)

. =u+4ﬁ+u';_zﬁﬁ/

v 162

. =f5+-4'?-$—i+3\|'5+-2\r.'5/

' 1642

L (-0 42 3+JJT/

? 7642
. =(w—zmd1,5+zﬁ0/ ]
! 842

c ={5+q‘ﬁ—jy'f:$+.?u"}ﬂﬂ_/

! 1642

. - fI+qu|‘.’-_'—1.'j-+21Jﬁ/J_
T 1642

(21)

For higher p, up to 10, Daubcechies has
tabuiated the coefficierus numenically. The
number of coefficients increases by two
each time p i3 increased by one.

33 THE DISCERTE WAVELET
TRANSFORM (DWT}

The D'WT consists of applying a Wavelet
coufficient matrix Dke (15 hisrarchically.
first 1o the full datz vector of length N,
then 10 the “smooth” vector of length N/2.
then to the “swmooth?smooth” vector of
length Néd, and se on until only a trivial
number af *“smooth?...? smooth™
components (usually 2) remain. The
procedure is sometimes called a pyeanidad
algorithnt {or  Malfar’s  pyramid
algorithm}, for ohvious reasons. The outpus
of the DWT consists of . these remaining
components  and  all  the “detail”
components that were accumulated along
the way., A diapram shouid make the
procedure clear :
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(22)

Il the length of the data vector was a higher
power of twao, there would be more stages
of applying (15) (or any other Wavelet
coefficients) and permuting. The end point
will always be a vector with two s and a
hierarchy of B's, D%, d’s, ete, Notice that
once  d’s  are  generated, they simply
propagate through to all subsequent stages.

A value di of any level 5 termed a
“Wavefet coefficient” of the original data
vector, the final values Vi, V3 should
strictty  be  called  “mother-function
coefficients”, although the term “Wavelet
cocflicients™ js often used loosely for
both d*s and  final Vs Since the “ull
procedure is

a composition  of orthogonal  linear
operations, the whole DWT is itself an
ortheponal linear operator,

To mvert the DWT, one simply reverses
the procedure, starting with the smallest
level of the hierarchy and working (in eq.
(22} from right 1o left. The inverse matrix
(16) is of course wsed instead of malix
(15).

Procedurcs that embody the DWT and
[IDWT (Inverse  Tiscrete  Wawelel
Transform} are available r0 be used later
for obtaining the symbaolic analysis using
the Waveler wansiorm.

el Lk,

34 THE USE OF DWT FOR FAST
SOLUTION QF LINEAR SYSTEMS

(ne of the most interesiing, and promising,
wavelet applications is linear algebra [10].
The basic iden is to think of integral
operator (that is, a large matrix) as a digital
image.  Suppose  thal  the  operator
compresses well under a two-dimensional
wavelet  transform, te., thal a large
furction of its wavelet coclficients are so
small as 1o be negligible. Then any system
wvolving the operawor becomes o sparse
spstent in the wavelet basis, In other words,
Lo solve:

Adx=b 2D

we frst wavelet-transform  the operator A
and the right-hand side b by;

;]-EW-A—WF . h=W.b (24}
where W represents the one-dimensiona:
wavelet transform, then solve:

A¥=8 (253

which is a sparse system in the wavelet
basis, and hence, this property can be used
lo sobve this system in a faster way than
usual, by using nctheds for solving the
EpArse Systems. so that we can obtain the
results glmost in a real-lime manner.

Finally, transform o the answer by the
inverse wavelet ransform:

x=W".¥ (26

The results will appear with a high
aceuracy as comparcd with the use of other
transforms 1o perform the same task.

The  method  discussed  above  was
waplemented  and  verified for solving
numerical linear systerns in u fast way. 1t is
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the W matrices and the number of 2oros
included in them.

also adopted to solve the linear system that
will be obtained when perfonming the
symbolic analysis. The problem that will
arise is to do the above operations in a
spmbotic way, and hence solving the linear
system  symbolically as fast as possible.

Table t Comparison between the size of the W
matrices and the number of their Zeros

—

This problem is overcome and applied to

o SIZEOF | TOTAL | TOTAL | SPARSITY
solve the symbolic linear system (o convert W | NUMBE | NUMBER | RATIO® |
it to a sparse symbolic svstem in the MATRI | ROF 0OF % |
wavelet basis, This system is then solved X ELEME | XEROS
using a method for solving the sparse NTS | -
system  symbolically also. This, in fact, x4 14 NVONE 4
reduces the time required (o obtain the T T 7 0 i
symbolic analvsis as will be shown fater, i .

16X16 256 192 73
35 THE WAVELET MATRICIES
32x12 M 96 8Ly
As one can see from eq. (15), the W matrix e YT 7 T 257
of dimenston 4 4 is as shown below: _ - ———
128X128 | 16384 15872 1 PEETS i
€y < vy C, * Spuryiy -ﬁ'r:lﬂ'u.= f?'ﬁf-tl-i'-ﬁ'unrblrr af Zeros) fﬁr.lllm' MNurthed |J_|"- :
Elemeaiz),
€, —-¢ € —€
W= 27) It was found that the number of zeros in
€ £ 6O € the W matrix for DAUB4 filter can be
e, -o e e found by the lormula:

Where o, &, ¢z, and g3 are the DAUB4
filter coefficients as explained previously.

N, the W matrix ol dimension 8x 8 is a3
shown below:

g €y fr 3 a " [ i
I S ] o W . a 3
HL o [ £y £ Ly o -]

v R LA (28)
» o [ [ [ P TR S
L N L
Ca i b . qa ] i oy 1]
or t'a o i L | £y -&p

Note the sparsity as the dimension of the
mateix  increases. The above matrix
contains 64 clements, 32 of them are zeros,
The W matrix of dimension 16x 16
eontains more 2erg  entries in ¢ and se on
for highet order of W matrices. This will
lead, when we wse it to transform a linear
system, 10 obtain a sparse system that
makes its solution easicr and faster. Table
| shows acomparison between the size of

(8)

Z=D'-4D (29}
where Z is the number of Zeros and D is
the dimension of the W matrix (D=4, 8,
16,...)

16 HARMONIC WAVELET
TRANSFORM

The wavelets studied so lar have all been
derived  with  real cocfficients. For
example. N wavelet coeflicients can be
computed by solving the N nonlinear
algebraic equations that define them. When
this is done, it turns out that the underlying
spectrum of a wavelet with N coefficients
becomes more box-like as N increases.
This ftact led 1o scck a wavelel wix) whose
spectrum 5 exactly like a box se that the
magnitude of its Fouricr transform Wiaw) is
zero cxeept for un  octave band of
frequencies.  The corresponding complex
wavelat is:
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TEE DENOMINATOR IS:

B (e,rdn' _ejznx)
w(x) = s B0

€1 C: &3 €y Cs R R Ry R; Rs
4. APPLICATION EXAMPLES 3"+

{Ra Ty By Rp C3 C¢ Re Cs +
This section presents some examples of Ra Ry Ry Ci Ry C & Gy + Ry Ry
using the previously mentioned atgorithm =~ €1 Fa ©2 €4 Ry Cs + Re €y By
thet depends on the usc of the DWT as Ri CiRs Cs * R Ry Ry G By G
compared with the use of the FFI from the Cs Co+ By Ry Oy Ry C3 C4 R Cs

+ Ry Ry Ry €3 Ty Cy Bs Cs + R
R; C1 R C C3i Ry €5 + Ry Ry €3
R; C3 Cy Ry C5) 8% +

pownt of view of reducing the amount of
calculations  and hence the execution time.
‘The software required to perform this Lask
wr using  the lang
;ATL:tlgnpack?gi. e limguags of the (Re C1 R Cy Rs C5 + Ry Cp Ry G,
Re O: + By Rs Ry Cp Cy Cy+ Ry R3
S R 2 CL + Ry T1 R; Bo Ca Cf
+F; Ry o Cq By Es+ Ry Rs Cy Cg
Rs €5 + Ry By C; R: C3 C; + E;
Ri 4 Cy Bxa Cs + By Ry T2 R, £
Cs + By By C; C4 Bs C5 +R; C; Ry
C. Eg Cs+ R; £3 Ry Cy Rs C5 +
Ra Ry Ry Cp Oy Ce +# Ry B3 ) R,
Cs Cs+ C; Ry Ry C; R C: + Es C;
R; C; Bs €3 + ) Ry Ro C; By O
+ £z R, By €y B O + Ry C; By
Rz Us Cy + Ry Ry ©3 Ry C3 2 +R;

For the purpose of fair comparison, two
versions ol the symbolic analysis programs
were  wrilten, one wses the FFT {called
SAUFFT: Symbolic Analvzer Using Fast
Fourier Transform} and the other uses the
DWT  (called SAUDWT:  Symbolic
Analyzer  Using  Discrete  Wavelet
Transform}  in numerical irterpolaton.
Abso, dhe circoits were used o both
programs w perform the symbolic analysis.

'I'h.c results are obtained using a Pentium I1 €z R; C3 Re Cs +Ry R, C; Ry C,
MICIOpracessor Fha! operates on 233 MHz Cs + Cy Ry Ry C¢ Rs Cs5 +R, C, R,
frequency and with 16 MB RAM memory. C: Ry C¢ + Ry Rp C; R, Cp Cs +
EXAMPLE 1: Consider the RC ladder 2';’ ,:f}l g e G R R G Ry
circuit shown in Fig, 1. 1t is desired to find
tt}-: \joltage Tmnsfcrlthnctiun Vm.Tl:liS (R, R; C; C5 + By C3 Ry Cs + Ry
cifcult costtains passive elements ﬂ‘t‘l|}lf with €; Ry C4 + Cy Ry Rs Cs + Ry Co
10 symbolic variables, The description of R; €y + C; Ry Rs Cs + Ry Ry Cs
the: ::i_rctlm was mpul 1o the program ina Cs + Ry Ry C3 €y + Ry Cp He ©y +
SPICE-like format, R: O3 Rs Cs + Ry Cy Ry Cr + R,
Cx: Ry Cg + Ry Cs Bg Cy + Cy Ry
Bs Cs + By Rt Ca Cg + Ry Ry
Cqy + R R Crg + C, R Ry Oy +
The analysis of this circuit using program € R1 Rz Gy + R C3 Rg Cs + C;
SAUDWT and SAUFFT yields the same Bz Ry Ci + Ry C3 Ry Cs + Cy R
transfer function but with differant tires of Rz C3 + Ry C. Ry €2 + Ry C3 Ry
execulion. The result 15 as shown below; Ca+ Ry C2 Ry C5 + C3 Ry R Cs +
By F; Cp Cg + & R; By £5 + Ry
THE NUMERATOR IS: C. Ri C3 + R;C) Ry Cs + Ry Ry
] ¢ C + R(C. R Cy + Ry Ry C»

Ca + Ry Ty Rg .:5]52 +

()
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Fig. I Circuit of example 1
The analysis of this circuit using program
SAUDWT and SAUFFT yields the same
transler function but with different times off

{Cq Rqa + Cy Rs + Ry G2 + &1 By execution. The result is as shown below:
+R30¢+R]_C3+R1C:5+RQC5
+ Ry C3 + By Ty + Rz G5 + Ry Cq THE NUMERATOR IS..
+R¢C5+C3R3"PR2|:¢}S+1 Om Tnz Tus Gme

THE DENOMINATOR TS, .
TIME OF EXECUTION OF PROGCRAM

| SAUDWT:

. TIME= 7 SECONDS. C; Cz €y Cy 8+ G Cp Cq Gme 8°
TIME OF EXECUTION OF PROGRAM + (Gu3 Gn2 C1 Cq + C; €2 Ome Ges)
SAUFFT: ' a’

TIME=19 SECONDS.

+ tqn:i Onz Tor Ca + T Qns Tos
EXAMPLE 2: Consider the cironit shown 9uz ) 2 + Ue3 Gmi Gx2 Tma
in Fig2. The circuit contains cight

symbolic variables, which are C), Cs, Cs

s, Biits Ein2 - B, and Era, where the gm13 TIME OF EXECUTION OF PROGRAM
are the transconductances of the OTA ( SAUDHT':

Operational Transconductance Amplifier) TIME=4 SECONDS, ,
cevices, The active devices are maodeled TIME OF EXECUTION QF PROGRAM |
using the nuilator-norator  equivalent SAUFFT: . :
CITCUL, | TIME=10 SECONDS. |

EXAMPLE 3: Consider the circuit shown
in Fig. 3. The circuit contains 11 symholic
clements and 4 OPAMP’s {Dperational
Amplifiers). After analyzing this circui
using the two programs, the result was:

(10}
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Fig. 2 Circuit of example 2

THE NUMERATOR IS..

“Rig Rt R¢Rs ©; Rp Ry C, R, 8% —
Bin{Rr By Ry ¢z By Ry - C; Ry Ry
By R: Rg) s-Fyu Ry R, Re R,

THE DENOMINATOR IS..
Ry Rg Ry Rg, C2 E; Rj C, Rl 32

+R1R9R¢R5C2R2R35+RTRQ
By Ry R

| EXECUTION TIME:
PRGOGRAM ONE SAUDWT:
TIME=10 SECONDS.

| PROGRAM TWO SAUFPT:

TIME=25 SECONDS.

(11)

3 PERFORMANCE COMPARISON
BETWEEN THE FFT AND THE
1YW T

Fig.d4 shows & simple comparison between
the performance of the FET and the DWT
tor their use in the symbolic analysis. From
the figure, we can see that for small
aumber  of  symbolic  variables, the
perfermance of the two trapsforms is
almost the same. At large number of
symbolig varigbles,  however, the
htference becomes very clear between the
two transforms.  Also, one can see that the
DWT continues in providing the analvsis
for large number of symbolic variables
with cxcellent time, while in FFT, the time
increases  rapidly  with  increasing the
symbolic variables and 1t fails at cerain
nuntber of symbolic variables to provide
the required results. It should be mentioned
that these results (those shown in Fig.4)
are taken for acertain sct of circuits

L
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Fig. 3 Circuit of example 3
and applied w programs SAUDWT and 6. CONCLUDING COMMENTS
SAUFFT for the pupose of fair
comparison. Of course, oot only the The application of wavelets is still new.
number of symbolic elements affecis the The subject is developing fast and many
requirgd time of execution, but also the questions remain to be  answered. For
configoration of the circuit, that 15 the cxample, Whal (s the best choice of
number of nodes and branches, The ligure wavelel lo use for a particular problem?
shows the results up 1o about 28 symbaolic How far does the harmonic wavelel's
variables and circuns with larger number computational  simplicity compensate Tor
of variables can also be analyzed with the its slow rate of decay in the x-domain
program SAUDWT only. {proportional  to x"}? . For condition

mottosiag, the DWT (using famslies of
orthogonal wavelets) will be compeling
with time-frequency methods using the
Shon-Time Fourjer Transform (STFT) and
the Wigner-Ville distribution [4,10].
Orthoponal wavelets give fast algovithms
and there 15 no redundancy: N data points
give N wavelet amplitudes. Instead of a
sipnal's mean-square being given by the

(12)
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Fig.4 Comparison in the timing performance between
the DWT and the FFT mransforms when used in the
symbolic analysis

arca under its spectral density curve, mean-
sguare is given by the volume under a two-
dimensional wavelets surface with time (or
distancc) as one axis and wavelet level {a
measure of frequency) as the other axis. [n
contrast, the STFT and Wigner-Ville
methods provide redundant information
than would be nesded to reconstruct the
signal  being  analymed and  the
computations take longer to complete [4].

host of the nsefulness of wavelets rests on
the fact thm wavelet transforms can
usefully be scverely franceted, thai is,
wurned into sparse expansions. The case of
Fourier iransforms is different: FEFTs ate
ordiparily used without truncation, [0
compute fast canvolutions, for example.
This works because the convelution
aperator is particularly simple i Fourier
basis [4,5.10].

Harmonic waveleis can be deseribed by a
simple  analytical  formula, they are
compuct i the frequency domain, and are
described by a complex function, Dilacdon

wavelels cannot be expressed in functional
form, they are compact in the x-domain.
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