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Abstract 

In this article, a novel three dimensional chaotic systems is presented. An extensive analysis including Lyapunov exponents, 

dissipation, symmetry, rest points with their properties is introduced. An adaptive tracking control system for the proposed chaos 

system has been designed. Also, synchronization system for two identical systems has been designed. The simulation results 

showed the effectiveness of the designed tracking and synchronization control systems. 
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I.  INTRODUCTION 

chaotic motion of dynamical systems is a special behavior 

arises in nonlinear systems, furthermore these systems are 

very sensitive to the initial conditions [1]. Chaotic systems 

received considerable attention in last three decades due to 

possible applications in varies science and engineering fields 

[2-5]. At other hand, chaos phenomena was investigated in 

many real systems [6], such as in double and triple 

pendulums [7,8] and brushless DC motor [9]. This leads to 

the fact that studying chaos systems and investigating their 

dynamical properties beside designing control systems for 

them are very advantageous and may be critical in some 

cases.  

Lyapunov exponents represent sufficient indication on 

existence of chaotic behavior [10], where the system is 

chaotic when it has positive Lyapunov exponent. Systems 

with more than one positive exponent is said to be 

hyperchaotic [11]. 

Despite of that there was many chaotic and hyperchaotic 

systems proposed [12-15] since the first appear of chaotic 

systems by Lorenz [16], but it still benefits to find and 

analyze new chaotic systems for both theoretical and 

practical aspects [17]. 

Chaotic synchronization means using two identical chaotic 

systems, the first one called the master and the second is the 

slave. The two systems are synchronized where the 

controlled (slave) system should track the uncontrolled 

(master) system outputs. Due to complex dynamics of 

chaotic system, chaotic synchronization still a challenging 

problem [18]. Different control techniques have been used 

for chaotic synchronization system design [18-20]. 

In this work, a novel three dimensional chaos system is 

introduced. The proposed system has 5 terms with 2 

quadratic nonlinearities. The system has been analyzed 

where its properties have been investigated. Lyapunov 

exponents have been found and from which and phase 

portrait, the system has been proved to be chaotic. 

Symmetry, dissipation, rest points and Kaplan York fractal 

dimension of the system have been found and discussed. 

 A tracking control system for all states of system assuming 

uncertain parameter values is designed. The design process 

uses simple algorithm with Lyapunov theory to find adaptive 

laws to estimate the uncertain parameters of the system. 

Also, and by using similar algorithm, a synchronization 

system has been designed to synchronize two identical 

systems. 

The proposed system and the designed controllers have been 

simulated using Matlab. The simulation showed the 

effectiveness of the designed control systems. 

The rest of this article is organized as follows: in section 2, 

the new chaotic system is introduced. In section 3, the system 

dynamical properties are investigated. In section 4, a tracking 

control system for the system is designed. In section 5, a 

synchronization controller for two identical systems is 

designed. Section 6 is a simulation study where Matlab18a 

has been used to write simulation programs for the control 

and synchronization systems. Finally, in section 7 the paper 

has been concluded. 

II. THE PROPOSED SYSTEM 

The proposed three dimensional chaos system is described 

by the following sate equations: - 

  

𝑥̇1 = 𝑎𝑥1𝑥2

𝑥̇2 = 70 −  𝑥1𝑥3

𝑥̇3 = 𝑏𝑥 − 𝑐𝑥31

}           (1) 
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This system exhibits chaotic behavior for wide range of 

values of the parameters a,b and c. we selected a,b,c equal to 

10, 0.2 and 0.6 respectively. The system has been simulated 

for initial conditions x1, x2 and x3 = {0.2,0.2,0.2}. Figures 

below show phase portrait of the system. Figs.1 and 2 show 

the 2 dimensional phase portrait of  x1, x2 and x1, x3 planes 

and fig.3 shows the 3 dimensional portrait of x1, x2, x3. 

 
Fig. 1: 2 D phase portrait of x1, x2. 

 
Fig. 2: phase portrait of x1, x2. 

 
Fig. 3: phase portrait of x1, x2, x3. 

III. DYNAMICAL ANALYSIS 

A. The Lyapunov exponents  

The Lyapunov exponents for the proposed system with the 

selected parameter values have been found using Wolf 

algorithm [21] and 𝑋(0) = 0.5, 0.5, 0.5 . The Lyapanove 

exponents dynamics for 1000 seconds are shown in fig. 4, 

and their steady state values are L1= 1.1, L2= -0.37 and L3=-

1.3324. the maximum exponent is positive which indicate 

clearly that the system is chaotic. 

 

Fig. 4: Lyapunov exponents dynamics. 

 

The Kaplan-York fractal dimension which can be used as a 

measure of system complexity is determined as follow : 

The Lyapunov dimension which used as an indication about 

the degree of chaotic behavior of the system, can be found 

by Kaplan-York conjecture [23]. Using this formula, the 

following can be obtained: 

 𝐷𝐾𝑌 = 2 +
𝐿1+𝐿2

|𝐿3|
= 2.5479     (2) 

𝐷𝐾𝑌 is The Lyapunov dimension. 

 
B. Dissipation  

Let us express the proposed system as a vector function 

f(x): 

 

 𝑓(𝑥) = [

𝑎𝑥1𝑥2

70 −  𝑥1𝑥3

𝑏𝑥1 − 𝑐𝑥3

]         (3) 

 

The divergence of the system described by f(x) can be 

found as in the following:  

 

 ∇. 𝑓 = ∑
𝜕𝑓𝑖

𝜕𝑥𝑖

3
𝑖=1 = −𝑐 = −0.6         (4) 

Since ∇. 𝑓 = −0.6 < 0, then the system is dispative 

because 

 

 𝑉̇(𝑡) = (∇. 𝑓)𝑉(𝑡) = −0.6𝑉(𝑡)        (5) 

 

Then, any volume element V(t) will shrink to 0 as t goes to 

zero. 
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C. The Equilibrium points 

The equilibrium or rest points can be found by setting the 

system questions equal to zero, i.e. 

 

  

𝑎𝑥1𝑥2 = 0                  1
70 − 𝑥1𝑥3 = 0          2
𝑏𝑥1 − 𝑐𝑥3 = 0         3

}           (6) 

 

In solving these questions, first we notice from 6-1 that either 

x1=0 or x2=0, but from 6-2, x1can not equal to zero, then 

x2=0. Solving 6-2 and 6-3, we find 𝑥1 =
 14.4914 −
+  𝑎𝑛𝑑 𝑥3 = 4.8305−

+   . Then, the system has two 

equilibrium points (E1and E2) :- 

 

𝐸1 =  [
14.4914

0
4.8305

] ,      𝐸1 =  [
−14.4914

0
−4.8305

] 

 

The general Jacobian matrix of the system with the specified 

parameters is given by the following: - 

 

 𝐽(𝑥) = [
20𝑥2     20𝑥1      0

−𝑥3          0      − 𝑥1

0.2         0           0.6

]   (7) 

 

Using this matrix, we can find the spectral values of E1 and 

E2 (J(E1 ) and J(E2 ) ). The spectral values for both E1 and E2 

are the same: - 

 

                𝜆1,2 = 3 𝑗37.4156−
+  , 𝜆3 = 0  

 

It is clear that E1 and E2 are non-hyperbolic points. Then, the 

stability of these points cannot be ensured by linearization 

and the system can be self-excitation or hidden attractor. 

IV. CONTROLLER DESIGN 

In this section, a tracking controller is designed using simple 

procedure. Rewriting the system model as: - 

 

 

𝑥̇1 = 𝑎𝑥1𝑥2 + 𝑢1
𝑥̇2 = 70 −  𝑥1𝑥3 + 𝑢2
𝑥̇3 = 𝑏𝑥1 − 𝑐𝑥3 + 𝑢3

} (8) 

 

Where U={u1,u2,u3} is the control inputs. The design 

procedure based on satisfying the following error question: - 

 

 𝑒𝑖̇ + 𝑘𝑖𝑒𝑖 = 0 ,   i=1,2,3      (9) 

 

Where, ei=ri-xi, ri is the desired state outputs. ki is the design 

parameters. 

Combining (8) and (9) and solving for U, the following 

results can be obtained; 

 

 

𝑢1 = 𝑟̇1 + 𝑘1𝑒1 − 𝑎(𝑡)𝑥1𝑥2

𝑢2 = 𝑟̇2 + 𝑘2𝑒2 − 70 + 𝑥1𝑥3

𝑢3 = 𝑟̇3 + 𝑘3𝑒3 − 𝑏(𝑡)𝑥1 + 𝑐(𝑡)𝑥3

}   (10)                                                               

 

                                                                                           

Substituting (10) into (8), the following equations are 

obtained: - 

 

 

 𝑥̇1 = 𝑟̇1 + 𝑘1𝑒1 + (𝑎 − 𝑎(𝑡))𝑥1𝑥2

 𝑥̇2 = 𝑟̇2 + 𝑘2𝑒2

𝑥̇3 = 𝑟̇3 + 𝑘3𝑒3 + (𝑏 − 𝑏(𝑡))𝑥1 − (𝑐 − 𝑐(𝑡))𝑥3

}  (11)                                                                             

       

Substituting xi = ri - ei and 𝑥̇𝑖 = 𝑟̇𝑖 − 𝑒𝑖̇ into (11), the error 

dynamics of the system can be written as in the following 

questions :- 

 

 

 𝑒̇1 = 𝑒𝑎𝑒1𝑒2 − 𝑒𝑎𝑒1𝑟2 − 𝑒𝑎𝑒2𝑟1 + 𝑒𝑎𝑟1𝑟2 − 𝑘1𝑒1

 𝑒̇2 = −𝑘2𝑒2

𝑒̇3 = 𝑒𝑏𝑟1 − 𝑒𝑏𝑒1 + 𝑒𝑐𝑟3 + 𝑒𝑐𝑒3 − 𝑘3𝑒3

}  (12)                                                                             

 

Where, ea=a-a(t), eb=b-b(t) and ec=c-c(t). 

To stabilize the error dynamics of the system, we must obtain 

suitable update laws for a(t), b(t) and c(t) which ensures 

convergence to real values. For this purpose, Lyapunov 

theory has been used.  

The following positive definite function is selected as a 

Lyapunov function candidate:  

 

 𝑉(𝑡) = 1/2(𝑒1
2 + 𝑒2

2 + 𝑒3
2 + 𝑒𝑎

2 + 𝑒𝑏
2 + 𝑒𝑐

2)     (13) 

                                                      

Differentiating V(t), we obtain: - 

 

 𝑉̇(𝑡) = 𝑒1𝑒1̇ + 𝑒2𝑒2̇ + 𝑒3𝑒3̇ + 𝑎̇𝑒𝑎 + 𝑏̇𝑒𝑏 + 𝑐̇𝑒𝑐   (14) 

 

Substituting (12) into (14) and rearranging, the following 

result is obtained :- 

 𝑉̇(𝑡) = −𝑘1𝑒1
2 − 𝑘1𝑒2

2 − 𝑘1𝑒3
2 + 𝑒𝑎(𝑎̇ + 𝑒1

2𝑒2 − 𝑒1
2𝑟2 −

𝑒1𝑒2𝑟1 + 𝑒1𝑟1𝑟2) + 𝑒𝑏(𝑏̇ + 𝑟1𝑒3 + 𝑒1𝑒3) + 𝑒𝑐(𝑐̇ + 𝑒3
2 −

𝑟3𝑒3)    (15) 

 

Selecting 

 

 

𝑎̇ = 𝑒1
2𝑒2 − 𝑒1

2𝑟2 − 𝑒1𝑒2𝑟1 + 𝑒1𝑟1𝑟2

𝑏̇ = 𝑟1𝑒3 + 𝑒1𝑒3

𝑐̇ = 𝑒3
2 − 𝑟3𝑒3

}      (16)                                                              

 

𝑉̇(𝑡) becomes: - 

 

 𝑉̇(𝑡) = −𝑘1𝑒1
2 − 𝑘1𝑒2

2 − 𝑘1𝑒3
2     (17) 

 

(17) is negative definite and controller stability is ensured. 

 

V. SYNCHRONIZATION SYSTEM DESIGN 

In this section, a synchronization system for two identical of 

the proposed chaotic system is designed. The master is the 

uncontrolled system described by (1). The slave system takes 

the following form: - 

 

 

𝑦̇1 = 𝑎𝑦1𝑦2 + 𝑢1
 𝑦̇2 = 70 −  𝑦1𝑦3 + 𝑢2
𝑦̇3 = 𝑏𝑦1 − 𝑐𝑦3 + 𝑢3

}  (18)                                                                                         
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Where U={u1,u2,u3} is the control inputs to be designed to 

synchronize the two systems. 

The error between the two systems (synchronization error) 

is defined as: - 

 

    𝑒𝑖 = 𝑦𝑖 − 𝑥𝑖 ,      𝑖 = 1,2,3      (19) 

                                                                            

Using 𝑒̇𝑖 = 𝑦̇𝑖 − 𝑥̇𝑖  and substuting (1) and (18), the 

following error dynamics can be easily obtained :- 

 

 

𝑒̇1 = 𝑎(𝑦1𝑦2 − 𝑥1𝑥2) + 𝑢1
𝑒̇2 = 𝑥1𝑥3 − 𝑦1𝑦3 + 𝑢2

𝑒̇3 = 𝑏𝑒1 − 𝑐𝑒3 + 𝑢3
}  (20)                                                                               

  

To stabilize the dynamics described by (20), we designed 

the control inputs to satisfy the following stable dynamics: - 

 

 𝑒̇𝑖 + 𝑘𝑖𝑒𝑖 =0  ,        i=1,2,3         (21)                                             

 

Where ki is the design parameters.  

Substituting (21) into (20) and solving for U, the following 

result is obtained: - 
 

 

𝑢1 = −𝑘1𝑒1 − 𝑎(𝑡)(𝑦1𝑦2 − 𝑥1𝑥2)
𝑢2 = −𝑘2𝑒2 − 𝑥1𝑥3 +  𝑦1𝑦3

𝑢3 = −𝑘3𝑒3 − 𝑏(𝑡)𝑒1 + 𝑐(𝑡)𝑒3

}   (22)                                                                       

 

Substituting (22) into (20), we get:- 

 

 

𝑒̇1 = −𝑘1𝑒1 + 𝑒𝑎(𝑦1𝑦2 − 𝑥1𝑥2)

 𝑒̇2 = −𝑘2𝑒2

𝑒̇3 = −𝑘3𝑒3 + 𝑒𝑏𝑒1 − 𝑒𝑐𝑒𝑐

}  (23)                                             

   
Where, 𝑒𝑎 = 𝑎 − 𝑎(𝑡), 𝑒𝑏 = 𝑏 − 𝑏(𝑡), 𝑒𝑐 = 𝑐 − 𝑐(𝑡). 

To obtain stable update laws for time varying design 

parameters, we use Lyapunov theory. Selecting the 

Lyapunov function candidate as: - 

 

 𝑉(𝑡) = 1/2(𝑒1
2 + 𝑒2

2 + 𝑒3
2 + 𝑒𝑎

2 + 𝑒𝑏
2 + 𝑒𝑐

2)   (24) 

 

Differentiating V, the following is obtained:- 

 
 𝑉̇(𝑡) = 𝑒1𝑒1̇ + 𝑒2𝑒2̇ + 𝑒3𝑒3̇ + 𝑎̇𝑒𝑎 + 𝑏̇𝑒𝑏 + 𝑐̇𝑒𝑐  (25) 

 

Substituting from (23), the following result is obtained: - 

 

 𝑉̇(𝑡) = −𝑘1𝑒1
2 − 𝑘1𝑒2

2 − 𝑘1𝑒3
2 + 𝑒𝑎(𝑎̇ + 𝑒1( 𝑦1𝑦2 −

𝑥1𝑥2)) + 𝑒𝑏(𝑏̇ + 𝑒1𝑒3) + 𝑒𝑐(𝑐̇ − 𝑒2𝑒3)    (26)                              

 

Selecting: 

 

 

𝑎̇ = −𝑒1( 𝑦1𝑦2 − 𝑥1𝑥2)

𝑏̇ = −𝑒1𝑒3

𝑐̇ = 𝑒2𝑒3

}    (27)                                                   

 

Result in, 

 

 𝑉̇(𝑡) = −𝑘1𝑒1
2 − 𝑘1𝑒2

2 − 𝑘1𝑒3
2       (28) 

 

Which is a negative semi definite function. 

VI. SIMULATION STUDY 

In this section, the designed control and synchronization 

systems are tested by simulation. Matlab18a is used to write 

the simulation programs. 

 

A. Control system 

The designed controller is simulated for two cases. First, a 

stabilization ability is tested by assuming starting from an 

initial condition and the reference target is: 

𝑅 = {0,0,0}.  
The initial condition is assumed to be: 

𝑋(0) = {1, −2, 3} 
Fig.5  shows system states responses and it is clearly shows 

the high performance of the control system.  

 

 
Fig. 5: States response of the stabilized system 

 

Secondly, a tracking ability for the designed control system 

is tested by assuming sinusoidal reference signals and as 

follows: 

𝑅 = {sin(20𝑡) , 2 sin(20𝑡) , 3 sin(20𝑡)} 

The initial condition is taken as: 

𝑋(0) = {1, −2, 3}. 
Fig.  shows the states responses of the system and it shows 

high performance tracking ability. 
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Fig. 6: States response of sinusoidal tracking system 

 

B. synchronization system 

The designed synchronization system is simulated assuming 

the following initial conditions for the master and slave 

states: 

𝑋(0) = {3, -1, 2} 

𝑌(0) = {1, 2, 3} 

Fig.7 shows the synchronization errors and it clearly shows 

the high performance synchronization of the system with 

very small and acceptable transient time. 

 

 
Fig. 7: Synchronization error. 

 

The synchronization system is also simulated as a secure 

communication system where a sinusoidal signal 𝑠 =
3sin (20𝑡) is assumed as the signal to be transmitted. This 

signal is added to 𝑥1and the resultant signal 𝑡𝑟 is transmited 

to the receiver side where the slave system. The received 

signal should be extracted by subtracting it from 𝑦1 . The 

initial conditions for the master and slave are: 

𝑋(0) = {3, -1, 2} 

𝑌(0) = {1, 2, 3} 

Fig.8 shows the transmitted and received signals. 

 

 
Fig. 8: Transmitted and received signal. 

 

VII. CONCLUSION 

A novel 3 dimensional chaotic systems are presented in this 

paper. The dynamical properties of the proposed system are 

studied. Control and synchronization systems using simple 

control design procedure are designed. Simulation study is 

used to validate the designed control and synchronization 

systems and to investigate their performances. The 

simulation study shows that the controllers designed to 

control and synchronize the system have very high 

performances and that the synchronization system is suitable 

and easy to use in secure communication application. 
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